Chemical Characterization for the Detection of Impurities in Tainted and Natural Curcuma longa from India Using LIBS Coupled with PCA
Abstract
:1. Introduction
2. Results
2.1. Qualitative Analysis of LIBS Spectra of Curcuma longa
2.2. Quantitative Analysis
- (i)
- Laser ablation should be stoichiometric
- (ii)
- Laser-induced plasma should be in local thermal equilibrium
- (iii)
- Laser-induced plasma should be optically thin
2.2.1. Stoichiometric Ablation
2.2.2. Optically Thin Plasma
2.2.3. Local Thermal Equilibrium (LTE)
2.2.4. Necessary Condition
2.2.5. Sufficient Condition
2.2.6. Determination of Concentration of Constituents
2.3. Principal Component Analysis (PCA)
2.4. Fourier Transform Infrared Spectra of Turmeric Samples (FTIR)
2.5. UV-VIS Spectroscopy
2.6. Energy Dispersive X-ray Spectroscopy (EDX)
2.7. BioChemical Analysis
2.7.1. Estimation of Total Phenolic and Flavonoid Contents (TPC and TFC)
2.7.2. Estimation of Antioxidant Activity
3. Material and Methods
3.1. Sample Collection and Preparation for LIBS
3.2. Experimental Setup for UV-VIS
3.3. Experimental Set-Up for EDX
3.4. Experimental Set-Up for FTIR
3.5. Biochemical Analysis
3.5.1. Preparation of Extract
3.5.2. Determination of Total Phenolic Content, Flavonoid Contents, and Antioxidant Activity
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, R.K.; Kumari, P.; Maurya, R.K.; Kumar, V.; Verma, R.B.; Singh, R.K. Medicinal properties of turmeric (Curcuma longa L.): A review. JCS 2018, 6, 1354–1357. [Google Scholar]
- Muhamed, H.M.; Jayandran, M.; Balasubramanian, V.; Muthumariappan, S. Synthesis and characterization of bioactive Curcumin derived fromselected turmeric plants in India. Int. J. Nat. Prod. Res. 2014, 4, 82–87. [Google Scholar]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, J.E.; Nurunnahar, S.; Islam, S.S.; Baker, M.; Yeasmin, D.; Islam, M.S.; Rahman, M.; Fendorf, S.; Ardoin, N.M.; Winch, P.J.; et al. Turmeric means “yellow” in Bengali: Lead chromate pigments added to turmeric threaten public health across Bangladesh. Environ. Res. Part A 2019, 179, 108722. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, S.; Chao, K.; Schmidt, W.; Qin, J.; Kim, M.; Chan, D. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy. Foods 2016, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasha, G.K.; Rao, L.J.M.; Sakariah, K.K. Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J. Agric. Food Chem. 2002, 50, 3668–3672. [Google Scholar] [CrossRef]
- Joe, B.; Vijaykumar, M.; Lokesh, B.R. Biological Properties of Curcumin Cellular and Molecular Mechanisms of Action. Crit. Rev. Food Sci. Nutr. 2004, 44, 97–111. [Google Scholar] [CrossRef]
- Velayudhan, K.C.; Muralidharan, V.K.; Amalraj, V.A.; Gautam, P.L.; Mandal, S.; Kumar, D. Curcuma Genetic Resources. In Scientific Monograph No. 4; National Bureau of Plant Genetic Resources: New Delhi, India, 1999. [Google Scholar]
- Heath, D.D.; Khwaja, F.; Rock, C.L. Curcumin content of turmeric and curry powders. FASEB J. 2004, 18, 4–5. [Google Scholar]
- Sasikumar, B.; Syamkumar, S.; Remya, R.; Zachariah, J. PCR Based Detection of Adulteration in the Market Samples of Turmeric Powder. Food Biotechnol. 2004, 18, 299–306. [Google Scholar] [CrossRef]
- Srivastava, L.P.; Khanna, S.K.; Singh, G.B.; Krishna Murti, C.R. In vitro studies on the transformation of metanil yellow. Environ. Res. 1982, 27, 185–189. [Google Scholar] [CrossRef]
- Ashok, V.; Agrawal, N.; Durgbanshi, A.; Romero, E.J.; Bose, D. A novel micellar chromatographic procedure for the determination of metanil yellow in foodstuffs. Anal. Methods 2015, 7, 9324–9330. [Google Scholar] [CrossRef]
- Qin, J.; Chao, K.; Kim, M.S. Raman Chemical Imaging System for Food Safety and Quality Inspection. Trans. ASABE 2010, 53, 1873–1882. [Google Scholar] [CrossRef]
- Dhakal, S.; Yongyu, L.; Peng, Y.; Chao, K.; Qin, J.; Guo, L. Prototype instrument development for non-destructive detection of pesticide residue in apple surface using Raman technology. J. Food Eng. 2014, 123, 94–103. [Google Scholar] [CrossRef]
- Dhakal, S.; Wu, J.; Chen, J.; Peng, Y. Prediction of egg’s freshness using backward propagation neural network. Appl. Eng. Agric. 2011, 27, 279–285. [Google Scholar] [CrossRef]
- Peng, Y.; Dhakal, S. Optical Methods and Techniques for Meat Quality Inspection. Trans. ASABE 2015, 58, 1370–1386. [Google Scholar]
- Tiwari, M.; Agrawal, R.; Pathak, A.K.; Rai, A.K.; Rai, G.K. Laser-Induced Breakdown Spectroscopy: An Approach to Detect Adulteration in Turmeric. Spectrosc. Lett. 2013, 46, 155–159. [Google Scholar] [CrossRef]
- Agrawal, R.; Kumar, R.; Rai, S.; Pathak, A.K.; Rai, A.K.; Rai, G.K. LIBS: A Quality Control Tool for Food Supplements. Food Biophys. 2011, 6, 527. [Google Scholar] [CrossRef]
- Singh, V.K.; Rai, N.K.; Pandhija, S.; Rai, A.K.; Rai, P.K. Investigation of common Indian edible salts suitable for kidney disease by laser induced breakdown spectroscopy. Lasers Med. Sci. 2009, 24, 917–924. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Rai, A.; Rai, A.K. Evaluation of Na and K in anti-diabetic ayurvedic medicine using LIBS. Lasers Med. Sci. 2021, 37, 513–522. [Google Scholar] [CrossRef]
- Pořízka, P.; Klus, J.; Képeš, E.; Prochazka, D.; Hahn, D.W.; Kaiser, J. On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review. Spectrochim. Acta Part B At. Spectrosc. 2018, 148, 65–82. [Google Scholar] [CrossRef]
- Augustsson, A.; Qvarforth, A.; Engström, E.; Paulukat, C.; Rodushkin, I. Trace and major elements in food supplements of different origin: Implications for daily intake levels and health risks. Toxicol. Rep. 2021, 8, 1067–1080. [Google Scholar] [CrossRef]
- Mziolek, A.W.; Palleschi, V.; Schechter, I. Laser Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications; Cambridge University Press: New York, NY, USA, 2006; ISBN 978-0-511-24529-9. [Google Scholar]
- Kumar, R.; Rai, A.K.; Alamelu, D.; Aggarwal, S.K. Monitoring of toxic elements present in sludge of industrial waste using CF-LIBS. Environ. Monit. Assess. 2013, 185, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Griem, H.R. 1964 Plasma Spectroscopy; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Nong, H.V.; Hung, L.X.; Thang, P.N.; Chinh, V.D.; Vu, L.V.; Dung, P.T.; Trung, T.V.; Nga, P.T. Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam. Springerplus 2016, 5, 1147. [Google Scholar] [CrossRef] [PubMed]
- Hachairz, A.S.; Hofmann, A. Hexavalent chromium quantification in solution: Comparing direct UV–visible spectrometry with 1,5-diphenylcarbazide colorimetry. Comptes. Rendus. Chim. 2018, 21, 890–896. [Google Scholar]
- Denre, M. The determination of vitamin C, total phenol and antioxidant activity of some commonly cooking spices crops used in West Bengal. Int. J. Plant Physiol. Bio. Chem. 2014, 6, 66–70. [Google Scholar]
- Nahak, G.; Sahu, R.K. Evaluation of antioxidant activity in ethanolic extracts of five curcuma species. IRJP 2011, 2, 243–248. [Google Scholar]
- Alafiatayo, A.A.; Syahida, A.; Mahmood, M. Total anti-oxidant capacity, flavonoid, phenolic acid and polyphenol content in ten selected species of zingiberaceae rhizomes. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 7–13. [Google Scholar]
- Tanvir, E.M.; Hossen, M.S.; Hossain, M.F.; Afroz, R.; Gan, S.H.; Khalil, M.I.; Karim, N. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. J. Food Qual. 2017, 2017, 8471785. [Google Scholar] [CrossRef] [Green Version]
- Aktera, J.; Hossaina, M.A.; Takaraa, K.; Islamb, M.Z.; Houa, D.X. Antioxidant activity of different species and varieties of turmeric (Curcuma spp.): Isolation of active compounds. Comp. Biochem. Physiol. Part C 2019, 215, 9–17. [Google Scholar] [CrossRef]
- Kim, I.S.; Yang, M.R.; Lee, O.H.; Kang, S.N. Antioxidant activities of hot water extracts from various spices. Int. J. Mol. Sci. 2011, 12, 4120–4131. [Google Scholar] [CrossRef]
- Kettawan, A.; Wongsansri, K.; Chompoopong, S.; Rungruang, T. Antioxidant and anti-plasmodial activities of Curcuma longa and Aegle marmeloson malaria infected mice (in vitro and in vivo). Siriraj Med. J. 2012, 64, 78–81. [Google Scholar]
- Márquez-García, B.; Fernández-Recamales, M.Á.; Córdoba, F. Effects of Cadmium on Phenolic Composition and Antioxidant Activities of Erica andevalensis. J. Bot. Vol. 2012, 2012, 936950. [Google Scholar] [CrossRef]
- Sakihama, Y.; Cohen, M.F.; Grace, S.C.; Yamasaki, H. Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants. Toxicology 2002, 177, 67–80. [Google Scholar] [CrossRef]
- Perna, A.; Simonetti, A.; Intaglietta, I.; Sofo, A.; Gambacorta, E. Metal content of southern Italy honey of different botanical origins and its correlation with polyphenol content and antioxidant activity. Int. J. Food Sci. Technol. 2012, 47, 1909–1917. [Google Scholar] [CrossRef]
- NIST: National Institute of Standards and Technology USA, Electronic Database. Available online: http://physics.nist.gov/PhysRefData/ASD/linesform.html (accessed on 8 August 2022).
- Pearse, R.W.B.; Gydon, A.G. The Identification of Molecular Spectra 1951, 1st ed.; American Chemical Society: Washington, WA, USA, 1951. [Google Scholar]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Maffei Facino, R. Standardization of antioxidant properties of honey by combination of spectrophotometric fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extract containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
S. No. | Elements | Wavelength (nm) Observed in LIBS Spectra |
---|---|---|
1. | Carbon (C) | 247.8, |
2. | Hydrogen (H) | 656.2 |
3. | Oxygen (O) | 777.1, 777.3, 844.5 |
4. | Nitrogen (N) | 742.2, 744.1, 746.7, 818.7, 821.5, 824.1 |
5. | Calcium (Ca) | 315.8, 317.9, 370.5, 373.6, 393.2, 396.7, 422.6, 430.1, 430.7, 445.4, 442.4, 443.4, 447.9, 485.5, 518.8, 526.1, 526.4, 526.9, 558.1, 559.3, 559.7, 560.0, 560.2, 585.7, 610.1, 612.1, 616.1, 616.8, 643.7, 644.8, 646.1, 647.0, 649.2, 649.8,714.6,720.0,732.4 |
6. | Magnesium (Mg) | 277.6, 277.7, 277.9, 278.0, 278.2, 279.0, 279.5, 279.7, 280.2, 285.1, 382.8, 383.1, 383.7, 516.6, 517.2, 518.2, |
7. | Sodium (Na) | 588.8, 589.5 |
8. | Potassium(K) | 766.3, 769.7 |
9. | Strontium (Sr) | 407.7, 421.5, 460.6, |
10. | Barium (Ba) | 455.5, 493.4, 553.2, 614.1 |
11. | Iron (Fe) | 251.5,252.2, 252.6, 271.4, 271.9, 273.9, 274.9, 275.5, 373.9, 373.7, 374.8, 374.9, 375.8 |
12. | Manganese (Mn) | 293.3, 293.9, 294.7,403.1,403.4,404.1 |
13. | Aluminium (Al) | 308.1, 309.2, 394.3, 396.1 |
14. | Silicon (Si) | 288.1 |
15. | Chromium(Cr) * | 357.8, 359.3, 360.5, 425.4, 427.4, 428.9 |
16. | Lead(Pb) * | 405.8, 607.5, 608.1 |
17. | Molecular bands(CN band) | (0,0),(1,1),(2,2),(3,3),(4,4) |
Samples | Intensity Ratio, (I/I′) Ca-II (393.3/396.8) | Akigkλ′/A′kig′kλ | Intensity Ratio, (I/I′) Mg-II (279.0/279.8) | Akigkλ′/A′kig′kλ |
---|---|---|---|---|
S1 | 1.98 | 1.86 | 0.54 | 0.56 |
S2 | 2.02 | 1.86 | 0.57 | 0.56 |
S3 | 1.96 | 1.86 | 0.54 | 0.56 |
S4 | 2.02 | 1.86 | 0.52 | 0.56 |
S5 | 1.90 | 1.86 | 0.58 | 0.56 |
S6 | 1.94 | 1.86 | 0.60 | 0.56 |
Elements | S1 | S2 | S3 | S4 | S5 | S6 |
---|---|---|---|---|---|---|
C | 4.6 | |||||
N | .9 | |||||
O | ||||||
Mg | ||||||
Al | ||||||
Si | ||||||
S | * | * | * | * | * | * |
K | ||||||
Cr | 0.02 | 0 | ||||
Fe | ||||||
Sr | ||||||
Ba | ||||||
Pb | 0 | |||||
Na | ||||||
Ca | ||||||
Mn |
S. No. | Wavenumber (cm−1) | Functional Group |
---|---|---|
1 | 571 | CH2 stretching |
2 | 830 | -HC=CH (Cis) |
3 | 1014 | C-OH stretching |
4 | 1160, 1202, 1238, 1286 | C-O stretching |
5 | 1331, 1364 | CH2 stretching |
6 | 1419 | CH3 stretching |
7 | 1514 | CN stretching |
8 | 1623 | C=O carbonyl group |
9 | 2912 | CH2 stretching |
10 | 2950 | CH3 stretching |
11 | 3341 | OH stretching |
Elements | Sample (S5) EDX Data | Sample (S5) CF-LIBS Data | Sample (S6) EDX Data | Sample (S6) CF-LIBS |
---|---|---|---|---|
C | 4.2 | 6.4 | ||
N | ||||
O | ||||
Mg | 7 | |||
Al | ||||
Si | ||||
K | ||||
Cr | 0 | 0 | ||
Fe | .02 | |||
Sr | .09 | |||
Ba | ||||
Pb | 0 | 0 |
S. No. | Sample Code | TPC (mg GAE/g) | TFC (mg QE/g) | DPPH (%) | FRAP (mg QE/g) |
---|---|---|---|---|---|
1. | S1 | 31.91 ± 0.55 b | 65.43 ± 0.73 b | 60.41 ± 1.02 c | 50.8 ± 1.46 e |
2. | S2 | 20.20 ± 1.00 a | 54.43 ± 0.70 a | 54.17 ± 0.63 a | 25.4 ± 0.72 b |
3. | S3 | 38.20 ± 0.64 c | 76.01 ± 0.58 c | 60.07 ± 1.00 c | 37.2 ± 0.64 c |
4. | S4 | 32.28 ± 0.51 b | 76.84 ± 0.92 c | 58.36 ± 0.70 b | 44.3 ± 0.68 d |
5. | S5 | 31.52 ± 0.50 b | 95.81 ± 0.90 d | 57.28 ± 0.63 b | 23.5 ± 0.74 a |
6. | S6 | 47.61 ± 0.81 d | 116.21 ± 0.64 e | 70.68 ± 0.84 d | 55.8 ± 0.92 f |
TPC | TFC | DPPH | FRAP | SrII | CrI | PbII | |
---|---|---|---|---|---|---|---|
TPC | 1 | ||||||
TFC | 0.830 * | 1 | |||||
DPPH | 0.928 ** | 0.789 | 1 | ||||
FRAP | 0.695 | 0.360 | 0.796 | 1 | |||
SrII | −0.763 | −0.360 | −0.789 | −0.847 * | 1 | ||
CrI | −0.929 ** | −0.700 | −0.782 | −0.697 | 0.667 | 1 | |
PbII | −0.964 ** | −0.680 | −0.885 * | −0.689 | 0.819 * | 0.897 * | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, T.; Rai, A.K.; Dwivedi, A.; Kumar, R.; Azam, M.; Singh, V.; Yadav, N.; Rai, A.K. Chemical Characterization for the Detection of Impurities in Tainted and Natural Curcuma longa from India Using LIBS Coupled with PCA. Atoms 2022, 10, 91. https://doi.org/10.3390/atoms10030091
Kumar T, Rai AK, Dwivedi A, Kumar R, Azam M, Singh V, Yadav N, Rai AK. Chemical Characterization for the Detection of Impurities in Tainted and Natural Curcuma longa from India Using LIBS Coupled with PCA. Atoms. 2022; 10(3):91. https://doi.org/10.3390/atoms10030091
Chicago/Turabian StyleKumar, Tejmani, Abhishek Kumar Rai, Abhishek Dwivedi, Rohit Kumar, Mohammad Azam, Vinti Singh, Neelam Yadav, and Awadhesh Kumar Rai. 2022. "Chemical Characterization for the Detection of Impurities in Tainted and Natural Curcuma longa from India Using LIBS Coupled with PCA" Atoms 10, no. 3: 91. https://doi.org/10.3390/atoms10030091
APA StyleKumar, T., Rai, A. K., Dwivedi, A., Kumar, R., Azam, M., Singh, V., Yadav, N., & Rai, A. K. (2022). Chemical Characterization for the Detection of Impurities in Tainted and Natural Curcuma longa from India Using LIBS Coupled with PCA. Atoms, 10(3), 91. https://doi.org/10.3390/atoms10030091