# On the Problem of Formulating Principles in Nonequilibrium Thermodynamics

^{1}

^{2}

^{*}

## Abstract

**:**

**PACS**65.40.gd

## 1. Introduction

## 2. Interference of Subject and Object in Stationary Processes

## 3. Relaxation as A Quasi-Stationary Process. Maximum or Minimum Entropy Production?

## 4. Conclusions

## Acknowledgements

## References

- Khinchin, A.I. Mathematical Foundations of Statistical Mechanics; Dover Publication Inc: New York, NY, USA, 1949. [Google Scholar]
- Chang, L. Physical Chemistry for the Chemical and Biological Sciences; University science book: Sausalito, CA, USA, 2000. [Google Scholar]
- DeGroot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Dover Publications Inc.: New York, NY, USA, 1962. [Google Scholar]
- Chandrasekhar, S. Hydrodynamic And Hydromagnetic Stability; Oxford University Press: Oxford, UK, 1961. [Google Scholar]
- Rayleigh, W. The explanation of certain acoustical phenomena. Nature
**1878**, 18, 319–321. [Google Scholar] [CrossRef] - Paltridge, G.W. Climate And Thermodynamic Systems Of Maximum Dissipation. Nature
**1979**, 279, 630–631. [Google Scholar] [CrossRef] - Ozawa, H.; Shimokawa, S.; Sakuma, H. Thermodynamics of fluid turbulence: A unified approach to the maximum transport properties. Phys. Rev. E
**2001**, 64, 026303-1–8. [Google Scholar] [CrossRef] - Malkus, W.V.R. Outline of A theory of turbulent shear flow. J. Fluid Mech
**1956**, 1:5, 521–539. [Google Scholar] [CrossRef] - Di Vita, A. Maximum or minimum entropy production? How to select a necessary criterion of stability for your dissipative fluid (or plasma). Phys. Rev E. in press.
- Dewar, R. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen.
**2003**, 36, 631–641. [Google Scholar] [CrossRef] - Jaynes, E.T. The minimum entropy production principle. Ann. Rev. Phys. Chem.
**1980**, 31, 579–601. [Google Scholar] [CrossRef] - Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev.
**1931**, 37, 405–426. [Google Scholar] [CrossRef] - Onsager, L. Reciprocal relations in irreversible processes. II. Phys. Rev.
**1931**, 38, 2265–2279. [Google Scholar] [CrossRef] - Županović, P.; Kuić, D.; Bonačić Lošić, Ž.; Petrov, D.; Juretić, D.; Brumen, M. The maximum entropy production principle and linear irreversible processes. Available online: http://arxiv.org/abs/1003.3680 (accessed on 18 March 2010).
- Enskog, D. Kinetische Theorie der Vorgänge in mässig verdünnten Gasen . Dissertation, Upssala University, Upssala, Sweden, 1917. [Google Scholar]
- Kohler, M. Behandlung von Nichtgleichgewichtsvorgängen mit Hilfe eines Extremalprinzips. Z. Phys.
**1948**, 124, 772–789. [Google Scholar] [CrossRef] - Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev.
**1957**, 106, 620–630. [Google Scholar] [CrossRef] - Jaynes, E.T. Information theory and statistical mechanics. II. Phys. Rev.
**1957**, 108, 171–190. [Google Scholar] [CrossRef] - Jaynes, E.T. On the rationale of maximum-entropy methods. Proc. IEEE.
**1982**, 70, 939–952. [Google Scholar] [CrossRef] - Dewar, R.C. Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen.
**2005**, 38, L371–L381. [Google Scholar] [CrossRef] - Niven, R.K. Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E
**2009**, 80, 021113–021127. [Google Scholar] [CrossRef] - Martyushev, L.M.; Seleznev, V.D. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep.
**2006**, 426, 1–45. [Google Scholar] [CrossRef] - Bruers, S. A discussion on maximum entropy production and information theory. J. Phys. A: Math. Theor.
**2007**, 40, 7441–7450. [Google Scholar] [CrossRef] - Grinstein, G.; Linsker, R. Comments on a derivation and application of the “maximum entropy production” principle. J. Phys. A: Math. Theor.
**2007**, 40, 9717–9720. [Google Scholar] [CrossRef] - Prigogine, I. Introduction to Thermodynamics of Irreversible Processes; Interscience Publishers: New York, NY, USA, 1967. [Google Scholar]
- Jeans, J.H. The Mathematical Theory of Electricity and Magnetism; Cambridge University Press: Cambridge, UK, 1923. [Google Scholar]
- Županović, P.; Juretić, D.; Botrić, S. Kirchhoff’s loop law and the maximum entropy production principle. Phys. Rev. E
**2004**, 70, 056108-1–056108-5. [Google Scholar] [CrossRef]

© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.

## Share and Cite

**MDPI and ACS Style**

Županović, P.; Kuić, D.; Juretić, D.; Dobovišek, A. On the Problem of Formulating Principles in Nonequilibrium Thermodynamics. *Entropy* **2010**, *12*, 926-931.
https://doi.org/10.3390/e12040926

**AMA Style**

Županović P, Kuić D, Juretić D, Dobovišek A. On the Problem of Formulating Principles in Nonequilibrium Thermodynamics. *Entropy*. 2010; 12(4):926-931.
https://doi.org/10.3390/e12040926

**Chicago/Turabian Style**

Županović, Paško, Domagoj Kuić, Davor Juretić, and Andrej Dobovišek. 2010. "On the Problem of Formulating Principles in Nonequilibrium Thermodynamics" *Entropy* 12, no. 4: 926-931.
https://doi.org/10.3390/e12040926