Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Authors = Asmat Ullah ORCID = 0000-0002-5715-3425

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3262 KiB  
Article
Evaluating the Efficacy of Plant Extracts in Managing the Bruchid Beetle, Callosobruchus maculatus (Coleoptera: Bruchidae)
by Rasheed Akbar, Brekhna Faheem, Tariq Aziz, Amjad Ali, Asmat Ullah, Imtiaz Ali Khan and Jianfan Sun
Insects 2024, 15(9), 691; https://doi.org/10.3390/insects15090691 - 12 Sep 2024
Cited by 8 | Viewed by 2754
Abstract
An estimated 2000 plant species have been employed for pest control worldwide. The use of these botanical derivatives is thought to be one of the most cost-effective and sustainable options for pest management in stored grain. The present study was designed to assess [...] Read more.
An estimated 2000 plant species have been employed for pest control worldwide. The use of these botanical derivatives is thought to be one of the most cost-effective and sustainable options for pest management in stored grain. The present study was designed to assess the efficacy of five plant extracts viz; Nicotiana tabacum L., Nicotiana rustica L., Azadirachta indica A. Juss., Thuja orientalis L., and Melia azedarach L. against Callosobruchus maculatus L. Plant species extracts were applied at six different concentrations, i.e., 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0% in four replications. The phytochemical analyses of ethanolic extracts of five plant species showed variable amounts of phytochemicals i.e., alkaloids, flavonoids, saponins, diterpenes, phytosterol, and phenols. Total phenolic and flavonoid compounds were also observed. The efficacy of A. indica was highest, characterized by the lowest infestation rate (16.65%), host seed weight loss (7.85%), mean oviposition (84.54), and adult emergence (58.40%). In contrast, T. orientalis was found to be the least effective against C. maculatus, with the highest infestation rate of 25.60%, host seed weight loss of 26.73%, mean oviposition of 117.17, and adult emergence rate of 82.01%. Probit analysis was performed by estimating LC50 and LC90. The toxicity percentages of N. tabacum (LC50 = 0.69%, LC90 = 14.59%), N. rustica (LC50 = 0.98%, LC90 = 22.06%), and A. indica (LC50 = 1.09%, LC90 = 68.52%) were notable in terms of the lower LC50 and LC90 values after the 96-h exposure period against C. maculatus. Repellency was assessed by using the area preference and filter paper method. The repellency of C. maculatus on plant extracts increased with the increasing dose and time, such that it was the highest after 48 h. Likewise, at a 3% concentration, A. indica demonstrated 100.00% (Class-V) repellency followed by N. tabacum (96.00%, Class-V), N. rustica (74%, Class-IV), M. azedarach (70.00%, Class-IV), and T. orientalis (68.00%, Class-IV). Based on the findings of this study, we recommend integrating N. rustica, N. tabacum, A. indica, and M. azedarach for effective management of C. maculatus and highlight the potential of these plant species in the formulation of new biocidal agents. Full article
(This article belongs to the Special Issue New Formulations of Natural Substances against Insect Pests)
Show Figures

Figure 1

17 pages, 5901 KiB  
Article
Enhancing Structural and Thermal Properties of Poly(lactic acid) Using Graphene Oxide Filler and Anionic Surfactant Treatment
by Selsabil Rokia Laraba, Najeeb Ullah, Amirouche Bouamer, Asmat Ullah, Tariq Aziz, Wei Luo, Wahiba Djerir, Qurat ul Ain Zahra, Amine Rezzoug, Jie Wei and Yulin Li
Molecules 2023, 28(18), 6442; https://doi.org/10.3390/molecules28186442 - 5 Sep 2023
Cited by 12 | Viewed by 2254
Abstract
Graphene has attracted extensive attention in various fields due to its intriguing properties. In this work, nanocomposite films based on poly(lactic acid) (PLA and PLLA) polymers filled with graphene oxide (GO) were developed. The impact of treating GO with the anionic surfactant dioctyl [...] Read more.
Graphene has attracted extensive attention in various fields due to its intriguing properties. In this work, nanocomposite films based on poly(lactic acid) (PLA and PLLA) polymers filled with graphene oxide (GO) were developed. The impact of treating GO with the anionic surfactant dioctyl sulfosuccinate sodium salt (AOT) on the properties of the resulting nanocomposites was investigated. To determine the morphological, optical, and structural properties of the obtained materials, physicochemical analyses were performed, including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analysis. Additionally, the thermal properties and wettability of neat polymers and nanocomposites were thoroughly investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and contact angle analysis. It was observed that GO was well dispersed throughout the PLA and PLLA matrix, leading to stronger interface bonding. The results demonstrate that the untreated and treated GO improved the crystallinity and thermal stability properties of the PLA and PLLA. However, the AOT-treated GO has significantly higher performance compared to the untreated GO in terms of crystallinity, melting temperature (increased by ~15 °C), and wettability (the contact angle decreased by ~30°). These findings reveal the high performance of the developed novel composite, which could be applied in tissue engineering as a scaffold. Full article
Show Figures

Graphical abstract

18 pages, 2605 KiB  
Article
Toward Zero Emission Construction: A Comparative Life Cycle Impact Assessment of Diesel, Hybrid, and Electric Excavators
by Asmat Ullah Khan and Lizhen Huang
Energies 2023, 16(16), 6025; https://doi.org/10.3390/en16166025 - 17 Aug 2023
Cited by 8 | Viewed by 3989
Abstract
Due to an extensive usage of heavy machinery, the construction sector is criticized as one of the major CO2 emitters. To address climate concerns, mitigating these greenhouse gas (GHG) emissions is important. This study aimed to strategize for “zero emission construction” by [...] Read more.
Due to an extensive usage of heavy machinery, the construction sector is criticized as one of the major CO2 emitters. To address climate concerns, mitigating these greenhouse gas (GHG) emissions is important. This study aimed to strategize for “zero emission construction” by assessing the life cycle environmental impacts of diesel, electric, and hybrid construction machinery. By applying life cycle assessment (LCA) principles with adherence to ISO 14040/44 methodologies, this study scrutinizes the environmental repercussions of a standard excavator over 9200 effective operational hours, from raw material acquisition to end-of-life disposal. The results demonstrate a significant reduction in global warming potential (GWP), ozone depletion potential (ODP), and acidification potential (AP) in transitioning from diesel to hybrid and fully electric machines. A nominal increase due to this shift also occurred and impacted categories such as human carcinogenic toxicity (HT), freshwater eutrophication (EP), and marine ecotoxicity (ME); however, a more significant upsurge was noted in terrestrial ecotoxicity (TE) due to battery production. Thus, this study highlights the need for a careful management of environmental trade-offs in the shift toward electrified machinery and the importance of centering on the environmental profile of the battery. Future work should focus on enhancing the environmental profile of battery production and disposal, with policy decisions encouraging holistic sustainability based on green energies in construction projects. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

16 pages, 2479 KiB  
Article
Genetics of Plasma Bilirubin and Associations between Bilirubin and Cardiometabolic Risk Profiles in Danish Children and Adolescents
by Asmat Ullah, Evelina Stankevic, Louise Aas Holm, Sara E. Stinson, Helene Bæk Juel, Cilius E. Fonvig, Morten A. V. Lund, Cæcilie Trier, Line Engelbrechtsen, Lars Ängquist, Anna E. Jonsson, Oluf Pedersen, Niels Grarup, Jens-Christian Holm and Torben Hansen
Antioxidants 2023, 12(8), 1613; https://doi.org/10.3390/antiox12081613 - 15 Aug 2023
Cited by 5 | Viewed by 2612
Abstract
Bilirubin is the end product of heme catabolism, mainly produced by the breakdown of mature red blood cells. Due to its anti-inflammatory, antioxidant, antidiabetic, and antilipemic properties, circulating bilirubin concentrations are inversely associated with the risk of cardiovascular disease, type 2 diabetes, and [...] Read more.
Bilirubin is the end product of heme catabolism, mainly produced by the breakdown of mature red blood cells. Due to its anti-inflammatory, antioxidant, antidiabetic, and antilipemic properties, circulating bilirubin concentrations are inversely associated with the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality in adults. Some genetic loci associated with circulating bilirubin concentrations have been identified by genome-wide association studies in adults. We aimed to examine the relationship between circulating bilirubin, cardiometabolic risk factors, and inflammation in children and adolescents and the genetic architecture of plasma bilirubin concentrations. We measured fasting plasma bilirubin, cardiometabolic risk factors, and inflammatory markers in a sample of Danish children and adolescents with overweight or obesity (n = 1530) and in a population-based sample (n = 1820) of Danish children and adolescents. Linear and logistic regression analyses were performed to analyze the associations between bilirubin, cardiometabolic risk factors, and inflammatory markers. A genome-wide association study (GWAS) of fasting plasma concentrations of bilirubin was performed in children and adolescents with overweight or obesity and in a population-based sample. Bilirubin is associated inversely and significantly with a number of cardiometabolic risk factors, including body mass index (BMI) standard deviation scores (SDS), waist circumference, high-sensitivity C-reactive protein (hs-CRP), homeostatic model assessment for insulin resistance (HOMA-IR), hemoglobin A1c (HbA1c), low-density lipoprotein cholesterol (LDL-C), triglycerides, and the majority of measured inflammatory markers. In contrast, bilirubin was positively associated with fasting plasma concentrations of alanine transaminase (ALT), high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SDS), and the inflammatory markers GH, PTX3, THBS2, TNFRSF9, PGF, PAPPA, GT, CCL23, CX3CL1, SCF, and TRANCE. The GWAS showed that two loci were positively associated with plasma bilirubin concentrations at a p-value threshold of <5 × 10−8 (rs76999922: β = −0.65 SD; p = 4.3 × 10−8, and rs887829: β = 0.78 SD; p = 2.9 × 10−247). Approximately 25% of the variance in plasma bilirubin concentration was explained by rs887829. The rs887829 was not significantly associated with any of the mentioned cardiometabolic risk factors except for hs-CRP. Our findings suggest that plasma concentrations of bilirubin non-causally associates with cardiometabolic risk factors in children and adolescents. Full article
Show Figures

Figure 1

18 pages, 3020 KiB  
Article
Customer Analysis Using Machine Learning-Based Classification Algorithms for Effective Segmentation Using Recency, Frequency, Monetary, and Time
by Asmat Ullah, Muhammad Ismail Mohmand, Hameed Hussain, Sumaira Johar, Inayat Khan, Shafiq Ahmad, Haitham A. Mahmoud and Shamsul Huda
Sensors 2023, 23(6), 3180; https://doi.org/10.3390/s23063180 - 16 Mar 2023
Cited by 20 | Viewed by 9468
Abstract
Customer segmentation has been a hot topic for decades, and the competition among businesses makes it more challenging. The recently introduced Recency, Frequency, Monetary, and Time (RFMT) model used an agglomerative algorithm for segmentation and a dendrogram for clustering, which solved the problem. [...] Read more.
Customer segmentation has been a hot topic for decades, and the competition among businesses makes it more challenging. The recently introduced Recency, Frequency, Monetary, and Time (RFMT) model used an agglomerative algorithm for segmentation and a dendrogram for clustering, which solved the problem. However, there is still room for a single algorithm to analyze the data’s characteristics. The proposed novel approach model RFMT analyzed Pakistan’s largest e-commerce dataset by introducing k-means, Gaussian, and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) beside agglomerative algorithms for segmentation. The cluster is determined through different cluster factor analysis methods, i.e., elbow, dendrogram, silhouette, Calinsky–Harabasz, Davies–Bouldin, and Dunn index. They finally elected a stable and distinctive cluster using the state-of-the-art majority voting (mode version) technique, which resulted in three different clusters. Besides all the segmentation, i.e., product categories, year-wise, fiscal year-wise, and month-wise, the approach also includes the transaction status and seasons-wise segmentation. This segmentation will help the retailer improve customer relationships, implement good strategies, and improve targeted marketing. Full article
(This article belongs to the Special Issue Artificial Intelligence and Advances in Smart IoT)
Show Figures

Figure 1

14 pages, 2642 KiB  
Article
A Novel Homozygous Nonsense Variant in the DYM Underlies Dyggve-Melchior-Clausen Syndrome in Large Consanguineous Family
by Abu Bakar, Sulaiman Shams, Nousheen Bibi, Asmat Ullah, Wasim Ahmad, Musharraf Jelani, Osama Yousef Muthaffar, Angham Abdulrhman Abdulkareem, Turki S. Abujamel, Absarul Haque, Muhammad Imran Naseer and Bushra Khan
Genes 2023, 14(2), 510; https://doi.org/10.3390/genes14020510 - 17 Feb 2023
Cited by 3 | Viewed by 2974
Abstract
(1) Background: Dyggve-Melchior-Clausen Syndrome is a skeletal dysplasia caused by a defect in the DYM gene (OMIM number 607461). Pathogenic variants in the gene have been reported to cause Dyggve-Melchior-Clausen (DMC; OMIM 223800) dysplasia and Smith-McCort (SMC; OMIM 607326) dysplasia. (2) Methods: In [...] Read more.
(1) Background: Dyggve-Melchior-Clausen Syndrome is a skeletal dysplasia caused by a defect in the DYM gene (OMIM number 607461). Pathogenic variants in the gene have been reported to cause Dyggve-Melchior-Clausen (DMC; OMIM 223800) dysplasia and Smith-McCort (SMC; OMIM 607326) dysplasia. (2) Methods: In the present study, large consanguineous families with five affected individuals with osteochondrodysplasia phenotypes were recruited. The family members were analyzed by polymerase chain reaction for homozygosity mapping using highly polymorphic microsatellite markers. Subsequent to linkage analysis, the coding exons and exon intron border of the DYM gene were amplified. The amplified products were then sent for Sanger sequencing. The structural effect of the pathogenic variant was analyzed by different bioinformatics tools. (3) Results: Homozygosity mapping revealed a 9 Mb homozygous region on chromosome 18q21.1 harboring DYM shared by all available affected individuals. Sanger sequencing of the coding exons and exon intron borders of the DYM gene revealed a novel homozygous nonsense variant [DYM (NM_017653.6):c.1205T>A, p.(Leu402Ter)] in affected individuals. All the available unaffected individuals were either heterozygous or wild type for the identified variant. The identified mutation results in loss of protein stability and weekend interactions with other proteins making them pathogenic (4) Conclusions: This is the second nonsense mutation reported in a Pakistani population causing DMC. The study presented would be helpful in prenatal screening, genetic counseling, and carrier testing of other members in the Pakistani community. Full article
Show Figures

Figure 1

13 pages, 2355 KiB  
Article
Molecular Dynamic Simulation Analysis of a Novel Missense Variant in CYB5R3 Gene in Patients with Methemoglobinemia
by Asmat Ullah, Abid Ali Shah, Fibhaa Syed, Arif Mahmood, Hassan Ur Rehman, Beenish Khurshid, Abdus Samad, Wasim Ahmad and Sulman Basit
Medicina 2023, 59(2), 379; https://doi.org/10.3390/medicina59020379 - 16 Feb 2023
Cited by 9 | Viewed by 3168
Abstract
Background and Objective: Mutations in the CYB5R3 gene cause reduced NADH-dependent cytochrome b5 reductase enzyme function and consequently lead to recessive congenital methemoglobinemia (RCM). RCM exists as RCM type I (RCM1) and RCM type II (RCM2). RCM1 leads to higher methemoglobin levels [...] Read more.
Background and Objective: Mutations in the CYB5R3 gene cause reduced NADH-dependent cytochrome b5 reductase enzyme function and consequently lead to recessive congenital methemoglobinemia (RCM). RCM exists as RCM type I (RCM1) and RCM type II (RCM2). RCM1 leads to higher methemoglobin levels causing only cyanosis, while in RCM2, neurological complications are also present along with cyanosis. Materials and Methods: In the current study, a consanguineous Pakistani family with three individuals showing clinical manifestations of cyanosis, chest pain radiating to the left arm, dyspnea, orthopnea, and hemoptysis was studied. Following clinical assessment, a search for the causative gene was performed using whole exome sequencing (WES) and Sanger sequencing. Various variant effect prediction tools and ACMG criteria were applied to interpret the pathogenicity of the prioritized variants. Molecular dynamic simulation studies of wild and mutant systems were performed to determine the stability of the mutant CYB5R3 protein. Results: Data analysis of WES revealed a novel homozygous missense variant NM_001171660.2: c.670A > T: NP_001165131.1: p.(Ile224Phe) in exon 8 of the CYB5R3 gene located on chromosome 22q13.2. Sanger sequencing validated the segregation of the identified variant with the disease phenotype within the family. Bioinformatics prediction tools and ACMG guidelines predicted the identified variant p.(Ile224Phe) as disease-causing and likely pathogenic, respectively. Molecular dynamics study revealed that the variant p.(Ile224Phe) in the CYB5R3 resides in the NADH domain of the protein, the aberrant function of which is detrimental. Conclusions: The present study expanded the variant spectrum of the CYB5R3 gene. This will facilitate genetic counselling of the same and other similar families carrying mutations in the CYB5R3 gene. Full article
(This article belongs to the Special Issue Genetics and Inherited Diseases)
Show Figures

Figure 1

32 pages, 22753 KiB  
Article
Groundwater Quality, Health Risk Assessment, and Source Distribution of Heavy Metals Contamination around Chromite Mines: Application of GIS, Sustainable Groundwater Management, Geostatistics, PCAMLR, and PMF Receptor Model
by Abdur Rashid, Muhammad Ayub, Zahid Ullah, Asmat Ali, Tariq Sardar, Javed Iqbal, Xubo Gao, Jochen Bundschuh, Chengcheng Li, Seema Anjum Khattak, Liaqat Ali, Hamed A. El-Serehy, Prashant Kaushik and Sardar Khan
Int. J. Environ. Res. Public Health 2023, 20(3), 2113; https://doi.org/10.3390/ijerph20032113 - 24 Jan 2023
Cited by 52 | Viewed by 6354
Abstract
Groundwater contamination by heavy metals (HMs) released by weathering and mineral dissolution of granite, gneisses, ultramafic, and basaltic rock composition causes human health concerns worldwide. This paper evaluated the heavy metals (HMs) concentrations and physicochemical variables of groundwater around enriched chromite mines of [...] Read more.
Groundwater contamination by heavy metals (HMs) released by weathering and mineral dissolution of granite, gneisses, ultramafic, and basaltic rock composition causes human health concerns worldwide. This paper evaluated the heavy metals (HMs) concentrations and physicochemical variables of groundwater around enriched chromite mines of Malakand, Pakistan, with particular emphasis on water quality, hydro-geochemistry, spatial distribution, geochemical speciation, and human health impacts. To better understand the groundwater hydrogeochemical profile and HMs enrichment, groundwater samples were collected from the mining region (n = 35), non-mining region (n = 20), and chromite mines water (n = 5) and then analyzed using ICPMS (Agilent 7500 ICPMS). The ranges of concentrations in the mining, non-mining, and chromite mines water were 0.02–4.5, 0.02–2.3, and 5.8–6.0 mg/L for CR, 0.4–3.8, 0.05–3.6, and 3.2–5.8 mg/L for Ni, and 0.05–0.8, 0.05–0.8, and 0.6–1.2 mg/L for Mn. Geochemical speciation of groundwater variables such as OH, H+, Cr+2, Cr+3, Cr+6, Ni+2, Mn+2, and Mn+3 was assessed by atomic fluorescence spectrometry (AFS). Geochemical speciation determined the mobilization, reactivity, and toxicity of HMs in complex groundwater systems. Groundwater facies showed 45% CaHCO3, 30% NaHCO3, 23.4% NaCl, and 1.6% Ca-Mg-Cl water types. The noncarcinogenic and carcinogenic risk of HMs outlined via hazard quotient (HQ) and total hazard indices (THI) showed the following order: Ni > Cr > Mn. Thus, the HHRA model suggested that children are more vulnerable to HMs toxicity than adults. Hierarchical agglomerative cluster analysis (HACA) showed three distinct clusters, namely the least, moderately, and severely polluted clusters, which determined the severity of HMs contamination to be 66.67% overall. The PCAMLR and PMF receptor model suggested geogenic (minerals prospects), anthropogenic (industrial waste and chromite mining practices), and mixed (geogenic and anthropogenic) sources for groundwater contamination. The mineral phases of groundwater suggested saturation and undersaturation. Nemerow’s pollution index (NPI) values determined the unsuitability of groundwater for domestic purposes. The EC, turbidity, PO4−3, Na+, Mg+2, Ca+2, Cr, Ni, and Mn exceeded the guidelines suggested by the World Health Organization (WHO). The HMs contamination and carcinogenic and non-carcinogenic health impacts of HMs showed that the groundwater is extremely unfit for drinking, agriculture, and domestic demands. Therefore, groundwater wells around the mining region need remedial measures. Thus, to overcome the enrichment of HMs in groundwater sources, sustainable management plans are needed to reduce health risks and ensure health safety. Full article
Show Figures

Figure 1

9 pages, 2007 KiB  
Article
Exome Sequencing Revealed a Novel Splice Site Variant in the CRB2 Gene Underlying Nephrotic Syndrome
by Anam Simaab, Jai Krishin, Sultan Rashid Alaradi, Nighat Haider, Muqadar Shah, Asmat Ullah, Abdullah Abdullah, Wasim Ahmad, Torben Hansen and Sulman Basit
Medicina 2022, 58(12), 1784; https://doi.org/10.3390/medicina58121784 - 4 Dec 2022
Cited by 2 | Viewed by 2832
Abstract
Background and Objectives: Nephrotic syndrome (NS) is a kidney disease where the patient has a classic triad of signs and symptoms including hypercholesterolemia, hypoalbuminemia, proteinuria (>3.5 g/24 h), and peripheral edema. In case of NS, the damaged nephrons (structural and functional unit [...] Read more.
Background and Objectives: Nephrotic syndrome (NS) is a kidney disease where the patient has a classic triad of signs and symptoms including hypercholesterolemia, hypoalbuminemia, proteinuria (>3.5 g/24 h), and peripheral edema. In case of NS, the damaged nephrons (structural and functional unit of the kidney) filter unwanted blood contents to make urine. Thus, the urine contains unwanted proteins (proteinuria) and blood cells (hematuria), while the bloodstream lacks enough protein albumin (hypoalbuminemia). Nephrotic syndrome is divided into two types, primary NS, and secondary NS. Primary NS, also known as primary glomerulonephrosis, is the result of a glomerular disease that is limited to the kidney, while secondary NS is a condition that affects the kidney and other parts of the body. The main causes of primary NS are minimal change disease, membranous glomerulonephritis, and focal segmental glomerulosclerosis. In the present study we recruited a family segregating primary NS with the aim to identify the underlying genetic etiology. Such type of study is important in children because it allows counseling of other family members who may be at risk of developing NS, predicts risk of recurrent disease phenotypes after kidney transplant, and predicts response to immunosuppressive therapy. Materials and Methods: All affected individuals were clinically evaluated. Clinical examination, results of laboratory tests, and biopsy investigations led us to the diagnosis. The next-generation sequencing technique (whole-exome sequencing) followed by Sanger sequencing identified a novel homozygous splice site variant (NM_173689.7: c.941-3C>T) in the CRB2 gene. The variant was present in a homozygous state in the affected individuals, while in a heterozygous state in phenotypically normal parents. Results: The study expanded the spectrum of the mutations in the gene CRB2 responsible for causing NS. Conclusions: In addition, the study will also help in genetic counseling, carrier testing, and prenatal and/or postnatal early diagnosis of the disease in the affected family. Full article
(This article belongs to the Special Issue Genetics and Inherited Diseases)
Show Figures

Figure 1

14 pages, 1230 KiB  
Article
Seasonal Investigation of Anaplasma marginale Infection in Pakistani Cattle Reveals Hematological and Biochemical Changes, Multiple Associated Risk Factors and msp5 Gene Conservation
by Muhammad Asif, Mourad Ben Said, Rommel Lenin Vinueza, Renato Leon, Nadeem Ahmad, Asia Parveen, Adil Khan, Arusa Ejaz, Muhammad Ali, Asmat Ullah Khan, Muhammad Baber and Furhan Iqbal
Pathogens 2022, 11(11), 1261; https://doi.org/10.3390/pathogens11111261 - 29 Oct 2022
Cited by 10 | Viewed by 2851
Abstract
Bovine anaplasmosis is a tick-borne disease caused by an obligate intercellular Gram-negative bacterium named Anaplasma (A.) marginale. In this study, we report the seasonal prevalence, potentially associated risk factors and phylogeny of A. marginale in cattle of three different breeds from [...] Read more.
Bovine anaplasmosis is a tick-borne disease caused by an obligate intercellular Gram-negative bacterium named Anaplasma (A.) marginale. In this study, we report the seasonal prevalence, potentially associated risk factors and phylogeny of A. marginale in cattle of three different breeds from Multan District, Southern Punjab, Pakistan. A total of 1020 blood samples (crossbred, n = 340; Holstein Friesian, n = 340; and Sahiwal breed, n = 340) from apparently healthy cattle were collected on a seasonal basis from March 2020 to April 2021. Based on PCR amplification of the msp5 partial sequence, overall, the A. marginale prevalence rate was estimated at 11.1% (113/1020) of the analyzed cattle samples. According to seasons, the highest prevalence rate was observed in autumn (16.5%), followed by winter (10.6%) and summer (9.8%), and the lowest was recorded in the spring (7.5%). The crossbred and Sahiwal cattle were the most susceptible to A. marginale infection, followed by Holstein Friesian cattle (7.9%). Analysis of epidemiological factors revealed that cattle reared on farms where dairy animals have tick loads, dogs coinhabit with cattle and dogs have tick loads have a higher risk of being infected with A. marginale. In addition, it was observed that white blood cell, lymphocyte (%), monocyte (%), hematocrit, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentrations were significantly disturbed in A. marginale-positive cattle compared with non-infested cattle. Genetic analysis of nucleotide sequences and a phylogenetic study based on msp5 partial sequencing demonstrated that this gene appears to be highly conserved among our isolates and those infecting apparently healthy cattle from geographically diverse worldwide regions. The presented data are crucial for estimating the risk of bovine anaplasmosis in order to develop integrated control policies against bovine anaplasmosis and other tick-borne diseases infecting cattle in the country. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

34 pages, 2663 KiB  
Review
A Review on the Modification of Cellulose and Its Applications
by Tariq Aziz, Arshad Farid, Fazal Haq, Mehwish Kiran, Asmat Ullah, Kechun Zhang, Cheng Li, Shakira Ghazanfar, Hongyue Sun, Roh Ullah, Amjad Ali, Muhammad Muzammal, Muddaser Shah, Nosheen Akhtar, Samy Selim, Nashwa Hagagy, Mennatalla Samy and Soad K. Al Jaouni
Polymers 2022, 14(15), 3206; https://doi.org/10.3390/polym14153206 - 5 Aug 2022
Cited by 283 | Viewed by 37772
Abstract
The latest advancements in cellulose and its derivatives are the subject of this study. We summarize the characteristics, modifications, applications, and properties of cellulose. Here, we discuss new breakthroughs in modified cellulose that allow for enhanced control. In addition to standard approaches, improvements [...] Read more.
The latest advancements in cellulose and its derivatives are the subject of this study. We summarize the characteristics, modifications, applications, and properties of cellulose. Here, we discuss new breakthroughs in modified cellulose that allow for enhanced control. In addition to standard approaches, improvements in different techniques employed for cellulose and its derivatives are the subject of this review. The various strategies for synthetic polymers are also discussed. The recent advancements in polymer production allow for more precise control, and make it possible to make functional celluloses with better physical qualities. For sustainability and environmental preservation, the development of cellulose green processing is the most abundant renewable substance in nature. The discovery of cellulose disintegration opens up new possibilities for sustainable techniques. Based on the review of recent scientific literature, we believe that additional chemical units of cellulose solubility should be used. This evaluation will evaluate the sustainability of biomass and processing the greenness for the long term. It appears not only crucial to dissolution, but also to the greenness of any process. Full article
(This article belongs to the Special Issue Biomass Conversion and Green Chemistry in Polymer Science)
Show Figures

Graphical abstract

21 pages, 6860 KiB  
Article
Molecular Insights into the Role of Pathogenic nsSNPs in GRIN2B Gene Provoking Neurodevelopmental Disorders
by Abid Ali Shah, Marryam Amjad, Jawad-Ul Hassan, Asmat Ullah, Arif Mahmood, Huiyin Deng, Yasir Ali, Fouzia Gul and Kun Xia
Genes 2022, 13(8), 1332; https://doi.org/10.3390/genes13081332 - 26 Jul 2022
Cited by 19 | Viewed by 3969
Abstract
The GluN2B subunit of N-methyl-D-aspartate receptors plays an important role in the physiology of different neurodevelopmental diseases. Genetic variations in the GluN2B coding gene (GRIN2B) have consistently been linked to West syndrome, intellectual impairment with focal epilepsy, developmental delay, macrocephaly, corticogenesis, [...] Read more.
The GluN2B subunit of N-methyl-D-aspartate receptors plays an important role in the physiology of different neurodevelopmental diseases. Genetic variations in the GluN2B coding gene (GRIN2B) have consistently been linked to West syndrome, intellectual impairment with focal epilepsy, developmental delay, macrocephaly, corticogenesis, brain plasticity, as well as infantile spasms and Lennox–Gastaut syndrome. It is unknown, however, how GRIN2B genetic variation impacts protein function. We determined the cumulative pathogenic impact of GRIN2B variations on healthy participants using a computational approach. We looked at all of the known mutations and calculated the impact of single nucleotide polymorphisms on GRIN2B, which encodes the GluN2B protein. The pathogenic effect, functional impact, conservation analysis, post-translation alterations, their driving residues, and dynamic behaviors of deleterious nsSNPs on protein models were then examined. Four polymorphisms were identified as phylogenetically conserved PTM drivers and were related to structural and functional impact: rs869312669 (p.Thr685Pro), rs387906636 (p.Arg682Cys), rs672601377 (p.Asn615Ile), and rs1131691702 (p.Ser526Pro). The combined impact of protein function is accounted for by the calculated stability, compactness, and total globularity score. GluN2B hydrogen occupancy was positively associated with protein stability, and solvent-accessible surface area was positively related to globularity. Furthermore, there was a link between GluN2B protein folding, movement, and function, indicating that both putative high and low local movements were linked to protein function. Multiple GRIN2B genetic variations are linked to gene expression, phylogenetic conservation, PTMs, and protein instability behavior in neurodevelopmental diseases. These findings suggest the relevance of GRIN2B genetic variations in neurodevelopmental problems. Full article
(This article belongs to the Special Issue Bioinformatics of Disease Genes)
Show Figures

Figure 1

17 pages, 1541 KiB  
Article
Non-Carcinogenic Health Risk Evaluation of Elevated Fluoride in Groundwater and Its Suitability Assessment for Drinking Purposes Based on Water Quality Index
by Zahid Ullah, Yifan Xu, Xian-Chun Zeng, Abdur Rashid, Asmat Ali, Javed Iqbal, Mikhlid H. Almutairi, Lotfi Aleya, Mohamed M. Abdel-Daim and Muddaser Shah
Int. J. Environ. Res. Public Health 2022, 19(15), 9071; https://doi.org/10.3390/ijerph19159071 - 25 Jul 2022
Cited by 26 | Viewed by 3309
Abstract
Fluoride (F) contamination in drinking groundwater is a significant human health risk in Pakistan. Moreover, high fluoride pollution in drinking water causes a variety of disorders, including dental, neurological, and skeletal fluorosis. The aim of this research was to evaluate the [...] Read more.
Fluoride (F) contamination in drinking groundwater is a significant human health risk in Pakistan. Moreover, high fluoride pollution in drinking water causes a variety of disorders, including dental, neurological, and skeletal fluorosis. The aim of this research was to evaluate the health risk of elevated fluoride in groundwater and its suitability assessment for drinking purposes. The total of (n = 37) samples were collected from community tube wells of Quetta Valley, Balochistan, Pakistan. The results show a mean pH value of 7.7, TDS of 404.6 mg/L, EC of 500 µs/cm, depth of 96.8 feet, and turbidity of 1.7 nephelometric turbidity units. The mean values of HCO3, Ca2+, Mg2+, and Na+, were 289.5, 47.5, 30.6, and 283.3 mg/L, respectively. The mean values of SO42−, NO3, K+, Cl, and Fe2+, were 34.9, 1.0, 1.6, 25.6, and 0.01 mg/L, respectively. The F concentration in the groundwater varied between 0.19 and 6.21, with a mean value of 1.8 mg/L, and 18 samples out of 37 were beyond the WHO recommended limit of 1.5 mg/L. The hydrochemical analysis results indicated that among the groundwater samples of the study area, 54% samples were Na-HCO3 type and 46% were mixed CaNaHCO3 type. The saturation indices of the mineral phases reveal that the groundwater sources of the study area were saturated with CaCO3 and halide minerals due to their positive (SI) values. Such minerals include calcite, dolomite, gypsum, and fluorite. The principal component analysis results reveal that the groundwater sources of the study area are contaminated due to geological and anthropogenic actions. The health risk assessment results of the F concentrations show the ranges of ADDingestion for children, females, and males in the Quetta Valley, and their mean values were observed to be 0.093052, 0.068825, and 0.065071, respectively. The HQingestion mean values were 1.55086, 1.147089, and 1.084521 for children, females, and males, respectively. It was noticed that children had the highest maximum and average values of ADDingestion and HQingestion in the research area, indicating that groundwater fluoride intake poses the greatest health risk to children. The water quality index (WQI) analyses show that 44% of the samples belong to the poor-quality category, 49% were of good quality, and 8% of the samples of the study area belong to the excellent category. Full article
(This article belongs to the Special Issue Water Pollution: Human Health and Ecological Risks)
Show Figures

Figure 1

29 pages, 3480 KiB  
Review
Applications of Various Types of Nanomaterials for the Treatment of Neurological Disorders
by Abdul Waris, Asmat Ali, Atta Ullah Khan, Muhammad Asim, Doaa Zamel, Kinza Fatima, Abdur Raziq, Muhammad Ajmal Khan, Nazia Akbar, Abdul Baset and Mohammed A. S. Abourehab
Nanomaterials 2022, 12(13), 2140; https://doi.org/10.3390/nano12132140 - 22 Jun 2022
Cited by 84 | Viewed by 9549
Abstract
Neurological disorders (NDs) are recognized as one of the major health concerns globally. According to the World Health Organization (WHO), neurological disorders are one of the main causes of mortality worldwide. Neurological disorders include Alzheimer’s disease, Parkinson′s disease, Huntington′s disease, Amyotrophic lateral sclerosis, [...] Read more.
Neurological disorders (NDs) are recognized as one of the major health concerns globally. According to the World Health Organization (WHO), neurological disorders are one of the main causes of mortality worldwide. Neurological disorders include Alzheimer’s disease, Parkinson′s disease, Huntington′s disease, Amyotrophic lateral sclerosis, Frontotemporal dementia, Prion disease, Brain tumor, Spinal cord injury, and Stroke. These diseases are considered incurable diseases because no specific therapies are available to cross the blood-brain barrier (BBB) and reach the brain in a significant amount for the pharmacological effect in the brain. There is a need for the development of strategies that can improve the efficacy of drugs and circumvent BBB. One of the promising approaches is the use of different types of nano-scale materials. These nano-based drugs have the ability to increase the therapeutic effect, reduce toxicity, exhibit good stability, targeted delivery, and drug loading capacity. Different types and shapes of nanomaterials have been widely used for the treatment of neurological disorders, including quantum dots, dendrimers, metallic nanoparticles, polymeric nanoparticles, carbon nanotubes, liposomes, and micelles. These nanoparticles have unique characteristics, including sensitivity, selectivity, and the ability to cross the BBB when used in nano-sized particles, and are widely used for imaging studies and treatment of NDs. In this review, we briefly summarized the recent literature on the use of various nanomaterials and their mechanism of action for the treatment of various types of neurological disorders. Full article
(This article belongs to the Special Issue Nanotechnology and Nanomaterials in Biological Systems and Medicine)
Show Figures

Graphical abstract

28 pages, 2890 KiB  
Article
Geochemical Modeling Source Provenance, Public Health Exposure, and Evaluating Potentially Harmful Elements in Groundwater: Statistical and Human Health Risk Assessment (HHRA)
by Abdur Rashid, Muhammad Ayub, Zahid Ullah, Asmat Ali, Seema Anjum Khattak, Liaqat Ali, Xubo Gao, Chengcheng Li, Sardar Khan, Hamed A. El-Serehy and Prashant Kaushik
Int. J. Environ. Res. Public Health 2022, 19(11), 6472; https://doi.org/10.3390/ijerph19116472 - 26 May 2022
Cited by 28 | Viewed by 3836
Abstract
Groundwater contamination by potentially harmful elements (PHEs) originating from the weathering of granitic and gneissic rock dissolution poses a public health concern worldwide. This study investigated physicochemical variables and PHEs in the groundwater system and mine water of the Adenzai flood plain region, [...] Read more.
Groundwater contamination by potentially harmful elements (PHEs) originating from the weathering of granitic and gneissic rock dissolution poses a public health concern worldwide. This study investigated physicochemical variables and PHEs in the groundwater system and mine water of the Adenzai flood plain region, in Pakistan, emphasizing the fate distribution, source provenance, chemical speciation, and health hazard using the human health risk assessment HHRA-model. The average concentrations of the PHEs, viz., Ni, Mn, Cr, Cu, Cd, Pb, Co, Fe, and Zn 0.23, were 0.27, 0.07, 0.30, 0.07, 0.06, 0.08, 0.68, and 0.23 mg/L, respectively. The average values of chemical species in the groundwater system, viz., H+, OH, Ni2+, Mn2+, Mn3+, Cr3+, Cr6+, Cu+, Cu2+, Cd2+, Pb2+, Pb4+, Co2+, Co3+, Fe2+, Fe3+, and Zn2+, were 1.0 × 10−4 ± 1.0 × 10−6, 1.0 × 10−4 ± 9.0 × 10−7, 2.0 × 10−1 ± 1.0 × 10−3, 3.0 × 10−1 ± 1.0 × 10−3, 1.0 × 10−22 ± 1.0 × 10−23, 4.0 × 10−6 ± 2.0 × 10−6, 4.0 × 10−11 ± 2.0 × 10−11, 9.0 × 10−3 ± 1.0 × 10−2, 2.0 × 10−1 ± 2.0 × 10−3, 7.0 × 10−2 ± 6.0 × 10−2, 5.0 × 10−2 ± 5.0 × 10−2, 2.0 × 10−2 ± 1.5 × 10−2, 6.0 × 10−2 ± 4.0 × 10−2, 8.0 × 10−31 ± 6.0 × 10−31, 3.0 × 10−1 ± 2.0 × 10−4, 4.0 × 10−10 ± 3.0 × 10−10, and 2.0 × 10−1 ± 1.0 × 10−1. The mineral compositions of PHEs, viz. Ni, were bunsenite, Ni(OH)2, and trevorite; Mn viz., birnessite, bixbyite, hausmannite, manganite, manganosite, pyrolusite, and todorokite; Cr viz., chromite and eskolaite; Cu viz., CuCr2O4, cuprite, delafossite, ferrite-Cu, and tenorite; Cd viz., monteponite; Pb viz, crocoite, litharge, massicot, minium, plattnerite, Co viz., spinel-Co; Fe viz., goethite, hematite, magnetite, wustite, and ferrite-Zn; and Zn viz., zincite, and ZnCr2O4 demarcated undersaturation and supersaturation. However, EC, Ca2+, K+, Na+, HCO3, Cr, Cd, Pb, Co, and Fe had exceeded the WHO guideline. The Nemerow’s pollution index (NPI) showed that EC, Ca2+, K+, Na+, HCO3, Mn, Cd, Pb, Co, and Fe had worse water quality. Principal component analysis multilinear regression (PCAMLR) and cluster analysis (CA) revealed that 75% of the groundwater contamination originated from geogenic inputs and 18% mixed geogenic-anthropogenic and 7% anthropogenic sources. The HHRA-model suggested potential non-carcinogenic risks, except for Fe, and substantial carcinogenic risks for evaluated PHEs. The women and infants are extremely exposed to PHEs hazards. The non-carcinogenic and carcinogenic risks in children, males, and females had exceeded their desired level. The HHRA values of PHEs exhibited the following increasing pattern: Co > Cu > Mn > Zn > Fe, and Cd > Pb > Ni > Cr. The higher THI values of PHEs in children and adults suggested that the groundwater consumption in the entire region is unfit for drinking, domestic, and agricultural purposes. Thus, all groundwater sources need immediate remedial measures to secure health safety and public health concerns. Full article
(This article belongs to the Special Issue Water Pollution: Human Health and Ecological Risks)
Show Figures

Figure 1

Back to TopTop