Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Awadhesh Kumar Rai

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4534 KiB  
Article
An Approach to Evaluate Pb Tolerance and Its Removal Mechanisms by Pleurotus opuntiae
by Priyanka Yadav, Vartika Mishra, Tejmani Kumar, Awadhesh Kumar Rai, Ayush Gaur and Mohan Prasad Singh
J. Fungi 2023, 9(4), 405; https://doi.org/10.3390/jof9040405 - 24 Mar 2023
Cited by 8 | Viewed by 2583
Abstract
Widespread lead (Pb) contamination prompts various environmental problems and accounts for about 1% of the global disease burden. Thus, it has necessitated the demand for eco-friendly clean-up approaches. Fungi provide a novel and highly promising approach for the remediation of Pb-containing wastewater. The [...] Read more.
Widespread lead (Pb) contamination prompts various environmental problems and accounts for about 1% of the global disease burden. Thus, it has necessitated the demand for eco-friendly clean-up approaches. Fungi provide a novel and highly promising approach for the remediation of Pb-containing wastewater. The current study examined the mycoremediation capability of a white rot fungus, P. opuntiae, that showed effective tolerance to increasing concentrations of Pb up to 200 mg L−1, evidenced by the Tolerance Index (TI) of 0.76. In an aqueous medium, the highest removal rate (99.08%) was recorded at 200 mg L−1 whereas intracellular bioaccumulation also contributed to the uptake of Pb in significant amounts with a maximum of 24.59 mg g−1. SEM was performed to characterize the mycelium, suggesting changes in the surface morphology after exposure to high Pb concentrations. LIBS indicated a gradual change in the intensity of some elements after exposure to Pb stress. FTIR spectra displayed many functional groups including amides, sulfhydryl, carboxyl, and hydroxyl groups on the cell walls that led to binding sites for Pb and indicated the involvement of these groups in biosorption. XRD analysis unveiled a mechanism of biotransformation by forming a mineral complex as PbS from Pb ion. Further, Pb fostered the level of proline and MDA at a maximum relative to the control, and their concentration reached 1.07 µmol g−1 and 8.77 nmol g−1, respectively. High Pb concentration results in oxidative damage by increasing the production of ROS. Therefore, the antioxidant enzyme system provides a central role in the elimination of active oxygen. The enzymes, namely SOD, POD, CAT, and GSH, served as most responsive to clear away ROS and lower the stress. The results of this study suggested that the presence of Pb caused no visible adverse symptoms in P. opuntiae. Moreover, biosorption and bioaccumulation are two essential approaches involved in Pb removal by P. opuntiae and are established as worthwhile agents for the remediation of Pb from the environment. Full article
(This article belongs to the Special Issue Biological Activity of Fungi: Interaction with the Environment)
Show Figures

Graphical abstract

14 pages, 6064 KiB  
Article
Study of Electronic Bands of Diatomic Molecules for the Evaluation of Toxicity of Green Crackers Using LIBS Coupled with Chemometric Method
by Darpan Dubey, Rohit Kumar, Abhishek Dwivedi and Awadhesh Kumar Rai
Electron. Mater. 2023, 4(1), 1-14; https://doi.org/10.3390/electronicmat4010001 - 27 Dec 2022
Cited by 3 | Viewed by 2451
Abstract
Laser-induced Breakdown Spectroscopy (LIBS) is primarily an atomic emission spectroscopic method based on analyzing the spectral lines of elements in the laser-induced plasma. However, when the plasma cools down after its ignition, i.e., when one collects the emissions from the plasma after a [...] Read more.
Laser-induced Breakdown Spectroscopy (LIBS) is primarily an atomic emission spectroscopic method based on analyzing the spectral lines of elements in the laser-induced plasma. However, when the plasma cools down after its ignition, i.e., when one collects the emissions from the plasma after a certain interval of time/gate delay (~1 micro-second), the signature of the electronic bands of diatomic molecules is also observed along with ionic/atomic emission lines. The present manuscript reports the evaluation of toxicity/pollutants in green crackers based on the intensity of the electronic bands of the Aluminum Oxide (AlO), calcium oxide (CaO), and strontium oxide (SrO) molecules observed in the laser-induced plasma of the firecrackers. LIBS spectra of the green crackers show the presence of spectral lines of the heavy/toxic elements such as Al, Ca, Sr, Cr, Cu, and Ba, along with the electronic bands of the AlO, CaO, and SrO. Fourier Transform Infra-Red Spectroscopy (FTIR) has been used to validate the LIBS results and confirm the molecules in these crackers. The concentration of toxic elements in green crackers such as Aluminum (Al), Copper (Cu), and Chromium (Cr) has also been estimated using the Partial Least Square Regression method (PLSR) to evaluate and compare the extent of the toxicity of green crackers. Full article
(This article belongs to the Topic Characterization of Electrochemical Materials)
Show Figures

Figure 1

17 pages, 7186 KiB  
Article
Domainal Investigation of a Quartz-Fluorite Composite Using Spectroscopic Techniques
by Sonali Dubey, Abhishek Kumar Rai, Jayanta Kumar Pati, Rohit Kumar, Mrigank Mauli Dwivedi and Awadhesh Kumar Rai
Atoms 2022, 10(4), 133; https://doi.org/10.3390/atoms10040133 - 4 Nov 2022
Cited by 1 | Viewed by 1842
Abstract
The analysis of geological samples that have several chemically diffused zones which formed under certain physico-chemical condition is difficult to achieve. The quantitative estimations of the minerals in such samples are tedious. The present work demonstrates the application of LIBS for qualitative and [...] Read more.
The analysis of geological samples that have several chemically diffused zones which formed under certain physico-chemical condition is difficult to achieve. The quantitative estimations of the minerals in such samples are tedious. The present work demonstrates the application of LIBS for qualitative and quantitative analyses of a quartz-fluorite composite which was procured from an amygdaloidal basalt from Deccan Traps, India. The presence of weak emission lines of F in the spectral range of 200–900 nm makes it challenging to quantify the fluorine. This study has addressed a promising alternative to quantify the fluorine using electronic bands of CaF molecules observed in the Laser-induced Breakdown Spectroscopy (LIBS) spectrum. In addition to this spectroscopic technique, the authors also have used Photoacoustic Spectroscopy (PAS) and UV-VIS spectroscopy technique to obtain molecular information from the geological sample. Principal Component Analysis (PCA) was applied to a truncated spectral region of the CaF molecule, and it showed 99% variance. Further, the obtained results with these spectroscopic techniques were compared with the results that were obtained from X-ray diffraction and Electron Probe Micro Analyzer, and they show good agreement. Thus, the LIBS technique can be promising for in situ profile section (varies from few microns to centimeters size) studies without the sample’s destruction using the point detection capability of LIBS. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

18 pages, 845 KiB  
Article
Elemental Laser-Plasma Analysis of Pointed Gourd Leaves for Diabetes Management
by Tejmani Kumar, Prashant K. Rai, Abhishek K. Rai, Nilesh K. Rai, Awadhesh K. Rai, Christian G. Parigger, Geeta Watal and Suman Yadav
Foundations 2022, 2(4), 981-998; https://doi.org/10.3390/foundations2040066 - 26 Oct 2022
Cited by 5 | Viewed by 2364
Abstract
This interdisciplinary work communicates the identification and quantification of elements responsible for the bioactive potency of leaves from pointed gourd, trichosanthes dioica, using laser-induced breakdown spectroscopy (LIBS). Calibration-free LIBS determines the presence of various trace and major elements, their concentrations, and ratios [...] Read more.
This interdisciplinary work communicates the identification and quantification of elements responsible for the bioactive potency of leaves from pointed gourd, trichosanthes dioica, using laser-induced breakdown spectroscopy (LIBS). Calibration-free LIBS determines the presence of various trace and major elements, their concentrations, and ratios in which they are present in the leaves. The presence of specific elemental ratios of magnesium/sodium and magnesium/potassium could be promising for managing diabetes mellitus. Variable doses of aqueous extract from trichosanthes dioica leaves are administered for determination of the most effective one. Based on encouraging results, the extract could be harvested to serve as anti-diabetic medication for diabetes and associated symptoms. Full article
(This article belongs to the Special Issue Advances in Fundamental Physics II)
Show Figures

Figure 1

20 pages, 3415 KiB  
Article
Chemical Characterization for the Detection of Impurities in Tainted and Natural Curcuma longa from India Using LIBS Coupled with PCA
by Tejmani Kumar, Abhishek Kumar Rai, Abhishek Dwivedi, Rohit Kumar, Mohammad Azam, Vinti Singh, Neelam Yadav and Awadhesh Kumar Rai
Atoms 2022, 10(3), 91; https://doi.org/10.3390/atoms10030091 - 9 Sep 2022
Cited by 13 | Viewed by 3209
Abstract
The present manuscript explores a spectroscopic technique to select turmeric powder, free from impurities, and has compounds of medicinal importance among the tainted and natural turmeric. Six Curcuma longa (turmeric powder) samples, named S1, S2, S3, S4, S5, and S6, were analyzed to [...] Read more.
The present manuscript explores a spectroscopic technique to select turmeric powder, free from impurities, and has compounds of medicinal importance among the tainted and natural turmeric. Six Curcuma longa (turmeric powder) samples, named S1, S2, S3, S4, S5, and S6, were analyzed to discriminate between tainted and natural turmeric using the LIBS and multivariate technique. Other techniques such as UV–Vis, FTIR, and EDX are also used to ascertain the elements/compounds showing the medicinal properties of C. longa. Spectral lines of carbon, sodium, potassium, magnesium, calcium, iron, strontium, barium, and electronic bands of CN molecules were observed in the LIBS spectra of turmeric samples. Spectral signatures of toxic elements such as lead and chromium are also observed in the LIBS spectra of all samples except S6. Adulteration of metanil yellow, a toxic azo dye, is used to increase the appearance of curcumin when the actual curcumin content is low. The presence of spectral lines of lead and chromium in the LIBS spectra of S1 to S5 suggested that it may be adulterated with lead chromate which is used for coloring turmeric. Further, the presence of sulfur in EDX analysis of sample S5 indicates that it may also have been adulterated with metanil (C18H14N3NaO3S). The concentration of samples’ constituents was evaluated using CF-LIBS, and EDX was used to verify the results obtained by CF-LIBS. The principal component analysis applied to the LIBS data of the turmeric samples has been used for instant discrimination between the sample based on their constituents. We also analyzed antioxidant activity and total phenolic and flavonoid content of different turmeric samples and found a negative Pearson correlation with heavy metals. The presence of curcumin in turmeric is confirmed using LIBS and UV–Vis, which have medicinal properties. Full article
Show Figures

Figure 1

17 pages, 2735 KiB  
Article
Rapid Analysis of Chemical Composition and Physical Properties of Gemstones Using LIBS and Chemometric Technique
by Sonali Dubey, Rohit Kumar, Abhishek K. Rai, Jayanta K. Pati, Johannes Kiefer and Awadhesh K. Rai
Appl. Sci. 2021, 11(13), 6156; https://doi.org/10.3390/app11136156 - 2 Jul 2021
Cited by 18 | Viewed by 4103
Abstract
Laser-induced breakdown spectroscopy (LIBS), accompanied by chemometric data analysis, is used to identify and classify gemstones of various hardness. The study involves several gemstones: amethyst, aquamarine beryl, bloodstone citrine, diopside, and enstatite. Their hardness is determined through a correlation utilizing the spectral intensity [...] Read more.
Laser-induced breakdown spectroscopy (LIBS), accompanied by chemometric data analysis, is used to identify and classify gemstones of various hardness. The study involves several gemstones: amethyst, aquamarine beryl, bloodstone citrine, diopside, and enstatite. Their hardness is determined through a correlation utilizing the spectral intensity ratio of the ionic to atomic spectral lines of an identified element in the LIB spectrum. The result of the relative hardness obtained from the LIBS analysis is in good agreement with the hardness measured from Mohs’s scale of hardness, a popular qualitative method to determine hardness. In this work, a linear relationship has been established between the Mohs’s hardness and the plasma excitation temperature. Thus, the hardness of the gemstones can be determined with the help of plasma excitation temperature. Moreover, the analysis of trace elements in LIB spectral data reveals that a particular element is responsible for the colors of gemstones. Therefore, the relative concentration of constituents is calculated for all gemstones and compared. Principal component analysis (PCA) is successfully applied to all gemstone spectra for rapid classification and discrimination based on their variable elemental concentrations and respective hardness. Full article
(This article belongs to the Special Issue Laser Induced Plasma/Breakdown Spectroscopy)
Show Figures

Graphical abstract

11 pages, 3028 KiB  
Article
Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals
by Pravin Kumar Tiwari, Nilesh Kumar Rai, Rohit Kumar, Christian G. Parigger and Awadhesh Kumar Rai
Atoms 2019, 7(3), 71; https://doi.org/10.3390/atoms7030071 - 19 Jul 2019
Cited by 17 | Viewed by 4279
Abstract
Laser-induced breakdown spectroscopy (LIBS) of pharmaceutical drugs that contain paracetamol was investigated in air and argon atmospheres. The characteristic neutral and ionic spectral lines of various elements and molecular signatures of CN violet and C2 Swan band systems were observed. The relative [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) of pharmaceutical drugs that contain paracetamol was investigated in air and argon atmospheres. The characteristic neutral and ionic spectral lines of various elements and molecular signatures of CN violet and C2 Swan band systems were observed. The relative hardness of all drug samples was measured as well. Principal component analysis, a multivariate method, was applied in the data analysis for demarcation purposes of the drug samples. The CN violet and C2 Swan spectral radiances were investigated for evaluation of a possible correlation of the chemical and molecular structures of the pharmaceuticals. Complementary Raman and Fourier-transform-infrared spectroscopies were used to record the molecular spectra of the drug samples. The application of the above techniques for drug screening are important for the identification and mitigation of drugs that contain additives that may cause adverse side-effects. Full article
(This article belongs to the Special Issue Laser Plasma Spectroscopy Applications)
Show Figures

Figure 1

4 pages, 1738 KiB  
Letter
Gallstone Magnesium Distributions from Optical Emission Spectroscopy
by Ashok K. Pathak, Nilesh K. Rai, Rohit Kumar, Pradeep K. Rai, Awadhesh K. Rai and Christian G. Parigger
Atoms 2018, 6(3), 42; https://doi.org/10.3390/atoms6030042 - 9 Aug 2018
Cited by 6 | Viewed by 4420
Abstract
This work reports measurements of calcified gallstone elemental compositions using laser-induced optical emission spectroscopy. The experimental results support the importance of the magnesium concentration in gallstone growth. Granular stones reveal an increased magnesium concentration at the periphery of the granules, suggesting the inhibition [...] Read more.
This work reports measurements of calcified gallstone elemental compositions using laser-induced optical emission spectroscopy. The experimental results support the importance of the magnesium concentration in gallstone growth. Granular stones reveal an increased magnesium concentration at the periphery of the granules, suggesting the inhibition of further growth. Non-granular gallstones reveal lower overall magnesium concentrations, but with higher values near the center. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

Back to TopTop