Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Authors = David Blake ORCID = 0000-0002-0834-4487

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3032 KiB  
Article
The Loss of Complex I in Renal Oncocytoma Is Associated with Defective Mitophagy Due to Lysosomal Dysfunction
by Lin Lin, Neal Patel, Lucia Fernandez-del-Rio, Cristiane Benica, Blake Wilde, Eirini Christodoulou, Shinji Ohtake, Anhyo Jeong, Aboubacar Kaba, Nedas Matulionis, Randy Caliliw, Xiaowu Gai, Heather Christofk, David Shackelford and Brian Shuch
Int. J. Mol. Sci. 2025, 26(15), 7654; https://doi.org/10.3390/ijms26157654 (registering DOI) - 7 Aug 2025
Abstract
Renal oncocytoma (RO) is a benign renal neoplasm characterized by dense accumulation of dysfunctional mitochondria possibly resulting from increased mitochondrial biogenesis and decreased mitophagy; however, the mechanisms controlling these mitochondrial changes are unclear. ROs harbor recurrent inactivating mutations in mitochondrial genes encoding the [...] Read more.
Renal oncocytoma (RO) is a benign renal neoplasm characterized by dense accumulation of dysfunctional mitochondria possibly resulting from increased mitochondrial biogenesis and decreased mitophagy; however, the mechanisms controlling these mitochondrial changes are unclear. ROs harbor recurrent inactivating mutations in mitochondrial genes encoding the Electron Transport Chain (ETC) Complex I, and we hypothesize that Complex I loss in ROs directly impairs mitophagy. Our analysis of ROs and normal kidney (NK) tissues shows that a significant portion (8 out of 17) of ROs have mtDNA Complex I loss-of-function mutations with high variant allele frequency (>50%). ROs indeed exhibit reduced Complex I expression and activity. Analysis of the various steps of mitophagy pathway demonstrates that AMPK activation in ROs leads to induction of mitochondrial biogenesis, autophagy, and formation of autophagosomes. However, the subsequent steps involving lysosome biogenesis and function are defective, resulting in an overall inhibition of mitophagy. Inhibiting Complex I in a normal kidney cell line recapitulated the observed lysosomal and mitophagy defects. Our data suggest Complex I loss in RO results in defective mitophagy due to lysosomal loss and dysfunction. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

20 pages, 915 KiB  
Article
The Wheel of Work and the Sustainable Livelihoods Index (SL-I)
by Stuart Carr, Veronica Hopner, Ines Meyer, Annamaria Di Fabio, John Scott, Ingo Matuschek, Denise Blake, Mahima Saxena, Raymond Saner, Lichia Saner-Yiu, Gustavo Massola, Stephen Grant Atkins, Walter Reichman, Jeffrey Saltzman, Ishbel McWha-Hermann, Charles Tchagneno, Rosalind Searle, Jinia Mukerjee, David Blustein, Sakshi Bansal, Ingrid K. Covington, Jeff Godbout and Jarrod Haaradd Show full author list remove Hide full author list
Sustainability 2025, 17(14), 6295; https://doi.org/10.3390/su17146295 - 9 Jul 2025
Viewed by 844
Abstract
The concept of a sustainable livelihood affords protection from crises and protects people, including future generations. Conceptually, this paper serves as a study protocol that extends the premises of decent work to include and integrate criteria that benefit people, planet, and prosperity. Existing [...] Read more.
The concept of a sustainable livelihood affords protection from crises and protects people, including future generations. Conceptually, this paper serves as a study protocol that extends the premises of decent work to include and integrate criteria that benefit people, planet, and prosperity. Existing measures of sustainability principally serve organisations and governments, not individual workers who are increasingly looking for ‘just transitions’ into sustainable livelihoods. Incorporating extant measurement standards from systems theory, vocational psychology, psychometrics, labour and management studies, we conceptualise a classification of livelihoods, criteria for their sustainability, forming a study protocol for indexing these livelihoods, a set of theory-based propositions, and a pilot test of this context-sensitive model. Full article
(This article belongs to the Section Psychology of Sustainability and Sustainable Development)
Show Figures

Figure 1

18 pages, 2566 KiB  
Article
Selective Influence of Hemp Fiber Ingestion on Post-Exercise Gut Permeability: A Metabolomics-Based Analysis
by David C. Nieman, Camila A. Sakaguchi, James C. Williams, Wimal Pathmasiri, Blake R. Rushing, Susan McRitchie and Susan J. Sumner
Nutrients 2025, 17(8), 1384; https://doi.org/10.3390/nu17081384 - 19 Apr 2025
Viewed by 941
Abstract
Objectives: This study investigated the effects of 2-week ingestion of hemp fiber (high and low doses) versus placebo bars on gut permeability and plasma metabolite shifts during recovery from 2.25 h intensive cycling. Hemp hull powder is a rich source of two bioactive [...] Read more.
Objectives: This study investigated the effects of 2-week ingestion of hemp fiber (high and low doses) versus placebo bars on gut permeability and plasma metabolite shifts during recovery from 2.25 h intensive cycling. Hemp hull powder is a rich source of two bioactive compounds, N-trans-caffeoyl tyramine (NCT) and N-trans-feruloyl tyramine (NFT), with potential gut health benefits. Methods: The study participants included 23 male and female cyclists. A three-arm randomized, placebo-controlled, double-blind, crossover design was used with two 2-week supplementation periods and 2-week washout periods. Supplement bars provided 20, 5, or 0 g/d of hemp hull powder. Participants engaged in an intensive 2.25 h cycling bout at the end of each of the three supplementation periods. Five blood samples were collected before and after supplementation (overnight fasted state), and at 0 h-, 1.5 h-, and 3 h-post-exercise. Five-hour urine samples were collected pre-supplementation and post-2.25 h cycling after ingesting a sugar solution containing 5 g of lactulose, 100 mg of 13C mannitol, and 1.9 g of mannitol in 450 mL of water. An increase in the post-exercise lactulose/13C mannitol ratio (L:13CM) was used as the primary indicator of altered gut permeability. Other outcome measures included muscle damage biomarkers (serum creatine kinase, myoglobin), serum cortisol, complete blood cell counts, and shifts in plasma metabolites using untargeted metabolomics. Results: No trial differences were found for L:13CM, cortisol, blood cell counts, and muscle damage biomarkers. Orthogonal partial least-squares discriminant analysis (OPLSDA) showed distinct trial differences when comparing high- and low-dose hemp fiber compared to placebo supplementation (R2Y = 0.987 and 0.995, respectively). Variable Importance in Projection (VIP) scores identified several relevant metabolites, including 3-hydroxy-4-methoxybenzoic acid (VIP = 1.9), serotonin (VIP = 1.5), 5-hydroxytryptophan (VIP = 1.4), and 4-methoxycinnamic acid (VIP = 1.4). Mummichog analysis showed significant effects of hemp fiber intake on multiple metabolic pathways, including alpha-linolenic acid, porphyrin, sphingolipid, arginine and proline, tryptophan, and primary bile acid metabolism. Conclusions: Hemp fiber intake during a 2-week supplementation period did not have a significant effect on post-exercise gut permeability in cyclists (2.25 h cycling bout) using urine sugar data. On the contrary, untargeted metabolomics showed that the combination of consuming nutrient-rich hemp fiber bars and exercising for 135 min increased levels of beneficial metabolites, including those derived from the gut in healthy cyclists. Full article
(This article belongs to the Special Issue Sports Nutrition: Current and Novel Insights—2nd Edition)
Show Figures

Figure 1

20 pages, 3608 KiB  
Article
Utilization of Artificial Intelligence Coupled with a High-Throughput, High-Content Platform in the Exploration of Neurodevelopmental Toxicity of Individual and Combined PFAS
by Seth D. Currie, David Blake Benson, Zhong-Ru Xie, Jia-Sheng Wang and Lili Tang
J. Xenobiot. 2025, 15(1), 24; https://doi.org/10.3390/jox15010024 - 2 Feb 2025
Cited by 2 | Viewed by 1550
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in various products, such as firefighting foams and non-stick cookware, due to their resistance to heat and degradation. However, these same properties make them persistent in the environment and human body, raising public health [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in various products, such as firefighting foams and non-stick cookware, due to their resistance to heat and degradation. However, these same properties make them persistent in the environment and human body, raising public health concerns. This study selected eleven PFAS commonly found in drinking water and exposed Caenorhabditis elegans to concentrations ranging from 0.1 to 200 µM to assess neurodevelopmental toxicity using a high-throughput, high-content screening (HTS) platform coupled with artificial intelligence for image analysis. Our findings showed that PFAS such as 6:2 FTS, HFPO-DA, PFBA, PFBS, PFHxA, and PFOS inhibited dopaminergic neuron activity, with fluorescence intensity reductions observed across concentrations from 0.1 to 100 µM. PFOS and PFBS also disrupted synaptic transmission, causing reduced motility and increased paralysis in aldicarb-induced assays, with the most pronounced effects at higher concentrations. These impairments in both neuron activity and synaptic function led to behavioral deficits. Notably, PFOS was one of the most toxic PFAS, affecting multiple neurodevelopmental endpoints. These results emphasize the developmental risks of PFAS exposure, highlighting the impact of both individual compounds and mixtures on neurodevelopment. This knowledge is essential for assessing PFAS-related health risks and informing mitigation strategies. Full article
Show Figures

Figure 1

17 pages, 3110 KiB  
Article
Antagonistic Effects of Actin-Specific Toxins on Salmonella Typhimurium Invasion into Mammalian Cells
by David B. Heisler, Elena Kudryashova, Regan Hitt, Blake Williams, Michelle Dziejman, John Gunn and Dmitri S. Kudryashov
Biomolecules 2024, 14(11), 1428; https://doi.org/10.3390/biom14111428 - 9 Nov 2024
Viewed by 1456
Abstract
Competition between bacterial species is a major factor shaping microbial communities. It is possible but remains largely unexplored that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Salmonella Typhimurium [...] Read more.
Competition between bacterial species is a major factor shaping microbial communities. It is possible but remains largely unexplored that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Salmonella Typhimurium invasion into cells as a model, we demonstrate that invasion is inhibited if the host actin cytoskeleton is disturbed by actin-specific toxins, namely, Vibrio cholerae MARTX actin crosslinking (ACD) and Rho GTPase inactivation (RID) domains, Photorhabdus luminescens TccC3, and Salmonella’s own SpvB. We noticed that ACD, being an effective inhibitor of tandem G-actin-binding assembly factors, is likely to inhibit the activity of another Vibrio effector, VopF. In reconstituted actin polymerization assays and by live-cell microscopy, we confirmed that ACD potently halted the actin nucleation and pointed-end elongation activities of VopF, revealing competition between these two V. cholerae effectors. These results suggest that bacterial effectors from different species that target the same host machinery or proteins may represent an effective but largely overlooked mechanism of indirect bacterial competition in host-associated microbial communities. Whether the proposed inhibition mechanism involves the actin cytoskeleton or other host cell compartments, such inhibition deserves investigation and may contribute to a documented scarcity of human enteric co-infections by different pathogenic bacteria. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

20 pages, 11315 KiB  
Article
A Multiomics Evaluation of the Countermeasure Influence of 4-Week Cranberry Beverage Supplementation on Exercise-Induced Changes in Innate Immunity
by David C. Nieman, Camila A. Sakaguchi, James C. Williams, Jongmin Woo, Ashraf M. Omar, Fayaj A. Mulani, Qibin Zhang, Wimal Pathmasiri, Blake R. Rushing, Susan McRitchie, Susan J. Sumner, Jackie Lawson and Kevin C. Lambirth
Nutrients 2024, 16(19), 3250; https://doi.org/10.3390/nu16193250 - 26 Sep 2024
Cited by 3 | Viewed by 2538
Abstract
Objectives: This study examined the effect of a 4-week unsweetened cranberry beverage (CRAN) (317 mg polyphenols) versus placebo beverage (PLAC) ingestion (240 mL/day) on moderating exercise-induced changes in innate immunity. Methods: Participants included 25 male and female non-elite cyclists. A randomized, placebo-controlled, double-blind [...] Read more.
Objectives: This study examined the effect of a 4-week unsweetened cranberry beverage (CRAN) (317 mg polyphenols) versus placebo beverage (PLAC) ingestion (240 mL/day) on moderating exercise-induced changes in innate immunity. Methods: Participants included 25 male and female non-elite cyclists. A randomized, placebo-controlled, double-blind crossover design was used with two 4-week supplementation periods and a 2-week washout period. Supplementation periods were followed by an intensive 2.25 h cycling bout. Six blood samples were collected before and after supplementation (in an overnight fasted state) and at 0 h, 1.5 h, 3 h, and 24 h post-exercise. Stool and urine samples were collected pre- and post-supplementation. Outcome measures included serum creatine kinase, myoglobin, and cortisol, complete blood counts, plasma untargeted proteomics, plasma-targeted oxylipins, untargeted urine metabolomics, and stool microbiome composition via whole genome shotgun (WGS) sequencing. Results: Urine CRAN-linked metabolites increased significantly after supplementation, but no trial differences in alpha or beta microbiota diversity were found in the stool samples. The 2.25 h cycling bout caused significant increases in plasma arachidonic acid (ARA) and 53 oxylipins (FDR q-value < 0.05). The patterns of increase for ARA, four oxylipins generated from ARA-cytochrome P-450 (CYP) (5,6-, 8,9-, 11,12-, and 14,15-diHETrEs), two oxylipins from linoleic acid (LA) and CYP (9,10-DiHOME, 12,13-DiHOME), and two oxylipins generated from LA and lipoxygenase (LOX) (9-HODE, 13-HODE) were slightly but significantly higher for the CRAN versus PLAC trial (all interaction effects, p < 0.05). The untargeted proteomics analysis showed that two protein clusters differed significantly between the CRAN and PLAC trials, with CRAN-related elevations in proteins related to innate immune activation and reduced levels of proteins related to the regulation of the complement cascade, platelet activation, and binding and uptake of ligands by scavenger receptors. No trial differences were found for cortisol and muscle damage biomarkers. Conclusions: CRAN versus PLAC juice resulted in a significant increase in CRAN-related metabolites but no differences in the gut microbiome. CRAN supplementation was associated with a transient and modest but significant post-exercise elevation in selected oxylipins and proteins associated with the innate immune system. Full article
(This article belongs to the Special Issue Sports Nutrition: Current and Novel Insights)
Show Figures

Figure 1

45 pages, 30346 KiB  
Article
Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Projection Chamber
by A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, M. R. Adames, G. Adamov, M. Adamowski, D. Adams, M. Adinolfi, C. Adriano, A. Aduszkiewicz, J. Aguilar, B. Aimard, F. Akbar, K. Allison, S. Alonso Monsalve, M. Alrashed, A. Alton, R. Alvarez, T. Alves, H. Amar, P. Amedo, J. Anderson, D. A. Andrade, C. Andreopoulos, M. Andreotti, M. P. Andrews, F. Andrianala, S. Andringa, N. Anfimov, A. Ankowski, M. Antoniassi, M. Antonova, A. Antoshkin, A. Aranda-Fernandez, L. Arellano, E. Arrieta Diaz, M. A. Arroyave, J. Asaadi, A. Ashkenazi, D. Asner, L. Asquith, E. Atkin, D. Auguste, A. Aurisano, V. Aushev, D. Autiero, F. Azfar, A. Back, H. Back, J. J. Back, I. Bagaturia, L. Bagby, N. Balashov, S. Balasubramanian, P. Baldi, W. Baldini, J. Baldonedo, B. Baller, B. Bambah, R. Banerjee, F. Barao, G. Barenboim, P. B̃arham Alzás, G. J. Barker, W. Barkhouse, G. Barr, J. Barranco Monarca, A. Barros, N. Barros, D. Barrow, J. L. Barrow, A. Basharina-Freshville, A. Bashyal, V. Basque, C. Batchelor, L. Bathe-Peters, J. B. R. Battat, F. Battisti, F. Bay, M. C. Q. Bazetto, J. L. L. Bazo Alba, J. F. Beacom, E. Bechetoille, B. Behera, E. Belchior, G. Bell, L. Bellantoni, G. Bellettini, V. Bellini, O. Beltramello, N. Benekos, C. Benitez Montiel, D. Benjamin, F. Bento Neves, J. Berger, S. Berkman, J. Bernal, P. Bernardini, A. Bersani, S. Bertolucci, M. Betancourt, A. Betancur Rodríguez, A. Bevan, Y. Bezawada, A. T. Bezerra, T. J. Bezerra, A. Bhat, V. Bhatnagar, J. Bhatt, M. Bhattacharjee, M. Bhattacharya, S. Bhuller, B. Bhuyan, S. Biagi, J. Bian, K. Biery, B. Bilki, M. Bishai, A. Bitadze, A. Blake, F. D. Blaszczyk, G. C. Blazey, E. Blucher, J. Bogenschuetz, J. Boissevain, S. Bolognesi, T. Bolton, L. Bomben, M. Bonesini, C. Bonilla-Diaz, F. Bonini, A. Booth, F. Boran, S. Bordoni, R. Borges Merlo, A. Borkum, N. Bostan, J. Bracinik, D. Braga, B. Brahma, D. Brailsford, F. Bramati, A. Branca, A. Brandt, J. Bremer, C. Brew, S. J. Brice, V. Brio, C. Brizzolari, C. Bromberg, J. Brooke, A. Bross, G. Brunetti, M. Brunetti, N. Buchanan, H. Budd, J. Buergi, D. Burgardt, S. Butchart, G. Caceres V., I. Cagnoli, T. Cai, R. Calabrese, J. Calcutt, M. Calin, L. Calivers, E. Calvo, A. Caminata, A. F. Camino, W. Campanelli, A. Campani, A. Campos Benitez, N. Canci, J. Capó, I. Caracas, D. Caratelli, D. Carber, J. M. Carceller, G. Carini, B. Carlus, M. F. Carneiro, P. Carniti, I. Caro Terrazas, H. Carranza, N. Carrara, L. Carroll, T. Carroll, A. Carter, E. Casarejos, D. Casazza, J. F. Castaño Forero, F. A. Castaño, A. Castillo, C. Castromonte, E. Catano-Mur, C. Cattadori, F. Cavalier, F. Cavanna, S. Centro, G. Cerati, C. Cerna, A. Cervelli, A. Cervera Villanueva, K. Chakraborty, S. Chakraborty, M. Chalifour, A. Chappell, N. Charitonidis, A. Chatterjee, H. Chen, M. Chen, W. C. Chen, Y. Chen, Z. Chen-Wishart, D. Cherdack, C. Chi, R. Chirco, N. Chitirasreemadam, K. Cho, S. Choate, D. Chokheli, P. S. Chong, B. Chowdhury, D. Christian, A. Chukanov, M. Chung, E. Church, M. F. Cicala, M. Cicerchia, V. Cicero, R. Ciolini, P. Clarke, G. Cline, T. E. Coan, A. G. Cocco, J. A. B. Coelho, A. Cohen, J. Collazo, J. Collot, E. Conley, J. M. Conrad, M. Convery, S. Copello, P. Cova, C. Cox, L. Cremaldi, L. Cremonesi, J. I. Crespo-Anadón, M. Crisler, E. Cristaldo, J. Crnkovic, G. Crone, R. Cross, A. Cudd, C. Cuesta, Y. Cui, F. Curciarello, D. Cussans, J. Dai, O. Dalager, R. Dallavalle, W. Dallaway, H. da Motta, Z. A. Dar, R. Darby, L. Da Silva Peres, Q. David, G. S. Davies, S. Davini, J. Dawson, R. De Aguiar, P. De Almeida, P. Debbins, I. De Bonis, M. P. Decowski, A. de Gouvêa, P. C. De Holanda, I. L. De Icaza Astiz, P. De Jong, P. Del Amo Sanchez, A. De la Torre, G. De Lauretis, A. Delbart, D. Delepine, M. Delgado, A. Dell’Acqua, G. Delle Monache, N. Delmonte, P. De Lurgio, R. Demario, G. De Matteis, J. R. T. de Mello Neto, D. M. DeMuth, S. Dennis, C. Densham, P. Denton, G. W. Deptuch, A. De Roeck, V. De Romeri, J. P. Detje, J. Devine, R. Dharmapalan, M. Dias, A. Diaz, J. S. Díaz, F. Díaz, F. Di Capua, A. Di Domenico, S. Di Domizio, S. Di Falco, L. Di Giulio, P. Ding, L. Di Noto, E. Diociaiuti, C. Distefano, R. Diurba, M. Diwan, Z. Djurcic, D. Doering, S. Dolan, F. Dolek, M. J. Dolinski, D. Domenici, L. Domine, S. Donati, Y. Donon, S. Doran, D. Douglas, T. A. Doyle, A. Dragone, F. Drielsma, L. Duarte, D. Duchesneau, K. Duffy, K. Dugas, P. Dunne, B. Dutta, H. Duyang, D. A. Dwyer, A. S. Dyshkant, S. Dytman, M. Eads, A. Earle, S. Edayath, D. Edmunds, J. Eisch, P. Englezos, A. Ereditato, T. Erjavec, C. O. Escobar, J. J. Evans, E. Ewart, A. C. Ezeribe, K. Fahey, L. Fajt, A. Falcone, M. Fani’, C. Farnese, S. Farrell, Y. Farzan, D. Fedoseev, J. Felix, Y. Feng, E. Fernandez-Martinez, G. Ferry, L. Fields, P. Filip, A. Filkins, F. Filthaut, R. Fine, G. Fiorillo, M. Fiorini, S. Fogarty, W. Foreman, J. Fowler, J. Franc, K. Francis, D. Franco, J. Franklin, J. Freeman, J. Fried, A. Friedland, S. Fuess, I. K. Furic, K. Furman, A. P. Furmanski, R. Gaba, A. Gabrielli, A. M. Gago, F. Galizzi, H. Gallagher, A. Gallas, N. Gallice, V. Galymov, E. Gamberini, T. Gamble, F. Ganacim, R. Gandhi, S. Ganguly, F. Gao, S. Gao, D. Garcia-Gamez, M. Á. García-Peris, F. Gardim, S. Gardiner, D. Gastler, A. Gauch, J. Gauvreau, P. Gauzzi, S. Gazzana, G. Ge, N. Geffroy, B. Gelli, S. Gent, L. Gerlach, Z. Ghorbani-Moghaddam, T. Giammaria, D. Gibin, I. Gil-Botella, S. Gilligan, A. Gioiosa, S. Giovannella, C. Girerd, A. K. Giri, C. Giugliano, V. Giusti, D. Gnani, O. Gogota, S. Gollapinni, K. Gollwitzer, R. A. Gomes, L. V. Gomez Bermeo, L. S. Gomez Fajardo, F. Gonnella, D. Gonzalez-Diaz, M. Gonzalez-Lopez, M. C. Goodman, S. Goswami, C. Gotti, J. Goudeau, E. Goudzovski, C. Grace, E. Gramellini, R. Gran, E. Granados, P. Granger, C. Grant, D. R. Gratieri, G. Grauso, P. Green, S. Greenberg, J. Greer, W. C. Griffith, F. T. Groetschla, K. Grzelak, L. Gu, W. Gu, V. Guarino, M. Guarise, R. Guenette, E. Guerard, M. Guerzoni, D. Guffanti, A. Guglielmi, B. Guo, Y. Guo, A. Gupta, V. Gupta, G. Gurung, D. Gutierrez, P. Guzowski, M. M. Guzzo, S. Gwon, A. Habig, H. Hadavand, L. Haegel, R. Haenni, L. Hagaman, A. Hahn, J. Haiston, J. Hakenmueller, T. Hamernik, P. Hamilton, J. Hancock, F. Happacher, D. A. Harris, J. Hartnell, T. Hartnett, J. Harton, T. Hasegawa, C. Hasnip, R. Hatcher, K. Hayrapetyan, J. Hays, E. Hazen, M. He, A. Heavey, K. M. Heeger, J. Heise, S. Henry, M. A. Hernandez Morquecho, K. Herner, V. Hewes, A. Higuera, C. Hilgenberg, S. J. Hillier, A. Himmel, E. Hinkle, L. R. Hirsch, J. Ho, J. Hoff, A. Holin, T. Holvey, E. Hoppe, S. Horiuchi, G. A. Horton-Smith, M. Hostert, T. Houdy, B. Howard, R. Howell, I. Hristova, M. S. Hronek, J. Huang, R. G. Huang, Z. Hulcher, M. Ibrahim, G. Iles, N. Ilic, A. M. Iliescu, R. Illingworth, G. Ingratta, A. Ioannisian, B. Irwin, L. Isenhower, M. Ismerio Oliveira, R. Itay, C. M. Jackson, V. Jain, E. James, W. Jang, B. Jargowsky, D. Jena, I. Jentz, X. Ji, C. Jiang, J. Jiang, L. Jiang, A. Jipa, F. R. Joaquim, W. Johnson, C. Jollet, B. Jones, R. Jones, D. José Fernández, N. Jovancevic, M. Judah, C. K. Jung, T. Junk, Y. Jwa, M. Kabirnezhad, A. C. Kaboth, I. Kadenko, I. Kakorin, A. Kalitkina, D. Kalra, M. Kandemir, D. M. Kaplan, G. Karagiorgi, G. Karaman, A. Karcher, Y. Karyotakis, S. Kasai, S. P. Kasetti, L. Kashur, I. Katsioulas, A. Kauther, N. Kazaryan, L. Ke, E. Kearns, P. T. Keener, K. J. Kelly, E. Kemp, O. Kemularia, Y. Kermaidic, W. Ketchum, S. H. Kettell, M. Khabibullin, N. Khan, A. Khvedelidze, D. Kim, J. Kim, M. Kim, B. King, B. Kirby, M. Kirby, A. Kish, J. Klein, J. Kleykamp, A. Klustova, T. Kobilarcik, L. Koch, K. Koehler, L. W. Koerner, D. H. Koh, L. Kolupaeva, D. Korablev, M. Kordosky, T. Kosc, U. Kose, V. A. Kostelecký, K. Kothekar, I. Kotler, M. Kovalcuk, V. Kozhukalov, W. Krah, R. Kralik, M. Kramer, L. Kreczko, F. Krennrich, I. Kreslo, T. Kroupova, S. Kubota, M. Kubu, Y. Kudenko, V. A. Kudryavtsev, G. Kufatty, S. Kuhlmann, J. Kumar, P. Kumar, S. Kumaran, P. Kunze, J. Kunzmann, R. Kuravi, N. Kurita, C. Kuruppu, V. Kus, T. Kutter, J. Kvasnicka, T. Labree, T. Lackey, A. Lambert, B. J. Land, C. E. Lane, N. Lane, K. Lang, T. Langford, M. Langstaff, F. Lanni, O. Lantwin, J. Larkin, P. Lasorak, D. Last, A. Laudrain, A. Laundrie, G. Laurenti, E. Lavaut, A. Lawrence, P. Laycock, I. Lazanu, M. Lazzaroni, T. Le, S. Leardini, J. Learned, T. LeCompte, C. Lee, V. Legin, G. Lehmann Miotto, R. Lehnert, M. A. Leigui de Oliveira, M. Leitner, D. Leon Silverio, L. M. Lepin, J.-Y. Li, S. W. Li, Y. Li, H. Liao, C. S. Lin, D. Lindebaum, S. Linden, R. A. Lineros, J. Ling, A. Lister, B. R. Littlejohn, H. Liu, J. Liu, Y. Liu, S. Lockwitz, M. Lokajicek, I. Lomidze, K. Long, T. V. Lopes, J. Lopez, I. López de Rego, N. López-March, T. Lord, J. M. LoSecco, W. C. Louis, A. Lozano Sanchez, X.-G. Lu, K. B. Luk, B. Lunday, X. Luo, E. Luppi, J. Maalmi, D. MacFarlane, A. A. Machado, P. Machado, C. T. Macias, J. R. Macier, M. MacMahon, A. Maddalena, A. Madera, P. Madigan, S. Magill, C. Magueur, K. Mahn, A. Maio, A. Major, K. Majumdar, M. Man, R. C. Mandujano, J. Maneira, S. Manly, A. Mann, K. Manolopoulos, M. Manrique Plata, S. Manthey Corchado, V. N. Manyam, M. Marchan, A. Marchionni, W. Marciano, D. Marfatia, C. Mariani, J. Maricic, F. Marinho, A. D. Marino, T. Markiewicz, F. Das Chagas Marques, C. Marquet, D. Marsden, M. Marshak, C. M. Marshall, J. Marshall, L. Martina, J. Martín-Albo, N. Martinez, D. A. Martinez Caicedo, F. Martínez López, P. Martínez Miravé, S. Martynenko, V. Mascagna, C. Massari, A. Mastbaum, F. Matichard, S. Matsuno, G. Matteucci, J. Matthews, C. Mauger, N. Mauri, K. Mavrokoridis, I. Mawby, R. Mazza, A. Mazzacane, T. McAskill, N. McConkey, K. S. McFarland, C. McGrew, A. McNab, L. Meazza, V. C. N. Meddage, B. Mehta, P. Mehta, P. Melas, O. Mena, H. Mendez, P. Mendez, D. P. Méndez, A. Menegolli, G. Meng, A. C. E. A. Mercuri, A. Meregaglia, M. D. Messier, S. Metallo, J. Metcalf, W. Metcalf, M. Mewes, H. Meyer, T. Miao, A. Miccoli, G. Michna, V. Mikola, R. Milincic, F. Miller, G. Miller, W. Miller, O. Mineev, A. Minotti, L. Miralles, O. G. Miranda, C. Mironov, S. Miryala, S. Miscetti, C. S. Mishra, S. R. Mishra, A. Mislivec, M. Mitchell, D. Mladenov, I. Mocioiu, A. Mogan, N. Moggi, R. Mohanta, T. A. Mohayai, N. Mokhov, J. Molina, L. Molina Bueno, E. Montagna, A. Montanari, C. Montanari, D. Montanari, D. Montanino, L. M. Montaño Zetina, M. Mooney, A. F. Moor, Z. Moore, D. Moreno, O. Moreno-Palacios, L. Morescalchi, D. Moretti, R. Moretti, C. Morris, C. Mossey, M. Mote, C. A. Moura, G. Mouster, W. Mu, L. Mualem, J. Mueller, M. Muether, F. Muheim, A. Muir, M. Mulhearn, D. Munford, L. J. Munteanu, H. Muramatsu, J. Muraz, M. Murphy, T. Murphy, J. Muse, A. Mytilinaki, J. Nachtman, Y. Nagai, S. Nagu, R. Nandakumar, D. Naples, S. Narita, A. Nath, A. Navrer-Agasson, N. Nayak, M. Nebot-Guinot, A. Nehm, J. K. Nelson, O. Neogi, J. Nesbit, M. Nessi, D. Newbold, M. Newcomer, R. Nichol, F. Nicolas-Arnaldos, A. Nikolica, J. Nikolov, E. Niner, K. Nishimura, A. Norman, A. Norrick, P. Novella, J. A. Nowak, M. Oberling, J. P. Ochoa-Ricoux, S. Oh, S. B. Oh, A. Olivier, A. Olshevskiy, T. Olson, Y. Onel, Y. Onishchuk, A. Oranday, M. Osbiston, J. A. Osorio Vélez, L. Otiniano Ormachea, J. Ott, L. Pagani, G. Palacio, O. Palamara, S. Palestini, J. M. Paley, M. Pallavicini, C. Palomares, S. Pan, P. Panda, W. Panduro Vazquez, E. Pantic, V. Paolone, V. Papadimitriou, R. Papaleo, A. Papanestis, D. Papoulias, S. Paramesvaran, A. Paris, S. Parke, E. Parozzi, S. Parsa, Z. Parsa, S. Parveen, M. Parvu, D. Pasciuto, S. Pascoli, L. Pasqualini, J. Pasternak, C. Patrick, L. Patrizii, R. B. Patterson, T. Patzak, A. Paudel, L. Paulucci, Z. Pavlovic, G. Pawloski, D. Payne, V. Pec, E. Pedreschi, S. J. M. Peeters, W. Pellico, A. Pena Perez, E. Pennacchio, A. Penzo, O. L. G. Peres, Y. F. Perez Gonzalez, L. Pérez-Molina, C. Pernas, J. Perry, D. Pershey, G. Pessina, G. Petrillo, C. Petta, R. Petti, M. Pfaff, V. Pia, L. Pickering, F. Pietropaolo, V. L. Pimentel, G. Pinaroli, J. Pinchault, K. Pitts, K. Plows, R. Plunkett, C. Pollack, T. Pollman, D. Polo-Toledo, F. Pompa, X. Pons, N. Poonthottathil, V. Popov, F. Poppi, J. Porter, M. Potekhin, R. Potenza, J. Pozimski, M. Pozzato, T. Prakash, C. Pratt, M. Prest, F. Psihas, D. Pugnere, X. Qian, J. L. Raaf, V. Radeka, J. Rademacker, B. Radics, A. Rafique, E. Raguzin, M. Rai, S. Rajagopalan, M. Rajaoalisoa, I. Rakhno, L. Rakotondravohitra, L. Ralte, M. A. Ramirez Delgado, B. Ramson, A. Rappoldi, G. Raselli, P. Ratoff, R. Ray, H. Razafinime, E. M. Rea, J. S. Real, B. Rebel, R. Rechenmacher, M. Reggiani-Guzzo, J. Reichenbacher, S. D. Reitzner, H. Rejeb Sfar, E. Renner, A. Renshaw, S. Rescia, F. Resnati, D. Restrepo, C. Reynolds, M. Ribas, S. Riboldi, C. Riccio, G. Riccobene, J. S. Ricol, M. Rigan, E. V. Rincón, A. Ritchie-Yates, S. Ritter, D. Rivera, R. Rivera, A. Robert, J. L. Rocabado Rocha, L. Rochester, M. Roda, P. Rodrigues, M. J. Rodriguez Alonso, J. Rodriguez Rondon, S. Rosauro-Alcaraz, P. Rosier, D. Ross, M. Rossella, M. Rossi, M. Ross-Lonergan, N. Roy, P. Roy, C. Rubbia, A. Ruggeri, G. Ruiz Ferreira, B. Russell, D. Ruterbories, A. Rybnikov, A. Saa-Hernandez, R. Saakyan, S. Sacerdoti, S. K. Sahoo, N. Sahu, P. Sala, N. Samios, O. Samoylov, M. C. Sanchez, A. Sánchez Bravo, P. Sanchez-Lucas, V. Sandberg, D. A. Sanders, S. Sanfilippo, D. Sankey, D. Santoro, N. Saoulidou, P. Sapienza, C. Sarasty, I. Sarcevic, I. Sarra, G. Savage, V. Savinov, G. Scanavini, A. Scaramelli, A. Scarff, T. Schefke, H. Schellman, S. Schifano, P. Schlabach, D. Schmitz, A. W. Schneider, K. Scholberg, A. Schukraft, B. Schuld, A. Segade, E. Segreto, A. Selyunin, C. R. Senise, J. Sensenig, M. H. Shaevitz, P. Shanahan, P. Sharma, R. Kumar, K. Shaw, T. Shaw, K. Shchablo, J. Shen, C. Shepherd-Themistocleous, A. Sheshukov, W. Shi, S. Shin, S. Shivakoti, I. Shoemaker, D. Shooltz, R. Shrock, B. Siddi, M. Siden, J. Silber, L. Simard, J. Sinclair, G. Sinev, Jaydip Singh, J. Singh, L. Singh, P. Singh, V. Singh, S. Singh Chauhan, R. Sipos, C. Sironneau, G. Sirri, K. Siyeon, K. Skarpaas, J. Smedley, E. Smith, J. Smith, P. Smith, J. Smolik, M. Smy, M. Snape, E. L. Snider, P. Snopok, D. Snowden-Ifft, M. Soares Nunes, H. Sobel, M. Soderberg, S. Sokolov, C. J. Solano Salinas, S. Söldner-Rembold, S. R. Soleti, N. Solomey, V. Solovov, W. E. Sondheim, M. Sorel, A. Sotnikov, J. Soto-Oton, A. Sousa, K. Soustruznik, F. Spinella, J. Spitz, N. J. C. Spooner, K. Spurgeon, D. Stalder, M. Stancari, L. Stanco, J. Steenis, R. Stein, H. M. Steiner, A. F. Steklain Lisbôa, A. Stepanova, J. Stewart, B. Stillwell, J. Stock, F. Stocker, T. Stokes, M. Strait, T. Strauss, L. Strigari, A. Stuart, J. G. Suarez, J. Subash, A. Surdo, L. Suter, C. M. Sutera, K. Sutton, Y. Suvorov, R. Svoboda, S. K. Swain, B. Szczerbinska, A. M. Szelc, A. Sztuc, A. Taffara, N. Talukdar, J. Tamara, H. A. Tanaka, S. Tang, N. Taniuchi, A. M. Tapia Casanova, B. Tapia Oregui, A. Tapper, S. Tariq, E. Tarpara, E. Tatar, R. Tayloe, D. Tedeschi, A. M. Teklu, J. Tena Vidal, P. Tennessen, M. Tenti, K. Terao, F. Terranova, G. Testera, T. Thakore, A. Thea, A. Thiebault, S. Thomas, A. Thompson, C. Thorn, S. C. Timm, E. Tiras, V. Tishchenko, N. Todorović, L. Tomassetti, A. Tonazzo, D. Torbunov, M. Torti, M. Tortola, F. Tortorici, N. Tosi, D. Totani, M. Toups, C. Touramanis, D. Tran, R. Travaglini, J. Trevor, E. Triller, S. Trilov, J. Truchon, D. Truncali, W. H. Trzaska, Y. Tsai, Y.-T. Tsai, Z. Tsamalaidze, K. V. Tsang, N. Tsverava, S. Z. Tu, S. Tufanli, C. Tunnell, J. Turner, M. Tuzi, J. Tyler, E. Tyley, M. Tzanov, M. A. Uchida, J. Ureña González, J. Urheim, T. Usher, H. Utaegbulam, S. Uzunyan, M. R. Vagins, P. Vahle, S. Valder, G. A. Valdiviesso, E. Valencia, R. Valentim, Z. Vallari, E. Vallazza, J. W. F. Valle, R. Van Berg, R. G. Van de Water, D. V. Forero, A. Vannozzi, M. Van Nuland-Troost, F. Varanini, D. Vargas Oliva, S. Vasina, N. Vaughan, K. Vaziri, A. Vázquez-Ramos, J. Vega, S. Ventura, A. Verdugo, S. Vergani, M. Verzocchi, K. Vetter, M. Vicenzi, H. Vieira de Souza, C. Vignoli, C. Vilela, E. Villa, S. Viola, B. Viren, A. Vizcaya-Hernandez, T. Vrba, Q. Vuong, A. V. Waldron, M. Wallbank, J. Walsh, T. Walton, H. Wang, J. Wang, L. Wang, M. H. L. S. Wang, X. Wang, Y. Wang, K. Warburton, D. Warner, L. Warsame, M. O. Wascko, D. Waters, A. Watson, K. Wawrowska, A. Weber, C. M. Weber, M. Weber, H. Wei, A. Weinstein, H. Wenzel, S. Westerdale, M. Wetstein, K. Whalen, J. Whilhelmi, A. White, A. White, L. H. Whitehead, D. Whittington, M. J. Wilking, A. Wilkinson, C. Wilkinson, F. Wilson, R. J. Wilson, P. Winter, W. Wisniewski, J. Wolcott, J. Wolfs, T. Wongjirad, A. Wood, K. Wood, E. Worcester, M. Worcester, M. Wospakrik, K. Wresilo, C. Wret, S. Wu, W. Wu, W. Wu, M. Wurm, J. Wyenberg, Y. Xiao, I. Xiotidis, B. Yaeggy, N. Yahlali, E. Yandel, K. Yang, T. Yang, A. Yankelevich, N. Yershov, K. Yonehara, T. Young, B. Yu, H. Yu, J. Yu, Y. Yu, W. Yuan, R. Zaki, J. Zalesak, L. Zambelli, B. Zamorano, A. Zani, O. Zapata, L. Zazueta, G. P. Zeller, J. Zennamo, K. Zeug, C. Zhang, S. Zhang, M. Zhao, E. Zhivun, E. D. Zimmerman, S. Zucchelli, J. Zuklin, V. Zutshi, R. Zwaska and on behalf of the DUNE Collaborationadd Show full author list remove Hide full author list
Instruments 2024, 8(3), 41; https://doi.org/10.3390/instruments8030041 - 11 Sep 2024
Cited by 4 | Viewed by 3777
Abstract
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection [...] Read more.
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements and provide comparisons to detector simulations. Full article
Show Figures

Figure 1

21 pages, 6263 KiB  
Article
Targeting Asparagine Metabolism in Well-Differentiated/Dedifferentiated Liposarcoma
by Kyle D. Klingbeil, Blake R. Wilde, Danielle S. Graham, Serena Lofftus, Tyler McCaw, Nedas Matulionis, Sarah M. Dry, Joseph G. Crompton, Fritz C. Eilber, Thomas G. Graeber, David B. Shackelford, Heather R. Christofk and Brian E. Kadera
Cancers 2024, 16(17), 3031; https://doi.org/10.3390/cancers16173031 - 30 Aug 2024
Cited by 1 | Viewed by 1694
Abstract
Background: mTORC1 activity is dependent on the presence of micronutrients, including Asparagine (Asn), to promote anabolic cell signaling in many cancers. We hypothesized that targeting Asn metabolism would inhibit tumor growth by reducing mTORC1 activity in well-differentiated (WD)/dedifferentiated (DD) liposarcoma (LPS). Methods: Human [...] Read more.
Background: mTORC1 activity is dependent on the presence of micronutrients, including Asparagine (Asn), to promote anabolic cell signaling in many cancers. We hypothesized that targeting Asn metabolism would inhibit tumor growth by reducing mTORC1 activity in well-differentiated (WD)/dedifferentiated (DD) liposarcoma (LPS). Methods: Human tumor metabolomic analysis was utilized to compare abundance of Asn in WD vs. DD LPS. Gene set enrichment analysis (GSEA) compared relative expression among metabolic pathways upregulated in DD vs. WD LPS. Proliferation assays were performed for LPS cell lines and organoid models by using the combination treatment of electron transport chain (ETC) inhibitors with Asn-free media. 13C-Glucose-labeling metabolomics evaluated the effects of combination treatment on nucleotide synthesis. Murine xenograft models were used to assess the effects of ETC inhibition combined with PEGylated L-Asparaginase (PEG-Asnase) on tumor growth and mTORC1 signaling. Results: Asn was enriched in DD LPS compared to WD LPS. GSEA indicated that mTORC1 signaling was upregulated in DD LPS. Within available LPS cell lines and organoid models, the combination of ETC inhibition with Asn-free media resulted in reduced cell proliferation. Combination treatment inhibited nucleotide synthesis and promoted cell cycle arrest. In vivo, the combination of ETC inhibition with PEG-Asnase restricted tumor growth. Conclusions: Asn enrichment and mTORC1 upregulation are important factors contributing to WD/DD LPS tumor progression. Effective targeting strategies require limiting access to extracellular Asn and inhibition of de novo synthesis mechanisms. The combination of PEG-Asnase with ETC inhibition is an effective therapy to restrict tumor growth in WD/DD LPS. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Bone and Soft Tissue Sarcomas)
Show Figures

Figure 1

11 pages, 875 KiB  
Article
Tongue Strength and Swallowing-Related Masseter Activity and Oropharyngeal Timing Across the Lifespan
by Alicia Martin-Cowger, Dianna Evers, Christy Osterhout, Katie Small, Shelly Ashbocker, Eric Astel, Rebecca Burke, Natalie Dahl, Rebecca Fish, Jeanette Fountain, Sandra Frickey, Elizabeth Holbrook, Carmen Ives, Cassie Dallaserra, Leigha Juravich, Savannah Leckington, Ashley Purser, Heather Randolph, Catherine Reed, David Ross, Kristine Sedlezky, Chad Seibold, Erin Sholes, Amanda Sisneros, Blake Tanner, Casey Ulrich, Joni Grey Loftin and Anthony Seikeladd Show full author list remove Hide full author list
Int. J. Orofac. Myol. Myofunct. Ther. 2024, 50(1), 1-36; https://doi.org/10.52010/ijom.2024.50.1.3 - 28 Aug 2024
Viewed by 539
Abstract
Purpose: This study examined lifespan changes in maximum tongue strength, swallowing time, and masseter activity during swallowing. It provides normative data with which to compare clinical assessments of orofacial myofunctional disorders (OMD) and oropharyngeal dysphagia (OPD). Method: 409 healthy participants without identified OMD [...] Read more.
Purpose: This study examined lifespan changes in maximum tongue strength, swallowing time, and masseter activity during swallowing. It provides normative data with which to compare clinical assessments of orofacial myofunctional disorders (OMD) and oropharyngeal dysphagia (OPD). Method: 409 healthy participants without identified OMD or OPD (ages 5–79 years) provided instrumental measures of tongue strength and electromyographic measurements for oropharyngeal transit time and masseter activity during swallows of four boluses. Participants were placed in three broad age groups (5–15, 16–59, 60–79) for cross-sectional analysis. Results: Differences were found between age groups for tongue strength, such that the youngest group had significantly lower anterior tongue strength than the other groups, and lower posterior tongue strength than the 16–59 age group. Anterior tongue strength was significantly greater for males than females; posterior tongue strength did not differ significantly between the sexes. The youngest group had longer oropharyngeal transit times than either of the two older groups for most boluses. Swallowing transit time decreased in duration across the age groups, from youngest to oldest, for the 2.5 cc pudding bolus. Both right and left masseters differed in activation among tasks and age groups. The oldest age group had consistently greater levels of activation of the right masseter, and all groups had greater activation for the cracker bolus. Spearman rank-order correlations largely confirmed the inferential statistics and provided evidence of a relationship between tongue weakness and increased oropharyngeal transit time. Conclusion: Maximum tongue pressure generation and oropharyngeal timing measures support a developmental hypothesis, with lower tongue strength and longer swallowing transit times for children ages 5 through 15. The smaller pudding bolus provided the greatest differentiation among the age groups, which may prove to be a functional indicator for clinical evaluation. These results are largely consistent with existing data for tongue strength and oropharyngeal swallowing transit times. Full article
Show Figures

Figure 1

23 pages, 3689 KiB  
Article
Gypsum on Mars: A Detailed View at Gale Crater
by David Vaniman, Steve Chipera, Elizabeth Rampe, Thomas Bristow, David Blake, Johannes Meusburger, Tanya Peretyazhko, William Rapin, Jeff Berger, Douglas Ming, Patricia Craig, Nicholas Castle, Robert T. Downs, Shaunna Morrison, Robert Hazen, Richard Morris, Aditi Pandey, Allan H. Treiman, Albert Yen, Cherie Achilles, Benjamin Tutolo, Elisabeth Hausrath, Sarah Simpson, Michael Thorpe, Valerie Tu, David J. Des Marais, John Grotzinger and Abigail Fraemanadd Show full author list remove Hide full author list
Minerals 2024, 14(8), 815; https://doi.org/10.3390/min14080815 - 12 Aug 2024
Cited by 8 | Viewed by 2924
Abstract
Gypsum is a common mineral at Gale crater on Mars, currently being explored by the Mars Science Laboratory (MSL) rover, Curiosity. In this paper, we summarize the associations of gypsum with other sulfate minerals (bassanite, anhydrite, jarosite, starkeyite, and kieserite) from the [...] Read more.
Gypsum is a common mineral at Gale crater on Mars, currently being explored by the Mars Science Laboratory (MSL) rover, Curiosity. In this paper, we summarize the associations of gypsum with other sulfate minerals (bassanite, anhydrite, jarosite, starkeyite, and kieserite) from the lowest levels of the crater’s northern moat zone (Aeolis Palus) up through ~0.8 km of the stratigraphic section in the lower slopes of the sedimentary mound developed around the central peak, Aeolis Mons (informally, Mount Sharp). The analysis is based on results from the CheMin X-ray diffraction instrument on Curiosity, supplemented with information from the rover’s versatile instrument suite. Gypsum does not occur with the same frequency as less hydrous Ca-sulfates, likely, in most cases, because of its dehydration to bassanite and possibly to anhydrite. All three of these Ca-sulfate phases often occur together and, along with other sulfates, in mixed assemblages that are evidence of limited equilibration on a cold, dry planet. In almost all samples, at least one of the Ca-sulfate minerals is present, except for a very limited interval where jarosite is the major sulfate mineral, with the implication of more acidic groundwater at a much later time in Gale crater’s history. Although observations from orbit reveal a sulfate-rich surface, currently active dark basaltic dunes at Gale crater have only small amounts of a single sulfate mineral, anhydrite. Gale crater has provided the most complete mineralogical analysis of a site on Mars so far, but the data in hand show that Gale crater mineralogy is not a blueprint with planet-wide application. The concurrent study of Jezero crater by the Mars 2020 mission and comparisons to what is believed to be the most extensive deposit of gypsum on Mars, in the dune fields at the north polar ice cap, show significant diversity. Unraveling the stories of gypsum and other sulfates on Mars is just beginning. Full article
Show Figures

Figure 1

12 pages, 255 KiB  
Article
Association of Maternal Air Pollution Exposure and Infant Lung Function Is Modified by Genetic Propensity to Oxidative Stress
by Dwan Vilcins, Wen Ray Lee, Cindy Pham, Sam Tanner, Luke D. Knibbs, David Burgner, Tamara L. Blake, Toby Mansell, Anne-Louise Ponsonby, Peter D. Sly and Barwon Infant Study Investigator Group
Children 2024, 11(8), 937; https://doi.org/10.3390/children11080937 - 31 Jul 2024
Viewed by 1886
Abstract
Background and objective: The association between air pollution and poor respiratory health outcomes is well established. Children are particularly at risk from air pollution, especially during the prenatal period as their organs and systems are still undergoing crucial development. This study investigated maternal [...] Read more.
Background and objective: The association between air pollution and poor respiratory health outcomes is well established. Children are particularly at risk from air pollution, especially during the prenatal period as their organs and systems are still undergoing crucial development. This study investigated maternal exposure to air pollution during pregnancy and oxidative stress (OS), inflammation, and infant lung function at 4 weeks of age. Methods: Data from the Barwon Infant Study were available for 314 infants. The exposure to NO2 and PM2.5 were estimated. Infant lung function (4 weeks) was measured by multiple-breath washout. Glycoprotein acetyls (GlycA) (36 weeks prenatal), cord blood, and OS biomarkers were measured in maternal urine (28 weeks). A genetic pathway score for OS (gPFSox) was calculated. Linear regression was used and potential modification by the OS genotype was tested. Results: There was no relationship between maternal exposure to air pollution and infant lung function, or with GlycA or OS during pregnancy. We found an association in children with a genetic propensity to OS between NO2 and a lower functional residual capacity (FRC) (β = −5.3 mls, 95% CI (−9.3, −1.3), p = 0.01) and lung clearance index (LCI) score (β = 0.46 turnovers, (95% CI 0.10, 0.82), p = 0.01). Conclusion: High prenatal exposure to ambient NO2 is associated with a lower FRC and a higher LCI score in infants with a genetic propensity to oxidative stress. There was no relationship between maternal exposure to air pollution with maternal and cord blood inflammation or OS biomarkers. Full article
(This article belongs to the Special Issue Updates on Lung Function, Respiratory and Asthma Disease in Children)
39 pages, 3950 KiB  
Article
Expanded Insights into Martian Mineralogy: Updated Analysis of Gale Crater’s Mineral Composition via CheMin Crystal Chemical Investigations
by Shaunna M. Morrison, David F. Blake, Thomas F. Bristow, Nicholas Castle, Steve J. Chipera, Patricia I. Craig, Robert T. Downs, Ahmed Eleish, Robert M. Hazen, Johannes M. Meusburger, Douglas W. Ming, Richard V. Morris, Aditi Pandey, Anirudh Prabhu, Elizabeth B. Rampe, Philippe C. Sarrazin, Sarah L. Simpson, Michael T. Thorpe, Allan H. Treiman, Valerie Tu, Benjamin M. Tutolo, David T. Vaniman, Ashwin R. Vasavada and Albert S. Yenadd Show full author list remove Hide full author list
Minerals 2024, 14(8), 773; https://doi.org/10.3390/min14080773 - 29 Jul 2024
Cited by 8 | Viewed by 2745
Abstract
This study presents mineral composition estimates of rock and sediment samples analyzed with the CheMin X-ray diffraction instrument on board the NASA Mars Science Laboratory rover, Curiosity, in Gale crater, Mars. Mineral composition is estimated using crystal-chemically derived algorithms applied to X-ray [...] Read more.
This study presents mineral composition estimates of rock and sediment samples analyzed with the CheMin X-ray diffraction instrument on board the NASA Mars Science Laboratory rover, Curiosity, in Gale crater, Mars. Mineral composition is estimated using crystal-chemically derived algorithms applied to X-ray diffraction data, specifically unit-cell parameters. The mineral groups characterized include those found in major abundance by the CheMin instrument (i.e., feldspar, olivine, pyroxene, and spinel oxide). In addition to estimating the composition of the major mineral phases observed in Gale crater, we place their compositions in a stratigraphic context and provide a comparison to that of martian meteorites. This work provides expanded insights into the mineralogy and chemistry of the martian surface. Full article
Show Figures

Figure 1

11 pages, 885 KiB  
Article
Cover Crop Species Selection, Seeding Rate, and Termination Timing Impacts on Semi-Arid Cotton Production
by Clayton David Ray White, Joseph Alan Burke, Katie Lynn Lewis, Will Stewart Keeling, Paul Bradley DeLaune, Ryan Blake Williams and Jack Wayne Keeling
Agronomy 2024, 14(7), 1524; https://doi.org/10.3390/agronomy14071524 - 13 Jul 2024
Viewed by 1061
Abstract
By improving soil properties, cover crops can reduce wind erosion and sand damage to emerging cotton (Gossypium hirsutum L.) plants. However, on the Texas High Plains, questions regarding cover crop water use and management factors that affect cotton lint yield are common [...] Read more.
By improving soil properties, cover crops can reduce wind erosion and sand damage to emerging cotton (Gossypium hirsutum L.) plants. However, on the Texas High Plains, questions regarding cover crop water use and management factors that affect cotton lint yield are common and limit conservation adoption by regional producers. Studies were conducted near Lamesa, TX, USA, in 2017–2020 to evaluate cover crop species selection, seeding rate, and termination timing on cover crop biomass production and cotton yield in conventional and no-tillage systems. The no-till systems included two cover crop species, rye (Secale cereale L.) and wheat (Triticum aestivum L.) and were compared to a conventional tillage system. The cover crops were planted at two seeding rates, 34 and 68 kg ha−1, and each plot was split into two termination timings: optimum, six to eight weeks prior to the planting of cotton, and late, which was two weeks after the optimum termination. Herbage mass was greater in the rye than the wheat cover crop in three of the four years tested, while the 68 kg ha−1 seeding rate was greater than the low seeding rate in only one of four years for both rye and wheat. The later termination timing produced more herbage mass than the optimum in all four years. Treatments did not affect cotton plant populations and had a variable effect on yield. In general, cover crop biomass production did not reduce lint production compared to the conventional system. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

44 pages, 21329 KiB  
Review
The Chemistry and Mineralogy (CheMin) X-ray Diffractometer on the MSL Curiosity Rover: A Decade of Mineralogy from Gale Crater, Mars
by David Blake, Valerie Tu, Thomas Bristow, Elizabeth Rampe, David Vaniman, Steve Chipera, Philippe Sarrazin, Richard Morris, Shaunna Morrison, Albert Yen, Robert Downs, Robert Hazen, Allan Treiman, Douglas Ming, Gordon Downs, Cherie Achilles, Nicholas Castle, Tanya Peretyazhko, David De Marais, Patricia Craig, Barbara Lafuente, Benjamin Tutolo, Elisabeth Hausrath, Sarah Simpson, Richard Walroth, Michael Thorpe, Johannes Meusburger, Aditi Pandey, Marc Gailhanou, Przemyslaw Dera, Jeffrey Berger, Lucy Thompson, Ralf Gellert, Amy McAdam, Catherine O’Connell-Cooper, Brad Sutter, John Michael Morookian, Abigail Fraeman, John Grotzinger, Kirsten Siebach, Soren Madsen and Ashwin Vasavadaadd Show full author list remove Hide full author list
Minerals 2024, 14(6), 568; https://doi.org/10.3390/min14060568 - 29 May 2024
Cited by 9 | Viewed by 4431
Abstract
For more than a decade, the CheMin X-ray diffraction instrument on the Mars Science Laboratory rover, Curiosity, has been returning definitive and quantitative mineralogical and mineral–chemistry data from ~3.5-billion-year-old (Ga) sediments in Gale crater, Mars. To date, 40 drilled rock samples and [...] Read more.
For more than a decade, the CheMin X-ray diffraction instrument on the Mars Science Laboratory rover, Curiosity, has been returning definitive and quantitative mineralogical and mineral–chemistry data from ~3.5-billion-year-old (Ga) sediments in Gale crater, Mars. To date, 40 drilled rock samples and three scooped soil samples have been analyzed during the rover’s 30+ km transit. These samples document the mineralogy of over 800 m of flat-lying fluvial, lacustrine, and aeolian sedimentary rocks that comprise the lower strata of the central mound of Gale crater (Aeolis Mons, informally known as Mt. Sharp) and the surrounding plains (Aeolis Palus, informally known as the Bradbury Rise). The principal mineralogy of the sedimentary rocks is of basaltic composition, with evidence of post-depositional diagenetic overprinting. The rocks in many cases preserve much of their primary mineralogy and sedimentary features, suggesting that they were never strongly heated or deformed. Using aeolian soil composition as a proxy for the composition of the deposited and lithified sediment, it appears that, in many cases, the diagenetic changes observed are principally isochemical. Exceptions to this trend include secondary nodules, calcium sulfate veining, and rare Si-rich alteration halos. A surprising and yet poorly understood observation is that nearly all of the ~3.5 Ga sedimentary rocks analyzed to date contain 15–70 wt.% of X-ray amorphous material. Overall, this >800 m section of sedimentary rock explored in lower Mt. Sharp documents a perennial shallow lake environment grading upward into alternating lacustrine/fluvial and aeolian environments, many of which would have been habitable to microbial life. Full article
Show Figures

Graphical abstract

10 pages, 247 KiB  
Review
Optimizing Access to Unrelated Donors in Canada: Re-Examining the Importance of Donor Factors on Outcomes Following Hematopoietic Cell Transplantation
by Gaganvir Parmar, Matthew D. Seftel, Kathy Ganz, John Blake, Jelena L. Holovati and David S. Allan
Curr. Oncol. 2024, 31(5), 2542-2551; https://doi.org/10.3390/curroncol31050190 - 30 Apr 2024
Viewed by 1495
Abstract
HLA-matched allogeneic hematopoietic cell transplantation (HCT) is a curative therapy for many patients. Unrelated HLA-matched donors are the most frequently used donor for HCT. When more than one donor transplant option is available, transplant centers can select donors based on non-HLA factors. With [...] Read more.
HLA-matched allogeneic hematopoietic cell transplantation (HCT) is a curative therapy for many patients. Unrelated HLA-matched donors are the most frequently used donor for HCT. When more than one donor transplant option is available, transplant centers can select donors based on non-HLA factors. With improved ability to prevent and treat immune complications, such as graft-versus-host disease and infections, it may be possible to proceed more often using HLA-mismatched donors, allowing greater consideration of non-HLA factors, such as donor age, CMV serostatus, and ABO blood group matching, which have demonstrated important impacts on transplant outcomes. Additional factors to consider are donor availability rates and the usage of domestic donors to optimize outcomes. A review of non-HLA factors and considerations on the selection of optimal unrelated donors for HCT are provided within this updated current context. Full article
(This article belongs to the Section Cell Therapy)
Back to TopTop