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Abstract: Cancer is one of the leading causes of death worldwide. In the last few decades, cancer
treatment has come a long way, but multidrug resistance (MDR) in cancer still has low survival rates.
It means that much research is required for an accurate diagnosis and effective therapy. The new era
of cancer research could include theranostic approaches and targeted delivery of chemotherapeutic
agents utilizing the nanoparticulate system. Recently, there has been much interest gained among
researchers for carbon-based and graphene-based quantum dots due to their higher biocompatibility
and ease of biofunctionalization compared to conventional heavy metal quantum dots. Moreover,
these quantum dots have various interesting utilities, including bioimaging, biosensing, quantum
dots-mediated drug delivery, and their role in photodynamic therapy (PDT) and photothermal
therapy (PTT). The current review highlighted the utility of hybrid quantum dots as a theranostic
system in different cancers and discussed the various bio-molecules conjugated hybrid quantum
dots investigated for diagnostic/therapeutic applications in cancer. The influence of conjugation of
different biomolecules, such as folic acid, PEG, etc., with hybrid quantum dots on their biopharma-
ceutical attributes (such as aqueous solubility, tumor penetrability, stability of loaded therapeutics
in the tumor microenvironment), delivery of drugs specifically to tumor tissues, and its therapeutic
outcome in different cancer has also been discussed.

Keywords: hybrid quantum dots; cancer; bioimaging; theranostic; photodynamic therapy; photother-
mal therapy

1. Introduction

Cancer is the leading cause of death worldwide, accounting for nearly 10 million
deaths in 2020 [1]. The correct diagnosis is crucial for accurate and effective treatment
because all tumors need specific treatments such as surgery, radiotherapy, and chemother-
apy. Novel therapeutic interventions and early diagnosis of cancer are major concerns
for scientists, physicians, and healthcare professionals. In the last few decades, nanotech-
nology has been at the forefront of most cutting-edge research in many fields, such as
medicine, diagnostics, bioimaging, and other biomedical applications [2]. Among the deliv-
ery approach of medicines in different cancers, various nanoparticles (NPs) are the most
exploited carrier system for drug delivery in different cancer [3,4]. These carrier systems
have different structures and dimensions, which may vary in size range from 1 to 100 nm,
particularly for drug delivery in cancer. This gives them different physical and chemical
properties that can be exploited for various purposes in cancer. The specific physicochemi-
cal properties of nanomaterials are exploited for focused ultrasonic heating therapy [5–7],
radiofrequency (RF) ablation [8–10], magnetic fluid hyperthermia [11–13], and magnetic
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particle imaging [14,15] in cancer. NPs are widely exploited for bioimaging [16], drug de-
livery systems [17], therapeutic agents for photodynamic therapy (PDT) [18], photothermal
therapy (PTT) [19], regenerative medicine [20], and smart biomaterials [21]. Furthermore,
metallic NPs, especially gold [22], silver [23], platinum [24], and palladium [25], are the
most investigated biocompatible NPs, for the diagnosis and treatment of cancer. Along
with imaging agents to treat a wide range of diseases, including different carcinomas,
the delivery of synthetic drugs, therapeutic peptides, and genes has raised interest in the
theranostic approach, which can be simultaneously utilized for both diagnosis and treat-
ment through a single system. Different nanomaterials have high penetrating efficiency to
biological membranes, good biocompatibility, and can perform multiple functions due to
their small size and ability to functionalization. This makes the utilization of nanomaterials
a good candidate for theranostic application in different cancers [26].

Quantum dots (QDs) are a very small nanoparticulate system of organic (such as
carbon-QDs, graphene-QDs) and inorganic nature (such as zinc sulfide–QDs, cadmium
telluride-QDs, cadmium selenide-QDs) and vary in size ranges from 2 to 10 nm [27]. The
small nano dimension is helpful to impart specific optical (high brightness, high quantum
yield, high extinction coefficient, intermittent fluorescence signals, high stability against
photobleaching) [28] and electronic properties that are exploited in different biomedical
applications [27–29]. Its nanocrystal is distinguished by an energy band gap, required
to excite an electron from one electronic band, i.e., a lower energy level, into another
band, i.e., a higher energy level. Because they are so small, these nanocarrier systems of
semiconductor origin can easily move electrons to a higher energy state, even when they
are exposed to UV light. These properties of QDs are used in the diagnosis and treatment
of various diseases, including cancer. This excitation scheme ultimately creates an electron-
hole pair known as an exciton. The exciton gives off energy in the form of a fluorescent
photon when it goes back to its ground state [30]. The 2–10 nm sized semiconducting
nanocrystal started to act like the bulk Bohr exciton radius, and the particle’s electrical and
optical properties changed [31]. The inverse relationship between nanocrystal size and
energy band gap is well-documented and understood. The inverse property says that as
the size of the nanocrystal decreases, the energy band gap increases, and the corresponding
excitation/emission wavelengths decrease. The size of the particle can be changed to
change the color of the light that the QDs give off when they are exposed to UV light.
By adjusting the particle size and size distribution of the QDs, a wide absorbance range
with highly symmetric and narrow emission spectra can be achieved [32]. The different
types of QDs are prepared by the bottom-up approach, which involves the assembling of
their precursor in the molecular state into nanocrystals [33]. The promising techniques
for the preparation of QDs are categorized into four basic approaches, which include
biotemplate-based synthesis, colloidal synthesis, biogenic synthesis, and electrochemical
assembly [27,33]. These methods for the preparation of QDs are illustrated in Figure 1.
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Press, 2022. 

Carbon nanomaterials (specifically carbon nanotubes, carbon dots, graphene, and 
graphene derivatives) and other nanomaterials of organic and inorganic origin are popu-
lar for their extraordinary composition and excellent inherent properties for diverse ap-
plications such as fluorescent, fingerprinting, photocatalysis, electromagnetic shielding, 
and electric applications [3,34]. These nanomaterials have also made a pragmatic inter-
vention in the field of biomedical engineering, contributing to research in tissue engineer-
ing, drug delivery, biosensing, bioimaging, and cancer theranostic [35]. It is functionalized 
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synthesis approach. (B) Biotemplate-based synthesis approach. (C) Electrochemical assembly ap-
proach. (D) Biogenic synthesis approach. Reproduced from Abdellatif et al. [27], Dove Medical
Press, 2022.

Carbon nanomaterials (specifically carbon nanotubes, carbon dots, graphene, and
graphene derivatives) and other nanomaterials of organic and inorganic origin are popular
for their extraordinary composition and excellent inherent properties for diverse applica-
tions such as fluorescent, fingerprinting, photocatalysis, electromagnetic shielding, and
electric applications [3,34]. These nanomaterials have also made a pragmatic intervention
in the field of biomedical engineering, contributing to research in tissue engineering, drug
delivery, biosensing, bioimaging, and cancer theranostic [35]. It is functionalized with QDs
as a hybrid nanoparticulate system called hybrid QDs, which have very small dimensions
and theranostic utility in cancer. These hybrid systems are utilized to deliver drugs of
synthetic/natural/biological origin and act as an imaging agent simultaneously, which
are likely to increase their accumulation, specifically in the cancerous or tumor tissue.
Thus, these versatile nanoparticulate systems as hybrid QDs have very wide utility in
cancer detection/imaging and site-specific delivery of different types of therapeutics to the
cancerous tissues (Illustrated in Figure 2).
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Figure 2. Illustration highlighting the utility of hybrid QDs as cancer theranostics for various applications.

The low drug efficacy in cancer may increase by improving the EPR (enhanced perme-
ability and retention) effect and overcoming the tumor heterogeneity challenges through
designing targeted hybrid QDs of a stealth nature [36]. RBC-camouflaged, light-responsive,
carbon-based porous particles may be helpful in targeting and penetrating tumor tissues.
Protein- and RBC membrane-targeted nanosponges improve targeting and circulation
half-life. Porous carbon/silica and graphene QDs as hybrid systems are photoresponsive
and tumor-penetrating drug carrier systems for theranostic application [37]. Cyclodex-
trins (CDs) are natural, water-soluble cyclic oligosaccharides with hydrophilic exteriors
and hydrophobic interiors that are known for their utility in drug delivery applications.
Their primary and secondary hydroxyl groups on the outside are easy to modify, and
their lipophilic inner cavities can be filled with lipophilic moiety by the formation of an
inclusion complex. These types of carriers are utilized to improve the aqueous solubility
of water-insoluble therapeutics/imaging agents and serve as a promising carrier or drug
delivery system in cancer management through hybridization with QDs for theranostic
application due to the presence of numerous hydroxyl groups on their surface [38].

The present manuscript provides a detailed discussion and recent advancements
in QDs for their utilization to improve the efficacy of loaded therapeutics and imaging
applications in the effective management of cancer. It provided a discussion on hybrid
quantum dots as a cancer theranostics and emphasized the recent research development
(mainly in the last 5 years) in the area of cancer theranostics utilizing hybrid quantum dots.
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2. Significance of Hybrid Quantum Dot as Cancer Theranostics

The significance of the theranostic approach in cancer treatment may utilize the simul-
taneous delivery of chemotherapeutics and photolytic agents for deep tumor penetration,
which effectively damages and inhibits the tumor when treated with single irradiation.
It may be utilized for tracking of progress of cancer therapy using incorporated imaging
agents [39]. Hybrid QDs have been widely explored for their theranostic application in
different types of cancers. However, toxicity issues of QDs due to their composition (heavy
or inorganic materials) and nature (ROS generation and strong surface responses) raised
concern for their modification/functionalization for biomedical applications. Hence, strate-
gies have been conceptualized to minimize their toxicity and improve their biocompatibility
through hybridization/functionalization with other moieties (such as polymers, lipids,
polysaccharides, proteins, etc.), providing efficient accumulation in tumor tissues in addi-
tion to preventing their accumulation in healthy tissues [40,41]. Biological molecules are
attached to QDs using hydrophilic surfactant shells with reactive groups such as COOH,
NH2, or SH. Attachments are made using different methods, such as adsorption, covalent
bonding, electrostatic interaction, etc. [39–41]. It has been reported to be conjugated with a
wide range of biological molecules, including biotin [42], folic acid [43,44], antibodies [45],
and peptides [46]. Silanization, which coats QDs with silica, is a good covalent coating
method for hydroxyl-rich material surfaces. Silanization makes ligand molecules strongly
cross-linked and chemically stable. The end terminal groups of the silane shell can expose
thiol, phosphonate, or methyl terminal ends for subsequent QD coating and also make
the material more biocompatible. Silanization is favored because it is less toxic than other
ligands [47]. Silica shell thickness could control QD light responsiveness. The silica-coated
QDs were modified with amino, carboxyl, and epoxy groups and stabilized with PEG
segments to assess their applicability. These modified QDs efficiently conjugated with
antibodies and were used as fluorescent labels in immunoassay detection [48]. An in vivo
study has shown that emissive Si-QDs biodegrade quickly and produce non-toxic silicic
acid that may be eliminated by urine [49].

The perspectives of hybrid QDs for their utility in cancer diagnosis/imaging and
delivery of payload specifically to tumor tissues are discussed in the subsequent section.

2.1. Perspectives of QDs for Diagnostic/Imaging Utility

QDs in drug delivery may be utilized as therapeutic/imaging cargo that has photother-
mal and photodynamic features, making them excellent for bioimaging. Many clinically
used photosensitizers (PSs) are not tumor-targeted; hence, they are treated with spatially
controlled irradiation. After phototherapies, PS can increase reactive oxygen species (ROS)
formation in healthy cells; hence, light exposure should be avoided to reduce skin pho-
tosensitivity. The hybrid QDs possess low toxicity and good biocompatibility, coupled
with stable photoluminescence (PL), and therefore these are ideal candidates for both
in vitro and in vivo bioimaging [40,41]. QDs by themselves are not as efficient as molecular
PSs, but QDs can be used as antennae to improve light harvesting and energy transfer to
molecular PSs because they absorb much light. NPs are commonly utilized for bioimaging,
but their toxicity limits their utility. Because fluorescence imaging is very sensitive and
has a good temporal and spatial resolution, hybrid QDs are a good choice for sensing and
imaging cell targets. Hybrid QDs are chemically inert, dissolve well in water, are photo-
stable, have a relationship between their optoelectronic properties and their shape and
size, have fluorescence resonance energy transfer, high stability in physiological conditions,
specific accumulation at target sites, are easy to modify on the surface [50], and have a
high absorption coefficient because of hybridized C–C bonds. Therefore, these are good
phototherapy chromophores.

Carbon QDs (C-QDs) synthesized and dispersed with excellent fluorescence, photosta-
bility, photobleaching resistance, and simple coupling with biological species [51]. C-QDs
can carry Ce6 and generate ROS. Using a 639 nm laser, water splitting produced oxygen
and hydrogen in vivo. Increased oxygen yielded 1O2 to improve PDT. C-QDs with specific
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cell targets can particularly detect malignant cells in different investigations. C-QDs conju-
gated with folic acid (FA) (C-dots-FA) to distinguish folate receptor (FR)-positive cancer
cells from normal cells (FR-negative) by growing and analyzing NIH-3T3 and HeLa cells.
Pheophytin (a natural, low-toxicity Mg-free chlorophyll derivative) was employed as a
raw carbon source to synthesize C-QDs using a microwave technique [52]. QDs containing
sulfur and nitrogen are used as PTT (photothermal therapy causes ease of cell death by
protein denaturation and loosening of the cellular membrane by heating the tumor tissue
exploiting irradiation of radiofrequency, ultrasound, microwaves, and magnetic fields, etc.)
and PDT (photodynamic therapy utilizes a photosensitizer that absorbs light of a particular
wavelength and produces oxygen-based molecular species to induce a cytotoxic effect)
for cancers in animals [53,54]. PL and photoacoustic imaging [55–58] benefited from high
photon conversion efficiencies. Passive targeting of QDs around cancer cells destroyed the
tumor. Co-doped C-QDs had a strong photothermal conversion, optical and photoacoustic
performance, and renal excretion [53,59]. N–O-CQDs with significant NIR absorption.
Combining the biocompatible N-doped carbon dots (N-CDs) with folic acid, which possess
a wide range of high-targeting capabilities (26 types of tumor cell lines) and alters the
cellular metabolism leading to autophagy, results in a new targeted tumor therapy based
on autophagy regulation [60]. Similarly, maleimide-terminated TTA1 aptamers complexed
with CDs (TTA1–CDs), which is substantially expressed in HeLa and C6 (rat glioma cell
line) but not in normal healthy CHO cells, exhibit a strong fluorescence along cancer cell
membranes and minimal uptake in healthy cells [61].

Graphene quantum dots (GQDs) are one type of nanocarrier that has been seen in
physics and chemical research due to their ultrasmall size, varied photoluminescence, and
mechanical features [62]. Ultra-tiny GQDs exploiting imaging agents and labeling cell
membranes are promising agents for drug transportation in cancer therapy because of
their outstanding optical properties and transmembrane capabilities. The innate immune
system and tumor heterogeneity continue to pose challenges to efficient tumor targeting
and penetration; however, NIR irradiation, the energy created by photothermal conversion,
can not only release therapeutic cargo but also burst the vesicle to suppress the tumor [63].
When NPs first enter the circulatory system, the innate immune system quickly recognizes
them as foreign bodies and gets rid of them through the reticuloendothelial system and
the mononuclear phagocyte system. This results in poor delivery efficiency. Because the
tumor is a strong physiological barrier, only a small part of the dose injected gets to the
deep tumor through the increased EPR effect, which helps particle accumulation. The high
interstitial fluid pressure (IFP) and cancer-associated fibroblasts in tumors make it hard
for therapeutic drugs to reach the perivascular cells of tumors [64,65]. Thus, in order to
improve tumor therapy, it is crucial to create stealthy and permeable drug delivery systems
for the efficient transportation of therapeutic agents.

For imaging or diagnostic applications, theranostic nanoplatforms must be robust
enough to support them, have a superior cargo-loading and -releasing profile, and be able
to do so. Hybridization between distinct NPs is a promising strategy because it can result
in the accumulation of a wide range of chemical, physical, and biological properties inside
a single complex. Because of their exceptional physical and chemical properties [32,66],
GQDs have been put to use in a variety of biomedical settings. If GQD fluorescence could
be made stable, it would greatly improve the efficiency of imaging in the life sciences.
Due to their unique chemical, physical, and biological properties, graphene quantum dots
(GQDs) and magnetic nanoparticles (MNPs) are two promising choices for use in these
hybrids. Both magnetic resonance imaging (MRI) and computed tomography (CT) use
contrast agents made of magnetic nanoparticles [67]. In addition to its use in biosensing
and magnetic separation, this nanoparticle may also be put to use in hyperthermia therapy,
thermo-ablation, targeted drug administration, and even bio-sensing. For example, mag-
netic nanoparticles could be added to GQDs to make even more complexes that could be
used in medicine. The most commonly used magnetic nanoparticles are iron oxide NPs
(usually Fe2O3 or Fe3O4), which can be classified as a pure metal, metal oxide, or magnetic
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nanocomposites [68]. Combining GQDs with other NPs, such as magnetic nanoparticles,
could make them even better for use in biology.

Carbon quantum dots (CQDs), a novel kind of fluorescent carbon nanomaterial pos-
sessing the unique advantages of high stability, remarkable biocompatibility, easy synthesis
and surface functionalization, and comparable optical characteristics, have been extensively
studied, especially for bioimaging applications due to their tunable strong fluorescence
emission property [69]. In light of the drawbacks of conventional chemotherapy, PTT has
emerged as a viable option for treating cancer. Tumors can be heated from the inside out
by injecting photothermal substances into the affected area or by targeting the tumor with
other agents. These photothermal agents are designed to stimulate near-infrared (NIR)
radiation and generate heat upon relaxation, killing cancer cells. Researchers have been
investigating several facets of theranostic nanosystems [66] since it has been postulated
that these systems, which meet both diagnostic and therapeutic needs, could be utilized to
effectively eradicate cancer cells. It has been found that a wide range of organic, inorganic,
organo-inorganic, and combinations can act as photothermal agents. Carbon nanomate-
rials, including carbon nanotubes, graphene, and graphene derivatives, have garnered
significant attention due to their potential applications in fields as diverse as fingerprinting,
photocatalysis, electromagnetic shielding, and electrics [70,71]. Due to their luminescence,
versatile surface chemistry, easy cellular internalization, and high biocompatibility, CQDs
are particularly promising in drug delivery. Additionally, the nano-formulation system
also offers the possibility to increase drug solubility, bioavailability, and half-life. Although
doxorubicin (DOX) is widely used for cancer treatment, it has many disadvantages, includ-
ing a low EPR effect, low cellular internalization, and cytotoxicity to normal cells [72]. One
approach to bypassing these problems is to use a multifunctional nanocarrier system for
tumor-targeted drug delivery, which has the advantage of accumulating at the tumor site
due to the increased EPR effect.

2.2. Perspectives of QDs for Therapeutic Utility

Different QD-based therapeutic systems for anticancer application have been widely
explored in recent years [73,74]. Various studies have been conducted to investigate
the potential of QDs for targeted drug delivery, PDT, PTT, and gene delivery in cancer
treatment [75,76]. The QDs for cancer therapy have been investigated both at in vitro and
in vivo levels. PDT is one of the most promising non-invasive cancer treatment approaches
with limited side effects. It can be used alone or in combination with surgery, chemotherapy,
or ionizing radiation to destroy undetected cancerous cells at the margins of resection. PDT
uses photosensitizing drugs that are pharmacologically inactive until a particular light
wavelength irradiates them in the presence of oxygen, which generates reactive oxygen
species and induces cell death and tissue necrosis [77,78]. Graphene oxide (GO), an oxidized
version of graphite, has received considerable attention during the past decade. GO, on the
other hand, can be dispersed in water, which makes it a good candidate to investigate in a
biological system. On the other hand, graphenes need to be surface functionalized to make
them dispersible in water and safer for the biological environment [79,80]. Their synthesis
and surface tailoring entail hazardous and toxic reagents, traces of which may remain
with the material to demonstrate further toxicity in vitro/in vivo systems due to GO sheets
having intrinsic toxicity. By delivering medications and energy in two different locations at
the same time, a hybrid system of nano dimension may be able to lessen the adverse effects
of cancer treatment and improve the distinctive properties required for precision medicine.
The hybrid carrier systems are frequently eliminated from blood circulation very quickly,
and piled-up tumors at the periphery close to the blood arteries. It has a short elimination
half-life in blood and high tumor penetration. The membrane of a red blood cell (RBC)
was given the appearance of a sponge by being composed of carbon composite. When it is
exposed to light, it functions as both a “stealth agent” and a “photolytic carrier”. It means
that it transfers “tumor-penetrating agents” (such as graphene QDs and docetaxel) as well
as heat. When compared to the nanosponge, the RBC-membrane-enveloped nanosponge
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demonstrates an eight-fold increase in accumulation in tumor tissue. This is because the
RBC-membrane-enveloped nanosponge will be integrated with a specific protein that
accumulates in tumor spheroids through high lateral bilayer fluidity [81]. The delivery
of graphene QDs to tumor areas is accomplished by passing near-infrared light through
a structure that is only one atom thick. This makes it much simpler for its therapeutic
utilization to penetrate the cancerous tissue and improves the prognosis of cancer therapy
utilizing the theranostic approach.

The pathway of accumulation and removal of QDs and hybrid QDs in in vivo systems
are depicted in Figure 3.
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Figure 3. Schematic illustration highlights the accumulation and removal of QDs versus hybrid QDs.
QDs are more prone to RES clearance and renal clearance compared to hybrid QDs of a stealth nature.
The more targeted delivery of hybrid QDs compared to QDs resulted in major accumulation in tumor
tissues due to receptor-mediated endocytosis and the EPR effect, leading to improved therapeutic
outcomes. “Image created with BioRender.com”.

Different types of hybrid QD-based theranostic systems were explored for cancer
applications to improve the biopharmaceutical attributes of this nanoparticulate system
(such as aqueous solubility, tumor penetrability, and stability of loaded therapeutics in
the tumor microenvironment) and delivery of drug specifically to tumor tissues. Recent
contemporary research conducted in this field is discussed in the subsequent section.

3. Hybrid Quantum Dot as Cancer Theranostics: Contemporary Research
3.1. Diagnostic Application

Pei et al. developed fluorescent hyper-cross-linked-cyclodextrin–carbon quantum dot
(CD-CQD) hybrid nanosponges with outstanding biocompatibility and intense bright blue
fluorescence excited at 365 nm with a PLQY of 38.0% [82]. These hybrid QDs systems
were generated by simple condensation polymerization of carbon quantum dots (CQDs)
with cyclodextrin (CD) at a 1:5 feeding ratio for theranostic applications, specifically in
malignancies. In another investigation, Fateh et al. made a hybrid nanostructure of

BioRender.com
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graphene quantum dots (GQDs) and magnetic nanoparticles (MNP) by using hydrophobic
interactions between long carbon chains on the surface of GQDs around the edges and
MNP in the middle [83]. Pyrolysis was used to create GQDs, which were then changed
using cetyl alcohol (CA) to produce surfactant-modified GQDs (CA-GQDs). Moreover, an
oleate-iron complex has been utilized to make iron-oxide nanoparticles (IONP) as MNP.
After that, CA-GQDs and IONP are mixed to make a structure with IONP in the middle and
CA-GQDs all around it (IONP@CA-GQD). IONP@CA-GQD possesses both fluorescence
and magnetic characteristics. At room temperature, IONP and IONP@CA-GQD have been
tested for magnetization hysteresis loops in a moving magnetic field. There have been no
observations of coercivity or remanence, indicating super-paramagnetism. The computed
MS values for IONP and IONP@CA-GQD are 34.1 emu/g and 37.8 emu/g, respectively.
Because of GQDs are fluorescent in nature, this hybrid structure could also be used for
bioimaging [84,85].

A stable compound of graphene oxide (GO) and graphene quantum dots (GQD)
was created by Kumavat et al. by electrostatic layer-by-layer assembly using a polyethy-
lene imine bridge (GO-PEI-GQDs) [86]. In addition, various applications of the mono-
equivalents of the GO-PEI-GQDs complex were compared, including cell imaging (di-
agnostics), photothermal, and oxidative stress responses in MDA-MB-231 breast cancer
cells. When exposed to an 808 nm laser for 5 min at a concentration of up to 50 µg/mL,
GO-PEI-GQDs displayed an outstanding photothermal response (44–49 ◦C). According to
the study, GO-PEI-GQDs had synergistic effects on cancer cells. It has stable fluorescence
imaging, improved photothermal effects, and cytotoxic actions. Composite materials made
of GO and GQDs combine many different properties, which makes it possible to improve
certain therapeutic systems, such as cancer theranostics [86].

Hyaluronic acid and QDs together have been proven to be useful tools for improving
intracellular transport into liver cells. This is accomplished by interacting with CD44-
receptors, which allows for in vivo real-time imaging [87,88]. The anionic polysaccharide
chondroitin sulfate was employed to coat the positively charged oily core of the cadmium
telluride (CdTe) QDs as cancer theranostic nanocapsules [89], which were also loaded with
rapamycin and celecoxib as anticancer therapeutics [90]. Chondroitin sulfate nanocapsules
have an exterior coating of cationic gelatin-coupled QDs placed on them to prevent non-
specific uptake by healthy cells. Matrix metalloproteinase (MMPs) dissolved the gelatin
at the tumor location, releasing therapeutic nanocapsules and QDs into cancer cells for
therapeutic and imaging action as a cancer therapeutics. An ON–OFF effect, where the
fluorescence of QDs was first quenched by energy transfer and then restored after bond
cleavage in tumor cells, was seen in a study that substituted lactoferrin for gelatin [90].
Thus, using QDs fluorescence, the in vitro and in vivo localization of nanocapsules into
breast tumors was observed.

Recent research related to hybrid QDs utilized for their diagnostic/imaging applica-
bility in different types of cancers is summarized in Table 1.

Table 1. Summary of contemporary research carried out utilizing hybrid quantum dots for diagnos-
tic/imaging applications in cancer.

Type of QDs Type of Cancer Diagnostic/Imaging
Technique Outcome Refs.

Lactoferrin QDs Breast cancer Fluorescence imaging

Intracellular uptake of QDs showed fluorescence
fluorescent due to mercaptopropionic

acid-capped cadmium telluride and was
successfully used as theranostic

[89]
(P:2018)

Gelatin/chondroitin QDs Breast cancer Fluorescence imaging
Matrix metalloproteinase layer enabled tracing
their internalization into cancer cells and strong
non-immunogenic response used as diagnostic

[90]
(P:2018)

Magnetic graphene-QDs Cancer cells Electrochemical
detection imaging Images show high fluorescence in HeLa cells [91]

(P:2018)
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Table 1. Cont.

Type of QDs Type of Cancer Diagnostic/Imaging
Technique Outcome Refs.

Graphene-QDs Cancer cells MRI and fluorescence
imaging

MRI and fluorescence imaging of living Hela
cells and monitored intracellular drug release

[92]
(P:2017)

Carbon-QDs Tumor cells Photoluminescence and
photoacoustic imaging

Accumulation of C-QDs around the cancer cells
via passive targeting with no active targeting

species with fluorescence imaging

[93]
(P:2018)

Carbon-QDs Cervical cancer Fluorescence imaging
TAT functionalization enhanced cell labeling
and uptake, and that folate selectively tagged

tumor cells

[94]
(P:2013)

Carbon-QDs doped with
Fluorine and Nitrogen Squamous cell carcinoma Near-infrared fluorescence

(NIRF) and PET imaging

Carbon-QDs rapidly uptake by the tumor when
administered subcutaneously as compared to

intramuscular and intravenous

[95]
(P:2013)

Carbon QDs doped with
polyethyleneimine Hepatocellular carcinoma Bioimaging

Internalized QDs exhibit fluorescent emission
authenticating their potential application for

gene delivery and bioimaging

[96]
(P:2012)

Magneton-fluorescence
carbon-QDs conjugated

with cDNA
aptamer

Cervical cancer Fluorescence and magnetic
resonance (MR) imaging

DNA aptamer, which specifically recognizes the
receptor tyrosine-protein kinase-like 7 (also

known as colon carcinoma kinase 4, CCK4) for
targeted dual mode fluorescence/magnetic

resonance (MR) imaging

[97]
(P:2018)

QDs-conjugated streptavidin
probe Breast cancer Diagnosis

QDs-based immunohistochemistry
demonstrates the prognostic value of EGFR area
in the HER2-positive and lymph node-positive

subtype of invasive breast cancer

[98]
(P:2011)

Carboxyl-modified CdTe-QDs HeLa and MCF-7 cells Bioimaging
Sensing probes for cancer- biosensors was the
detection of miRNA-21 on lysates of HeLa and

MCF-7 cells and other biomarkers.

[99]
(P:2022)

CdTe-QDs functionalized
with single-stranded DNA Non-specific cells Fluorescence Diagnosis

QDs detect miRNA-122 within 40 min with
enhanced intensity in proportion with

miRNA-122 concentrations range 0.16–4.80 nM
and has a low detection limit of 9.4 pM

[100]
(P:2017)

Au-SiO2-QDs Breast cancer Imaging
Photothermal effect provides real-time imaging

capability, which makes it appealing as a
potential theranostic tool for cancer treatment.

[101]
(P:2018)

Graphene-QDs
doped nitrogen Skin cancer Imaging and diagnosis

Fluorescence intensity of N-GQDs was
quenched by the static quenching of

UV-damaged DNA through the formation of an
N-GQD/UV-damaged DNA complex

[102]
(P:2022)

Iron selenide-QDs Skin Cancer Bioimaging
Synthesized QDs exhibit two bands of photon
excitation property and high quantum yield

which are suitable for second-window imaging

[103]
(P:2019)

3.2. Therapeutic Application

Pei et al. formulated doxorubicin (DOX) loaded-fluorescent hyper-cross-linked-
cyclodextrin–carbon quantum dot (CD-CQD) hybrid nanosponges (DOX-β-CD-CQD) with
a size of around 300 nm with a DOX loading capacity of 39.5% through host−guest com-
plexation [82]. This is because of the supramolecular complexation of DOX with the CD
units in the CD-CQD nanosponges. The developed DOX-CD-CQD nanosponges demon-
strated pH-responsive controlled release in the simulated tumor microenvironment. The
loaded DOX molecules in the surface layer of the DOX-CD-CQD were released in the
first 30 h, similar to the pH 7.4 medium. Due to the higher solubility of DOX in acidic
media attributed to its protonation, the supramolecular complexation of DOX with β-CD
units had a lower inclusion constant and a greater release ratio than in pH 7.4 conditions.
Due to the high formation constant, they took longer to get out of the loaded DOX inner
layer. Protonated DOX diffusion was prevented by hydrophobic DOX-complexed CD.
After 12 h of DOX release, with an accumulative release of approximately 50%, hydrophilic
outer shells formed, facilitating protonated DOX diffusion out of the theranostic system.
After 24 h of incubation, the DOX concentration gradient climbed to 1.7 µg/mL with the
DOX-β-CD-CQD theranostic system concentration of 20 µg/mL. Cell viability (29%) was
comparable to free DOX at 10 µg/mL. In terms of antitumor efficacy, the DOX-CD-CQD
outperformed free DOX. The DOX-β-CD-CQD had an IC50 of 5.00 µg/mL (equivalent to
0.425 µg/mL), compared to 2.26 µg/mL for free DOX. DOX-CD-CQD was internalized
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by HepG2 cells and accumulated in their nuclei, exhibiting better anticancer activity than
the free drug [82]. In another investigation, Fateh et al. developed a hybrid nanostructure
of cetyl alcohol-modified graphene quantum dots (CA-GQDs) and conjugated them with
iron-oxide nanoparticles (IONP@CA-GQD) [44]. The study indicated no effect on the nor-
mal architecture of the liver and cardiac tissues after administration of these hybrid QDs at
a dose of 3 mg/kg for 7 days in mice. Hence, IONP@CA-GQD can be offered as a potential
drug delivery system for cancer theranostics. Moreover, IONP@CA-GQD was found to be
more toxic for the tumor cells as compared to normal cells in the study [39,83]. It is due to
the hydrophobic nature of the carbon chains of cetyl alcohol and oleic acid in the middle of
IONP@CA-GQD, hydrophobic drugs can be loaded in this space [83,104]. Furthermore,
the magnetic properties of IONP@CA-GQD would make cancer targeting feasible through
this theranostic system. Similarly, Kim et al. examined QD-labeled hyaluronic acid (HA)
derivatives for liver-targeted intracellular drug delivery. EDC activation of HA’s carboxyl
group and conjugation to ADH’s amine group produced HA-ADH conjugates. After EDC
and sufo-NHS activation of QD carboxyl groups, HA-ADH conjugates were tagged with
QDs via amide bond formation. HA binds CD44 via its three carboxyl groups [88]. HA-QD
conjugates were endocytosed via HA receptor-mediated endocytosis, as seen in the confocal
microscopic images of B16F1 cells. HA receptors such as CD44 are significantly expressed
in B16F1 cells. In the case of HEK293 cells without HA receptors, the cellular uptake of HA
conjugates and QDs conjugates was noticeably reduced (as shown in Figure 4).
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Figure 4. Illustration shows the cellular uptake of hyaluronic acid (HA) conjugated hybrid QDs after
2 h incubation in B16F1 cells—a high expression of HA receptors (A); HEK293 cells—without HA
receptors (B). Confocal microscopic images reveal low cellular uptake of developed hybrid QDs
system in HEK293 cells. Reproduced from Kim et al. [88], Elsevier, 2012.
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In order to deliver targeted anticancer drugs, Chen et al. created a core-shell structured
multifunctional nanocarrier system (ZnO-Au-PLA-GPPS-FA) consisting of ZnO-quantum
dots-conjugated AuNPs as the core and folic acid (FA)-conjugated amphiphilic hyper-
branched block copolymers as the shell. ZnO-quantum dots-conjugated AuNPs could be
employed for photothermal therapy to kill tumor cells and fluorescent labeling, respectively.
The outer hydrophilic block (GPPS-FA) and the inner hydrophobic block (PLA) were both
biocompatible and biodegradable in in vivo system. The cancer cells may be targeted by
an FA-conjugated multifunctional nanocarrier system, which may then be absorbed by
the target cell through receptor-mediated endocytosis. Additionally, the presence of GPPS
on the surface of multifunctional nanocarrier systems resulted in some of their anticancer
effects [105]. In another investigation, Sung et al. made a targeted RBC-membrane-encased
nanosponge (RBC-NS) that combines stealth and huge payloads of functional molecules
to avoid the low EPR effect and the different types of tumors. This biocompatible, light-
sensitive, carbon-based, porous particle looks like red blood cells (RBCs) and targets and
gets into tumors well [39]. The targeted nanosponge, made of protein/RBC membranes
(targeting and stealth properties), porous carbon/silica (hydrophobic, therapeutic agent
transport), and graphene QDs (GQDs)/drug (photoresponsive, tumor-penetrating), were
injected into a mouse model to deliver docetaxel (DTX) and GQDs to tumors (Figure 5).
Moreover, Cetuximab (Ct), which can target tumors, is attached to the RBC layer to make
it easier for particles to gather around tumors. The nanosponge delivers high amounts
of GQD/DTX to the tumor as a photo-penetrative and photolytic agent. The Ct-RBC-
GQD/NS-treated tumor can be heated to 68 ◦C for thermal tumor ablation. Ct-RBC-NS and
Ct-NS elevated tumor temperatures to 62 and 53 ◦C, respectively. Irradiated saline-treated
mice showed no temperature increase. Ct-RBC-GQD/stronger NS’s improved photother-
mal conversion may be explained by the accumulation and photothermal combination
effects. The localized heat of the NS releases GQD/DTX during NIR exposure, damaging
the tumor and improving therapeutic drug penetration (as shown in Figure 5).

Contemporary research related to hybrid QDs utilized to improve the therapeutic
performance of loaded drugs for anticancer activity in different types of cancers are sum-
marized in Table 2.
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ery in a tumor: (A) After the application of near-infrared (NIR) irradiation, generated heat leads to 

Figure 5. Schematic illustration highlights the penetration and accumulation of hybrid QDs (graphene
quantum dots—GQDs) for RBC-membrane enveloped nanosponge-mediated targeted delivery in
a tumor: (A) After the application of near-infrared (NIR) irradiation, generated heat leads to the
penetration and accumulation of developed theranostic systems (GQDs with DTX) to deep tumors
and the release of drug (DTX) into tumor cells ultimately causes cancer cell death. (B) Cellular uptake
of RBC-membrane enveloped nanosponge with cetuximab (Ct-RBC@NS) and without cetuximab
conjugation (RBC@NS) upon incubation for 2 h in A549 cancer cells and control RAW 264.7 cells.
(a) Developed system conjugated with cetuximab (Ct-RBC@NS) in A549 cancer cells. It is monitored
in the cytoplasm (green) and nuclei (blue). (b) Developed system without conjugation of cetuximab
(RBC@NS) in A549 cancer cells. It is monitored in the cytoplasm (green) and nuclei (blue). (c) Devel-
oped system conjugated with cetuximab (Ct-RBC@NS) in control RAW 264.7 cells. (d) Developed
system without conjugation of cetuximab (RBC@NS) in control RAW 264.7 cells. Reprinted with
permission from Sung et al. [39], Copyright 2018, American Chemical Society.
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Table 2. Summary of contemporary research carried out utilizing hybrid quantum dots for therapeu-
tic/drug delivery applications in cancer.

Type of QDs Type of Cancer In Vitro/In Vivo Model Outcome Refs.

Lactoferrin-QDs Breast cancer In vitro cancer cell line and in vivo
tumor model

Enhanced cytotoxicity of breast cancer cells and
in vivo antitumor efficacy

[89]
(P:2018)

Gelatin/chondroitin-QDs Breast cancer In vitro cell line and in vivo model
Targeted internalization into cancer cells and

enhanced cytotoxicity against breast cancer cells
were demonstrated

[90]
(P:2018)

Magnetic graphene-QDs Cancerous cells In vitro Hela cell line
G-QD susceptibility of cancerous HeLa cells to

DOX is 13% higher and a promising material for
cancer cell detection and targeted Dox

[91]
(P:2018)

Graphene-QDs Cancerous cells In vitro Hela cell line Cell viability study demonstrated the
high cytotoxicity

[92]
(P:2017)

Carbon-QDs doped with
nitrogen and oxygen Tumor cells In vivo antitumor model

Nitrogen and oxygen co-doped C-QDs
(N–O-CQDs) with strong absorbance in the NIR

region leading to photothermal-based
destruction of cancerous cells

[93]
(P:2018)

Carbon QDs doped with
polyethyleneimine

Hepatocellular
carcinoma

In vitro COS-7 cells and
HepG2 cells

Facilitate gene transfection in COS-7 and HepG2
cells with lower cytotoxicity

[96]
(P:2012)

Magneton-fluorescence
carbon-QDs conjugated

with cDNA aptamer
Cervical cancer In vitro cell line and In vivo

tumor model

Targeted synergistic killing of lung cancer cells
via PDT, PTT, and rapid release of DOX under

simultaneous NIR laser irradiation

[97]
(P:2018)

Au-SiO2-QDs Breast cancer MCF-7 human breast cancer cells

A targeted synergistic anticancer effect that
induced by DOX delivery and efficient heat

generation by exploiting the photothermal effect
of QDs-gold NPs.

[101]
(P:2018)

ZnO-QDs Cancerous cells Hela cells
Studies showed that cytotoxicity by both blank
and drug-loaded QDs provided high anticancer
activity against Hela cells with folate targeting

[105]
(P:2018)

Graphene-QDs on the
surface of hollow Cu2S NPs Breast cancer MDA-MB-231 cells line

Flow cytometry showed a significant level of
NIR-triggered Dox release inside

MDA-MB-231 cells

[106]
(P:2020)

Carbon-QDs with nuclear
localization signal peptide Lung cancer Human lung carcinoma cells

Nucleus-targeted drug delivery of therapeutics
functionalized with nuclear signal peptide to

improve its antitumor activity

[107]
(P:2016)

ZnO-QDs Liver cancer In vitro HepG2 cells
QDs significantly upregulated mRNA

expressions, whereas the anti-apoptotic gene
(Bcl-2) was down-regulated

[108]
(P:2015)

CdSe-QDs Hepatocellular
carcinoma In vitro HepG2 cancer cell

QDs successfully induced shrinkage and
rupture of the membrane, and expression of an
apoptotic gene (Bcl2) was positively comparing

the untreated HepG2 cell line.

[109]
(P:2021)

Fe3O4-Ag2O
QDs/Cellulose fibers

nanocomposites
Skin Cancer In vitro cell line study

Magnetic QDs showed that the targeted
cytotoxicity of the drug was increased when

loaded on nanocomposites, compared to pure
Fe3O4-Ag2O quantum dots/cellulose fibers

nanocomposites

[110]
(P:2017)

CdTe-QDs and CdSe-QDs Melanoma tumors In vivo antitumor model
Result indicated CdTe and CdSe QDs

irradiation-induced photothermal therapy
shared great potential in the treatment of cancer

[111]
(P:2012)

Graphene quantum dot
mesoporous silica

nanohybrids
Breast cancer 4T1 cancer cell line; 4T1 tumor in

Balb/c mice

Results indicate that developed hybrid QDs as
powerful cancer theranostic for deep tumor

localization and regression

[112]
(P:2021)

Peptide-based
graphene QDs Breast cancer HUVEC Cell line; 4T1

tumor-bearing Balb/c mice

Successfully demonstrated multifunctional
theranostic peptideticles for targeted drug

delivery and tracking in αv integrin
overexpressed tumor model

[113]
(P:2022)

Tryptophan–sorbitol-based
carbon QDs Liver cancer Huh7 cell line; Huh7 cells bearing

Balb/c mice

Promising cancer nanotheranostic system
utilized for diagnosis, targeting, and PDT

therapy in hepatocellular carcinoma

[114]
(P:2022)

Mn-doped ZnS QDs Breast cancer 4T1 cancer cell line; 4T1 tumor in
Balb/c mice

Theranostic system for image-guided therapy in
breast tumor utilizing NIR-II fluorescence and

magnetic resonance imaging

[115]
(P:2022)

4. Conclusions

The review concludes that hybrid QDs could be multi-modeled to treat different
cancers, and therapeutic progress could be monitored in real-time. These QDs combined
with different types of nanoparticulate systems (such as NPs of polymeric, lipid, and
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inorganic origin) to develop a theranostic system for cancer, particularly to improve the
therapy outcome in MDR cancer. Further, this review concluded that carbon-based and
graphene-based QDs had been extensively explored to conjugate them with different bio-
molecules to overcome the challenges associated with conventional QDs. Several preclinical
studies showed that hybrid QDs could be successfully used as a theranostic system in
cancer, bringing them closer to investigating its clinical utility. However, the literature
review reveals that the clinical performance of hybrid QDs as cancer theranostics has
not been addressed in detail as yet. Furthermore, the safety perspectives of the hybrid
QDs in cancer should also be addressed systematically in future investigations as they
may be accumulated in the healthy tissues due to failure of tumor-specific delivery that
may increase the risks of untoward events. Although numerous in vivo studies have
examined the distribution, accumulation, excretion, and toxic consequences of QDs, no
consensus has been established. Moreover, due to the complexity of in vivo models, the
replication of pharmacokinetics is difficult. However, certain in-vitro studies eased our
basic understanding of mechanisms and possible adverse effects of various QDs. The type
of QDs has an impact on their distribution within cells and clearance rate, which is directly
related to their cytotoxicity. Based on the local accumulation and biological half-life, the
possible cytotoxic potential of QDs can be anticipated. Thus, systematic investigation of
the safety and efficacy of hybrid QDs should be of prime concern.
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