# Relaxation Processes and the Maximum Entropy Production Principle

^{1}

^{2}

^{*}

## Abstract

**:**

**PACS**05.70.Ln, 65.40.Gr

## 1. Introduction

## 2. Information Entropy and MaxEnt Formalism

## 3. Relaxation Processes, Information Entropy and the MEP Principle

## 4. Conclusions

## Acknowledgements

## References

- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev.
**1957**, 106, 620–630. [Google Scholar] [CrossRef] - Jaynes, E.T. Information theory and statistical mechanics. II. Phys. Rev.
**1957**, 108, 171–190. [Google Scholar] [CrossRef] - Jaynes, E.T. On the rationale of maximum-entropy methods. Proc. IEEE.
**1982**, 70, 939–952. [Google Scholar] [CrossRef] - Dewar, R. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen.
**2003**, 36, 631–641. [Google Scholar] [CrossRef] - Niven, R.K. Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E
**2009**, 80, 021113:1–021113:15. [Google Scholar] [CrossRef] - Jones, W. Variational principles for entropy production and predictive statistical mechanics. J. Phys. A: Math. Gen.
**1983**, 16, 3629–3634. [Google Scholar] [CrossRef] - Martyushev, L.M.; Seleznev, V.D. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep.
**2006**, 426, 1–45. [Google Scholar] [CrossRef] - Bruers, S. A discussion on maximum entropy production and information theory. J. Phys. A: Math. Theor.
**2007**, 40, 7441–7450. [Google Scholar] [CrossRef] - Grinstein, G.; Linsker, R. Comments on a derivation and application of the “maximum entropy production” principle. J. Phys. A: Math. Theor.
**2007**, 40, 9717–9720. [Google Scholar] [CrossRef] - Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge Press: Cambridge, UK, 2003. [Google Scholar]
- Zurek, W.H. Algorithmic randomness and physical entropy. Phys. Rev. A
**1989**, 40, 4731–4751. [Google Scholar] [CrossRef] [PubMed] - Gibbs, W. Elementary Principles in Statistical Mechanics; Yale University Press: London, UK, 1938. [Google Scholar]
- Landau, L.D.; Lifschitz, E.M. Statistical Physics, Part 1; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland Pub. Co.: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Evans, D.J.; Morris, G.P. Statistical Mechanics of Nonequilibrium Liquids; Academic Press: London, UK, 1990. [Google Scholar]
- Krasnov, M.I.; Makarenko, G.I.; Kiselev, A.I. Problems and Exercises in the Calculus of Variations; Mir Publishers: Moscow, Russia, 1975. [Google Scholar]
- Einstein, A. Theorie der Opaleszenz von homogenem Flüssigkeiten und Flüssigkeitesgemischen in der Nähe der kriotischen Zustandes. Ann. Phys.
**1910**, 33, 1275–1298. [Google Scholar] [CrossRef] - Županović, P.; Botrić, S.; Juretić, D. Relaxation processes, MaxEnt formalism and Einstein’s formula for the probability of fluctuations. Croat. Chem. Acta
**2006**, 79, 335–338. [Google Scholar] - Dewar, R.C. Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen.
**2005**, 38, L371–L381. [Google Scholar] [CrossRef] - Evans, D.J.; Debra, J.S. The fluctuation theorem. Advan. Phys.
**2002**, 51, 1529–1585. [Google Scholar] [CrossRef] - Lorenz, R. Full Steam ahead—probably. Science
**2003**, 299, 837–838. [Google Scholar] [CrossRef] [PubMed] - Dewar, R.C. Maximum entropy production and non-equilibrium statistical mechanics. In Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond; Kleidon, A., Lorenz, R.D., Eds.; Springer-Verlag: Berlin, Germany, 2005; pp. 41–55. [Google Scholar]

© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.

## Share and Cite

**MDPI and ACS Style**

Županović, P.; Botrić, S.; Juretić, D.; Kuić, D.
Relaxation Processes and the Maximum Entropy Production Principle. *Entropy* **2010**, *12*, 473-479.
https://doi.org/10.3390/e12030473

**AMA Style**

Županović P, Botrić S, Juretić D, Kuić D.
Relaxation Processes and the Maximum Entropy Production Principle. *Entropy*. 2010; 12(3):473-479.
https://doi.org/10.3390/e12030473

**Chicago/Turabian Style**

Županović, Paško, Srećko Botrić, Davor Juretić, and Domagoj Kuić.
2010. "Relaxation Processes and the Maximum Entropy Production Principle" *Entropy* 12, no. 3: 473-479.
https://doi.org/10.3390/e12030473