Domainal Investigation of a Quartz-Fluorite Composite Using Spectroscopic Techniques
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Diffraction Analysis
2.2. Electron Probe Microanalysis
2.3. LIBS Analysis
2.3.1. Characterization of Quartz and Fluorite Using Atomic Lines of the Elements Observed in the LIBS Spectra
2.3.2. Characterization of Quartz and Fluorite Zones Using Electronic Bands of Diatomic Molecules of CaF Observed in LIBS Spectra
2.3.3. Time Evolution of CaF Molecular Band
2.3.4. Evolution of Plasma Temperature and Plasma Density over Time
2.4. Analysis of Compounds Present in the Quartz-Fluorite Composite Using PAS and UV-VIS Spectroscopy
2.5. Chemometric Methods
Principal Component Analysis of LIBS Data
3. Materials and Methods
3.1. Sample Collection and Description
3.2. X-ray Diffraction (XRD)
3.3. Electron Microprobe Analyzer (EPMA)
3.4. LIBS Analysis
3.5. Photoacoustic and UV-Vis Spectroscopy
3.6. Chemometric Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Götze, J. Chemistry, Textures and Physical Properties of Quartz—Geological Interpretation and Technical Application. Mineral. Mag. 2009, 73, 645–671. [Google Scholar] [CrossRef]
- Rossman, G.R. Chapter 13. Colored Varieties of the Silica Minerals; De Gruyter: Berlin, Germany, 2018; pp. 433–468. ISBN 978-1-5015-0969-8. [Google Scholar]
- Yermakov, N.P. Research on the Nature of Mineral-Forming Solutions: With Special Reference to Data from Fluid Inclusions; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-1-4831-6497-7. [Google Scholar]
- Roedder, E. Reviews in mineralogy. In Fluid Inclusions: An Introduction to Studies of All Types of Fluid Inclusions, Gas, Liquid, or Melt, Trapped in Materials from Earth and Space, and Their Application to the Understanding of Geologic Processes; Mineralogical Soc. of America: Blacksburg, VA, USA, 1984; ISBN 978-0-939950-16-4. [Google Scholar]
- Pattrick, R.A.D. TJ Shepherd, AH Rankin and DHM Alderton A Practical Guide to Fluid Inclusion Studies. Glasgow and London (Blackie), 1985. Xi + 239 Pp. Price £26. Mineral. Mag. 1986, 50, 352–353. [Google Scholar] [CrossRef]
- Leeder, O.; Thomas, R.; Klemm, W. Einschlüsse in Mineralen; Dt. Verl. f. Grundstoffind: Leipzig, Germany, 1987; ISBN 978-3-342-00088-4. [Google Scholar]
- Van den Kerkhof, A.M.; Kronz, A.; Simon, K.; Scherer, T. Fluid-Controlled Quartz Recovery in Granulite as Revealed by Cathodoluminescence and Trace Element Analysis (Bamble Sector, Norway). Contrib. Mineral. Petrol. 2004, 146, 637–652. [Google Scholar] [CrossRef]
- Van den Kerkhof, A.M.; Hein, U.F. Fluid Inclusion Petrography. Lithos 2001, 55, 27–47. [Google Scholar] [CrossRef]
- Thomas, R.; Blankenburg, H.-J. Thermometrische Untersuchungen an Silikatischen Glaseinschlüssen in Rhyolithquarzen. Freib. Forschungshefte. Reihe C 1986, 402, 69–103. [Google Scholar]
- Manley, C.R. Morphology and Maturation of Melt Inclusions in Quartz Phenocrysts from the Badlands Rhyolite Lava Flow, Southwestern Idaho. Am. Mineral. 1996, 81, 158–168. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, Y.; Chen, W.; Liu, D. The Role of Water Glass in the Flotation Separation of Fine Fluorite from Fine Quartz. Minerals 2017, 7, 157. [Google Scholar] [CrossRef] [Green Version]
- Salazar, K. Mineral Commodity Summaries 2013; US Geological Survey (USGS): Reston, VA, USA, 2013. [Google Scholar]
- Forni, O.; Gaft, M.; Toplis, M.J.; Clegg, S.M.; Maurice, S.; Wiens, R.C.; Mangold, N.; Gasnault, O.; Sautter, V.; Le Mouélic, S.; et al. First Detection of Fluorine on Mars: Implications for Gale Crater’s Geochemistry. Geophys. Res. Lett. 2015, 42, 1020–1028. [Google Scholar] [CrossRef]
- Gaft, M.; Nagli, L.; Eliezer, N.; Groisman, Y.; Forni, O. Elemental Analysis of Halogens Using Molecular Emission by Laser-Induced Breakdown Spectroscopy in Air. Spectrochim. Acta Part B At. Spectrosc. 2014, 98, 39–47. [Google Scholar] [CrossRef]
- Alvarez-Llamas, C.; Pisonero, J.; Bordel, N. Quantification of Fluorine Traces in Solid Samples Using CaF Molecular Emission Bands in Atmospheric Air Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2016, 123, 157–162. [Google Scholar] [CrossRef]
- Vogt, D.S.; Schröder, S.; Rammelkamp, K.; Hansen, P.B.; Kubitza, S.; Hübers, H.-W. CaCl and CaF Emission in LIBS under Simulated Martian Conditions. Icarus 2020, 335, 113393. [Google Scholar] [CrossRef]
- Klemme, S.; Berndt, J.; Mavrogonatos, C.; Flemetakis, S.; Baziotis, I.; Voudouris, P.; Xydous, S. On the Color and Genesis of Prase (Green Quartz) and Amethyst from the Island of Serifos, Cyclades, Greece. Minerals 2018, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- Tailby, N.D.; Cherniak, D.J.; Watson, E.B. Al Diffusion in Quartz. Am. Mineral. 2018, 103, 839–847. [Google Scholar] [CrossRef]
- Rottier, B.; Rezeau, H.; Casanova, V.; Kouzmanov, K.; Moritz, R.; Schlöglova, K.; Wälle, M.; Fontboté, L. Trace Element Diffusion and Incorporation in Quartz during Heating Experiments. Contrib. Mineral. Petrol. 2017, 172, 23. [Google Scholar] [CrossRef]
- Graupner, T.; Mühlbach, C.; Schwarz-Schampera, U.; Henjes-Kunst, F.; Melcher, F.; Terblanche, H. Mineralogy of High-Field-Strength Elements (Y, Nb, REE) in the World-Class Vergenoeg Fluorite Deposit, South Africa. Ore Geol. Rev. 2015, 64, 583–601. [Google Scholar] [CrossRef]
- Rai, A.K.; Yueh, F.-Y.; Singh, J.P. Laser-Induced Breakdown Spectroscopy of Molten Aluminum Alloy. Appl. Opt. AO 2003, 42, 2078–2084. [Google Scholar] [CrossRef]
- Rai, A.K.; Pati, J.K.; Parigger, C.G.; Dubey, S.; Rai, A.K.; Bhagabaty, B.; Mazumdar, A.C.; Duorah, K. The Plasma Spectroscopic Study of Dergaon Meteorite, India. Molecules 2020, 25, 984. [Google Scholar] [CrossRef] [Green Version]
- Dubey, S.; Kumar, R.; Rai, A.K.; Pati, J.K.; Kiefer, J.; Rai, A.K. Rapid Analysis of Chemical Composition and Physical Properties of Gemstones Using LIBS and Chemometric Technique. Appl. Sci. 2021, 11, 6156. [Google Scholar] [CrossRef]
- Maurya, G.S.; Kumar, R.; Kumar, A.; Rai, A.K. Analysis of Impurities on Contaminated Surface of the Tokamak Limiter Using Laser Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2016, 126, 17–22. [Google Scholar] [CrossRef]
- Fabre, C. Advances in Laser-Induced Breakdown Spectroscopy Analysis for Geology: A Critical Review. Spectrochim. Acta Part B At. Spectrosc. 2020, 166, 105799. [Google Scholar] [CrossRef]
- Pandhija, S.; Rai, N.K.; Rai, A.K.; Thakur, S.N. Contaminant Concentration in Environmental Samples Using LIBS and CF-LIBS. Appl. Phys. B 2010, 98, 231–241. [Google Scholar] [CrossRef]
- Du, C.; Ma, Z.; Zhou, J.; Goyne, K.W. Application of Mid-Infrared Photoacoustic Spectroscopy in Monitoring Carbonate Content in Soils. Sens. Actuators B Chem. 2013, 188, 1167–1175. [Google Scholar] [CrossRef]
- Volkov, D.S.; Rogova, O.B.; Proskurnin, M.A. Photoacoustic and Photothermal Methods in Spectroscopy and Characterization of Soils and Soil Organic Matter. Photoacoustics 2020, 17, 100151. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, P.M.; Luković, D.T.; Nikolić, M.V.; Djurić, S.; Savić, S.M.; Milovanović, A.M.; Ukić, S.R.; Stamenović, B. Photoacoustic Characterization of Natural Mineral Pyrite (FeS2). Eur. Phys. J. Spec. Top. 2008, 153, 187–189. [Google Scholar] [CrossRef] [Green Version]
- Stucki, J.W.; Banwart, W.L. (Eds.) Advanced Chemical Methods for Soil and Clay Minerals Research; Springer: Dordrecht, The Netherlands, 1980; ISBN 978-94-009-9096-8. [Google Scholar]
- Alstadt, K.N.; Katti, D.R.; Katti, K.S. An in Situ FTIR Step-Scan Photoacoustic Investigation of Kerogen and Minerals in Oil Shale. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 89, 105–113. [Google Scholar] [CrossRef]
- NIST: Atomic Spectra Database Lines Form. Available online: https://physics.nist.gov/PhysRefData/ASD/lines_form.html (accessed on 27 July 2022).
- Balat-Pichelin, M.; Iacono, J.; Boubert, P. Recombination Coefficient of Atomic Oxygen on Ceramic Materials in a CO2 Plasma Flow for the Simulation of a Martian Entry. Ceram. Int. 2016, 42, 2761–2769. [Google Scholar] [CrossRef]
- Giacomo, A.D.; Hermann, J. Laser-Induced Plasma Emission: From Atomic to Molecular Spectra. J. Phys. D Appl. Phys. 2017, 50, 183002. [Google Scholar] [CrossRef]
- Álvarez, C.; Pisonero, J.; Bordel, N. Quantification of Fluorite Mass-Content in Powdered Ores Using a Laser-Induced Breakdown Spectroscopy Method Based on the Detection of Minor Elements and CaF Molecular Bands. Spectrochim. Acta Part B At. Spectrosc. 2014, 100, 123–128. [Google Scholar] [CrossRef]
- The Band Spectra of the Alkaline Earth Halides. I.—CaF, SrF | Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. Available online: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1929.0012 (accessed on 26 July 2022).
- Cremers, D.A.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy, 2nd ed.; Wiley, A John Wiley & Sons, Ltd., Publication: Chichester, UK, 2013; ISBN 978-1-118-56736-4. [Google Scholar]
- Hahn, D.W.; Omenetto, N. Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Appl. Spectrosc. AS 2012, 66, 347–419. [Google Scholar] [CrossRef]
- Aguilera, J.A.; Aragón, C.; Madurga, V.; Manrique, J. Study of Matrix Effects in Laser Induced Breakdown Spectroscopy on Metallic Samples Using Plasma Characterization by Emission Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2009, 64, 993–998. [Google Scholar] [CrossRef]
- Parigger, C.G.; Drake, K.A.; Helstern, C.M.; Gautam, G. Laboratory Hydrogen-Beta Emission Spectroscopy for Analysis of Astrophysical White Dwarf Spectra. Atoms 2018, 6, 36. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; Hegazy, H.; El Sherbini, T.M. Measurement of Electron Density Utilizing the Hα-Line from Laser Produced Plasma in Air. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 532–539. [Google Scholar] [CrossRef]
- Griem, H.R. Cambridge monographs on plasma physics. In Principles of Plasma Spectroscopy, 1st ed.; Cambridge University Press: Cambridge, UK, 2005; ISBN 978-0-521-61941-7. [Google Scholar]
- Henn, U.; Schultz-Güttler, R. Review of Some Current Coloured Quartz Varieties. J. Gemmol. 2012, 33, 29–34. [Google Scholar] [CrossRef]
- Nunes, E.H.M.; Lameiras, F.S.; Houmard, M.; Vasconcelos, W.L. Spectroscopic Study of Natural Quartz Samples. Radiat. Phys. Chem. 2013, 90, 79–86. [Google Scholar] [CrossRef]
- Gu, H.; Ma, D.; Chen, W.; Zhu, R.; Li, Y.; Li, Y. Electrolytic Coloration and Spectral Properties of Natural Fluorite Crystals Containing Oxygen Impurities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 82, 327–331. [Google Scholar] [CrossRef]
- Kempe, U.; Plötze, M.; Brachmann, A.; Böttcher, R. Stabilisation of Divalent Rare Earth Elements in Natural Fluorite. Mineral. Petrol. 2002, 76, 213–234. [Google Scholar] [CrossRef]
- Shcheulin, A.S.; Angervaks, A.E.; Semenova, T.S.; Koryakina, L.F.; Petrova, M.A.; Fedorov, P.P.; Reiterov, V.M.; Garibin, E.A.; Ryskin, A.I. Additive Colouring of CaF2:Yb Crystals: Determination of Yb2+ Concentration in CaF2:Yb Crystals and Ceramics. Appl. Phys. B 2013, 111, 551–557. [Google Scholar] [CrossRef]
- Gazali, Z.; Kumar, R.; Rai, P.K.; Rai, P.K.; Rai, A.K.; Thakur, S.N. Discrimination of Gallbladder Stone Employing Laser-Induced Breakdown Spectroscopy (LIBS) and Photoacoustic Spectroscopy (PAS). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 260, 119948. [Google Scholar] [CrossRef]
- Awasthi, S.; Kumar, R.; Rai, A.K. In Situ Analysis of Fireworks Using Laser-Induced Breakdown Spectroscopy and Chemometrics. J. Appl. Spectrosc. 2017, 84, 811–815. [Google Scholar] [CrossRef]
- Yang, N.; Eash, N.S.; Lee, J.; Martin, M.Z.; Zhang, Y.-S.; Walker, F.R.; Yang, J.E. Multivariate Analysis of Laser-Induced Breakdown Spectroscopy Spectra of Soil Samples. Soil Sci. 2010, 175, 447–452. [Google Scholar] [CrossRef]
SiO2 (wt.%) | CaO (wt.%) | F (wt.%) | Total (wt.%) | |
---|---|---|---|---|
White zone | 97.89 ± 8.9 | 0.01 ± 0.003 | 0.39 ± 0.01 | 98.29 ± 8.91 |
Green Zone | 0.16 ± 0.01 | 55.41 ± 2.1 | 45.62 ± 1.8 | 82.10 ± 3.91 |
Sr. No. | Elements | Wavelength (nm) Corresponding to the Persistent Atomic/Ionic Emissions Found in the Sample |
---|---|---|
1 | H | 656.2 |
2 | C | 247.8 |
3 | N | 744.2, 746.8, 867.9, 868.2 |
4 | O | 777.1, 777.3, 844.5 |
5 | F | 685.6, 690.2, 690.9, 703.7, 712.8 |
6 | Na | 588.9, 589.5 |
7 | Mg | 285.2, 516.7, 517.2, 518.3, 279.0, 279.5, 279.8, 280.2 |
8 | Al | 308.2, 309.2, 394.3, 396.1 |
9 | Si | 250.6, 251.4, 251.6, 251.9, 252.4, 252.8, 288.1, 504.0, 505.6, 636.6, 637.0 |
10 | K | 766.4, 769.8 |
11 | Ca | 315.9, 317.9, 370.6, 373.7, 393.5, 396.7, 422.6, 442.5, 443.4, 445.4, 558.8, 610.2, 612.1, 616.2, 616.9 |
12 | Fe | 238.2, 239.5, 240.5, 248.3, 271.9, 374.9, 375.8 |
Orange System A2Π–X2Σ | Green System B2Σ–X2Σ | ||||
---|---|---|---|---|---|
λ (nm) | Relative Intensity | Transition | λ (nm) | Relative Intensity | Transition |
606.44 | 10 | (0,0) | 529.10 | 10 | (0,0) |
606.23 | 9 | (1,1) | 529.29 | 9 | (0,0) |
606.04 | 8 | (2,2) | 529.68 | 8 | (1,1) |
605.86 | 7 | (3,3) | 529.86 | 8 | (1,1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubey, S.; Rai, A.K.; Pati, J.K.; Kumar, R.; Dwivedi, M.M.; Rai, A.K. Domainal Investigation of a Quartz-Fluorite Composite Using Spectroscopic Techniques. Atoms 2022, 10, 133. https://doi.org/10.3390/atoms10040133
Dubey S, Rai AK, Pati JK, Kumar R, Dwivedi MM, Rai AK. Domainal Investigation of a Quartz-Fluorite Composite Using Spectroscopic Techniques. Atoms. 2022; 10(4):133. https://doi.org/10.3390/atoms10040133
Chicago/Turabian StyleDubey, Sonali, Abhishek Kumar Rai, Jayanta Kumar Pati, Rohit Kumar, Mrigank Mauli Dwivedi, and Awadhesh Kumar Rai. 2022. "Domainal Investigation of a Quartz-Fluorite Composite Using Spectroscopic Techniques" Atoms 10, no. 4: 133. https://doi.org/10.3390/atoms10040133
APA StyleDubey, S., Rai, A. K., Pati, J. K., Kumar, R., Dwivedi, M. M., & Rai, A. K. (2022). Domainal Investigation of a Quartz-Fluorite Composite Using Spectroscopic Techniques. Atoms, 10(4), 133. https://doi.org/10.3390/atoms10040133