# The Maximum Entropy Production Principle and Linear Irreversible Processes

^{1}

^{2}

^{*}

## Abstract

**:**

**PACS**65.40.gd

## 1. Introduction

## 2. The Principle of the Least Dissipation of Energy and Linear Nonequilibrium Thermodynamics

## 3. The MEP Principle and Linear Nonequilibrium Thermodynamics

## 4. The Linearized Boltzmann Equation and the Extremum of Entropy Production

**F**. The right-hand side of the equation describes the net change in the number of molecules in a given element of the velocity space due to molecule collisions.

**e**, i.e., on the scattering angle [23].

**V**is the velocity relative to the barycentric (centre of mass) velocity.

**V**gives

## 5. Conclusions

## Acknowledgements

## References

- Prigogine, I. Introduction to Thermodynamics of Irreversible Processes; Interscience Publishers: New York, NY, USA, 1967. [Google Scholar]
- Ziegler, H. An Introduction to Thermomechanics; North-Holland publishing company: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Paltridge, G.W. The steady-state format of global climate. Q.J.R. Meteorol. Soc.
**1978**, 104, 927–945. [Google Scholar] [CrossRef] - Chavanis, P.H.; Sommeria, J.; Robert, R. Statistical mechanics of two-dimensional vortices and collisionless stellar systems. Astrophys. J.
**1996**, 471, 385–399. [Google Scholar] [CrossRef] - Chavanis, P.H. Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics and two-dimensional turbulence. Phys. Rev. E
**2003**, 68, 036108. [Google Scholar] - Kohler, M. Behandlung von Nichtgleichgewichtsvorgängen mit Hilfe eines Extremalprinzips. Z. Phys.
**1948**, 124, 772–789. [Google Scholar] [CrossRef] - Dewar, R. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen.
**2003**, 36, 631–641. [Google Scholar] [CrossRef] - Dewar, R.C. Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen.
**2005**, 38, L371–L381. [Google Scholar] [CrossRef] - Niven, R.K. Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E
**2009**, 80, 021113–021127. [Google Scholar] [CrossRef] - Ziman, J.M. The general variational principle of transport theory. Can. J. Phys.
**1956**, 34, 1256–1273. [Google Scholar] [CrossRef] - Martyushev, L.M.; Seleznev, V.D. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep.
**2006**, 426, 1–45. [Google Scholar] [CrossRef] - Onsager, L. Reciprocal Relations in Irreversible Processes. I. Phys. Rev.
**1931**, 37, 405–426. [Google Scholar] [CrossRef] - Onsager, L. Reciprocal Relations in Irreversible Processes. II. Phys. Rev.
**1931**, 38, 2265–2279. [Google Scholar] [CrossRef] - De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland Pub. Co.: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Evans, D. J.; Morris, G.P. Statistical Mechanics of Nonequilibrium Liquids; ACADEMIC PRESS: London, UK, 1990. [Google Scholar]
- Krasnov, M.I.; Makarenko, G.I.; Kiselev, A.I. Problems and Exercises in the Calculus of Variations; Mir Publishers: Moscow, Russia, 1975. [Google Scholar]
- Chavanis, P.H. Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations. Eur. Phys. J. B
**2008**, 68, 179–208. [Google Scholar] - Županović, P.; Juretić, D. The chemical cycle kinetics close to the equilibrium state and electrical circuit analogy. Croat. Chem. Acta
**2004**, 77, 561–571. [Google Scholar] - Županović, P.; Juretić, D.; Botrić, S. Kirchhoff’s loop law and the maximum entropy production principle. Phys. Rev. E
**2004**, 70, 056108: 1–5. [Google Scholar] [CrossRef] - Botrić, S.; Županović, P.; Juretić, D. Is the stationary current distribution in a linear planar electric network determined by the principle of maximum entropy production? Croat. Chem. Acta
**2005**, 78, 181–184. [Google Scholar] - Jaynes, E.T. The minimum entropy production principle. Ann. Rev. Phys. Chem.
**1980**, 31, 579–601. [Google Scholar] [CrossRef] - Županović, P.; Juretić, D.; Botrić, S. On the equivalence between Onsager’s principle of the least dissipation of energy and maximum entropy production principle: Conduction of heat in an anisotropic crystal. FIZIKA A
**2005**, 14, 89–96. [Google Scholar] - Rumer, Yu.B.; Ryvkin, M.S. Thermodynamics, Statistical Physics, and Kinetics; Mir Publishers: Moscow, Russia, 1980. [Google Scholar]

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Županović, P.; Kuić, D.; Lošić, Ž.B.; Petrov, D.; Juretić, D.; Brumen, M.
The Maximum Entropy Production Principle and Linear Irreversible Processes. *Entropy* **2010**, *12*, 996-1005.
https://doi.org/10.3390/e12050996

**AMA Style**

Županović P, Kuić D, Lošić ŽB, Petrov D, Juretić D, Brumen M.
The Maximum Entropy Production Principle and Linear Irreversible Processes. *Entropy*. 2010; 12(5):996-1005.
https://doi.org/10.3390/e12050996

**Chicago/Turabian Style**

Županović, Paško, Domagoj Kuić, Željana Bonačić Lošić, Dražen Petrov, Davor Juretić, and Milan Brumen.
2010. "The Maximum Entropy Production Principle and Linear Irreversible Processes" *Entropy* 12, no. 5: 996-1005.
https://doi.org/10.3390/e12050996