Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Authors = Awanish Mishra ORCID = 0000-0001-7863-5581

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 858 KiB  
Review
Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases
by Efthalia Angelopoulou, Efstratios-Stylianos Pyrgelis, Chetana Ahire, Prachi Suman, Awanish Mishra and Christina Piperi
Biology 2023, 12(9), 1257; https://doi.org/10.3390/biology12091257 - 20 Sep 2023
Cited by 5 | Viewed by 3838
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases [...] Read more.
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal dementia–amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington’s disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research. Full article
(This article belongs to the Special Issue Epigenetic Modifications and Changes in Neurodegenerative Diseases)
Show Figures

Figure 1

20 pages, 2375 KiB  
Review
Hybrid Quantum Dot as Promising Tools for Theranostic Application in Cancer
by Javed Ahmad, Anuj Garg, Gulam Mustafa, Mohammad Zaki Ahmad, Mohammed Aslam and Awanish Mishra
Electronics 2023, 12(4), 972; https://doi.org/10.3390/electronics12040972 - 15 Feb 2023
Cited by 27 | Viewed by 4944
Abstract
Cancer is one of the leading causes of death worldwide. In the last few decades, cancer treatment has come a long way, but multidrug resistance (MDR) in cancer still has low survival rates. It means that much research is required for an accurate [...] Read more.
Cancer is one of the leading causes of death worldwide. In the last few decades, cancer treatment has come a long way, but multidrug resistance (MDR) in cancer still has low survival rates. It means that much research is required for an accurate diagnosis and effective therapy. The new era of cancer research could include theranostic approaches and targeted delivery of chemotherapeutic agents utilizing the nanoparticulate system. Recently, there has been much interest gained among researchers for carbon-based and graphene-based quantum dots due to their higher biocompatibility and ease of biofunctionalization compared to conventional heavy metal quantum dots. Moreover, these quantum dots have various interesting utilities, including bioimaging, biosensing, quantum dots-mediated drug delivery, and their role in photodynamic therapy (PDT) and photothermal therapy (PTT). The current review highlighted the utility of hybrid quantum dots as a theranostic system in different cancers and discussed the various bio-molecules conjugated hybrid quantum dots investigated for diagnostic/therapeutic applications in cancer. The influence of conjugation of different biomolecules, such as folic acid, PEG, etc., with hybrid quantum dots on their biopharmaceutical attributes (such as aqueous solubility, tumor penetrability, stability of loaded therapeutics in the tumor microenvironment), delivery of drugs specifically to tumor tissues, and its therapeutic outcome in different cancer has also been discussed. Full article
(This article belongs to the Special Issue Quantum and Optoelectronic Devices, Circuits and Systems)
Show Figures

Graphical abstract

37 pages, 4202 KiB  
Review
Nanoscale Topical Pharmacotherapy in Management of Psoriasis: Contemporary Research and Scope
by Mohammad Zaki Ahmad, Abdul Aleem Mohammed, Mohammed S. Algahtani, Awanish Mishra and Javed Ahmad
J. Funct. Biomater. 2023, 14(1), 19; https://doi.org/10.3390/jfb14010019 - 29 Dec 2022
Cited by 17 | Viewed by 10892
Abstract
Psoriasis is a typical dermal condition that has been anticipated since prehistoric times when it was mistakenly implicit in being a variant of leprosy. It is an atypical organ-specific autoimmune disorder, which is triggered by the activation of T-cells and/or B-cells. Until now, [...] Read more.
Psoriasis is a typical dermal condition that has been anticipated since prehistoric times when it was mistakenly implicit in being a variant of leprosy. It is an atypical organ-specific autoimmune disorder, which is triggered by the activation of T-cells and/or B-cells. Until now, the pathophysiology of this disease is not completely explicated and still, many research investigations are ongoing. Different approaches have been investigated to treat this dreadful skin disease using various anti-psoriatic drugs of different modes of action through smart drug-delivery systems. Nevertheless, there is no ideal therapy for a complete cure of psoriasis owing to the dearth of an ideal drug-delivery system for anti-psoriatic drugs. The conventional pharmacotherapy approaches for the treatment of psoriasis demand various classes of anti-psoriatic drugs with optimum benefit/risk ratio and insignificant untoward effects. The advancement in nanoscale drug delivery had a great impact on the establishment of a nanomedicine-based therapy for better management of psoriasis in recent times. Nanodrug carriers are exploited to design and develop nanomedicine-based therapy for psoriasis. It has a promising future in the improvement of the therapeutic efficacy of conventional anti-psoriatic drugs. The present manuscript aims to discuss the pathophysiology, conventional pharmacotherapy, and contemporary research in the area of nanoscale topical drug delivery systems for better management of psoriasis including the significance of targeted pharmacotherapy in psoriasis. Full article
(This article belongs to the Special Issue Nanomaterials and Their Biomedical Applications)
Show Figures

Figure 1

20 pages, 2556 KiB  
Review
Utilization of Nanotechnology to Improve Bone Health in Osteoporosis Exploiting Nigella sativa and Its Active Constituent Thymoquinone
by Javed Ahmad, Hassan A. Albarqi, Mohammad Zaki Ahmad, Mohamed A. A. Orabi, Shadab Md, Ritam Bandopadhyay, Faraha Ahmed, Mohammad Ahmed Khan, Javed Ahamad and Awanish Mishra
Bioengineering 2022, 9(11), 631; https://doi.org/10.3390/bioengineering9110631 - 1 Nov 2022
Cited by 7 | Viewed by 4382
Abstract
Osteoporosis, a chronic bone disorder, is one of the leading causes of fracture and morbidity risk. Numerous medicinally important herbs have been evaluated for their efficacy in improving bone mass density in exhaustive preclinical and limited clinical studies. Nigella sativa L. has been [...] Read more.
Osteoporosis, a chronic bone disorder, is one of the leading causes of fracture and morbidity risk. Numerous medicinally important herbs have been evaluated for their efficacy in improving bone mass density in exhaustive preclinical and limited clinical studies. Nigella sativa L. has been used as local folk medicine, and traditional healers have used it to manage various ailments. Its reported beneficial effects include controlling bone and joint diseases. The present manuscript aimed to provide a sound discussion on the pharmacological evidence of N. sativa and its active constituent, thymoquinone, for its utility in the effective management of osteoporosis. N. sativa is reported to possess anti-IL-1 and anti-TNF-α-mediated anti-inflammatory effects, leading to positive effects on bone turnover markers, such as alkaline phosphatase and tartrate-resistant acid phosphatase. It is reported to stimulate bone regeneration by prompting osteoblast proliferation, ossification, and decreasing osteoclast cells. Thymoquinone from N. sativa has exhibited an antioxidant effect on bone tissue by reducing the FeNTA-induced oxidative stress. The present manuscript highlights phytochemistry, pharmacological effect, and the important mechanistic perspective of N. sativa and its active constituents for the management of osteoporosis. Further, it also provides sound discussion on the utilization of a nanotechnology-mediated drug delivery approach as a promising strategy to improve the therapeutic performance of N. sativa and its active constituent, thymoquinone, in the effective management of osteoporosis. Full article
(This article belongs to the Collection Nanoparticles for Therapeutic and Diagnostic Applications)
Show Figures

Figure 1

23 pages, 1462 KiB  
Review
DNA Methylation: A Promising Approach in Management of Alzheimer’s Disease and Other Neurodegenerative Disorders
by Gagandeep Kaur, Suraj Singh S. Rathod, Mohammed M. Ghoneim, Sultan Alshehri, Javed Ahmad, Awanish Mishra and Nabil A. Alhakamy
Biology 2022, 11(1), 90; https://doi.org/10.3390/biology11010090 - 7 Jan 2022
Cited by 55 | Viewed by 9313
Abstract
DNA methylation, in the mammalian genome, is an epigenetic modification that involves the transfer of a methyl group on the C5 position of cytosine to derive 5-methylcytosine. The role of DNA methylation in the development of the nervous system and the progression of [...] Read more.
DNA methylation, in the mammalian genome, is an epigenetic modification that involves the transfer of a methyl group on the C5 position of cytosine to derive 5-methylcytosine. The role of DNA methylation in the development of the nervous system and the progression of neurodegenerative diseases such as Alzheimer’s disease has been an interesting research area. Furthermore, mutations altering DNA methylation affect neurodevelopmental functions and may cause the progression of several neurodegenerative diseases. Epigenetic modifications in neurodegenerative diseases are widely studied in different populations to uncover the plausible mechanisms contributing to the development and progression of the disease and detect novel biomarkers for early prognosis and future pharmacotherapeutic targets. In this manuscript, we summarize the association of DNA methylation with the pathogenesis of the most common neurodegenerative diseases, such as, Alzheimer’s disease, Parkinson’s disease, Huntington diseases, and amyotrophic lateral sclerosis, and discuss the potential of DNA methylation as a potential biomarker and therapeutic tool for neurogenerative diseases. Full article
Show Figures

Figure 1

20 pages, 1336 KiB  
Review
Neuroprotective Potential of Chrysin: Mechanistic Insights and Therapeutic Potential for Neurological Disorders
by Awanish Mishra, Pragya Shakti Mishra, Ritam Bandopadhyay, Navneet Khurana, Efthalia Angelopoulou, Yam Nath Paudel and Christina Piperi
Molecules 2021, 26(21), 6456; https://doi.org/10.3390/molecules26216456 - 26 Oct 2021
Cited by 68 | Viewed by 7558
Abstract
Chrysin, a herbal bioactive molecule, exerts a plethora of pharmacological effects, including anti-oxidant, anti-inflammatory, neuroprotective, and anti-cancer. A growing body of evidence has highlighted the emerging role of chrysin in a variety of neurological disorders, including Alzheimer’s and Parkinson’s disease, epilepsy, multiple sclerosis, [...] Read more.
Chrysin, a herbal bioactive molecule, exerts a plethora of pharmacological effects, including anti-oxidant, anti-inflammatory, neuroprotective, and anti-cancer. A growing body of evidence has highlighted the emerging role of chrysin in a variety of neurological disorders, including Alzheimer’s and Parkinson’s disease, epilepsy, multiple sclerosis, ischemic stroke, traumatic brain injury, and brain tumors. Based on the results of recent pre-clinical studies and evidence from studies in humans, this review is focused on the molecular mechanisms underlying the neuroprotective effects of chrysin in different neurological diseases. In addition, the potential challenges, and opportunities of chrysin’s inclusion in the neurotherapeutics repertoire are critically discussed. Full article
Show Figures

Graphical abstract

38 pages, 1608 KiB  
Review
Recent Developments in Diagnosis of Epilepsy: Scope of MicroRNA and Technological Advancements
by Ritam Bandopadhyay, Tanveer Singh, Mohammed M. Ghoneim, Sultan Alshehri, Efthalia Angelopoulou, Yam Nath Paudel, Christina Piperi, Javed Ahmad, Nabil A. Alhakamy, Mohamed A. Alfaleh and Awanish Mishra
Biology 2021, 10(11), 1097; https://doi.org/10.3390/biology10111097 - 25 Oct 2021
Cited by 26 | Viewed by 11613
Abstract
Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures, resulting from abnormally synchronized episodic neuronal discharges. Around 70 million people worldwide are suffering from epilepsy. The available antiepileptic medications are capable of controlling seizures in around 60–70% of patients, [...] Read more.
Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures, resulting from abnormally synchronized episodic neuronal discharges. Around 70 million people worldwide are suffering from epilepsy. The available antiepileptic medications are capable of controlling seizures in around 60–70% of patients, while the rest remain refractory. Poor seizure control is often associated with neuro-psychiatric comorbidities, mainly including memory impairment, depression, psychosis, neurodegeneration, motor impairment, neuroendocrine dysfunction, etc., resulting in poor prognosis. Effective treatment relies on early and correct detection of epileptic foci. Although there are currently a few well-established diagnostic techniques for epilepsy, they lack accuracy and cannot be applied to patients who are unsupportive or harbor metallic implants. Since a single test result from one of these techniques does not provide complete information about the epileptic foci, it is necessary to develop novel diagnostic tools. Herein, we provide a comprehensive overview of the current diagnostic tools of epilepsy, including electroencephalography (EEG) as well as structural and functional neuroimaging. We further discuss recent trends and advances in the diagnosis of epilepsy that will enable more effective diagnosis and clinical management of patients. Full article
(This article belongs to the Special Issue New Advances in Epilepsy, Neurotransmission and Synaptic Function)
Show Figures

Figure 1

Back to TopTop