Seasonal Investigation of Anaplasma marginale Infection in Pakistani Cattle Reveals Hematological and Biochemical Changes, Multiple Associated Risk Factors and msp5 Gene Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Sampling and Data Collection
2.2. DNA Extraction and PCR Amplification
2.3. DNA Sequencing and Phylogenetic Analysis
2.4. Hematological Analysis
2.5. Statistical Analysis
3. Results
3.1. Molecular Investigation and Risk Factor Analysis
3.2. Complete Blood Count Analysis
3.3. Genotyping, Genetic Diversity Analysis and Phylogenetic Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashraf, S.; Parveen, A.; Awais, M.M.; Gillani, Q.; Aktas, M.; Ozubek, S.; Iqbal, F. A report on molecular detection and phylogenetic evaluation of Anaplasma marginale in ticks and blood samples collected from cattle in district Layyah in Punjab (Pakistan). Curr. Microbiol. 2021, 78, 274–281. [Google Scholar] [CrossRef]
- Hussain, M.F.; Qamar, M.; Malik, M.I.; Hussain, M.; Saeed, Z.; Shaikh, R.S.; Iqbal, F. Molecular detection of Anaplasma in apparently healthy Cholistan breed of cattle from the Bahawalpur district, Pakistan. Trop. Biomed. 2017, 34, 37–44. [Google Scholar]
- Government of Pakistan. Pakistan Economic Survey 2020–2021; Ministry of Finance: Islamabad, Pakistan, 2021; pp. 17–41. Available online: http://www.fiance.gov.pk/survey_1920.html (accessed on 14 August 2022).
- Vetrivel, D.A.; Serma, S.P.J.; Shilpa, J.S. A study on predisposing factors for the prevalence of anaplasmosis in dairy cattle. J. Entomol. Zool. Stud. 2017, 5, 1228–1232. [Google Scholar]
- Karim, S.; Budachetri, K.; Mukherjee, N.; Williams, J.; Kausar, A.; Hassan, M.J.; Iqbal, Z. A study of ticks and tick-borne livestock pathogens in Pakistan. PLoS Negl. Trop. Dis. 2017, 11, e0005681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berggoetz, M.; Schmid, M.; Ston, D.; Smith, V.; Chevillon, C.; Pretorius, A.M. Tick-borne pathogens in the blood of wild and domestic ungulates in South Africa: Interplay of game and livestock. Ticks Tick Borne Dis. 2014, 5, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Miranda, E.A.; Han, S.W.; Cho, Y.K.; Choi, K.S.; Chae, J.S. Co-Infection with Anaplasma species and novel genetic variants detected in cattle and goats in the republic of Korea. Pathogens 2021, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, Q.A.U.; Khan, A.U.; Khattak, R.M.; Iqbal, F. A report on high prevalence of Anaplasma sp. in bufaloes from two provices in Pakistan. Ticks Tick Borne Dis. 2013, 4, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Tana-Hernández, L.; Navarrete-Arroyo, K.; Ron-Román, J.; Reyna-Bello, A.; Chávez-Larrea, M. PCR-diagnosis of Anaplasma marginale in cattle populations of Ecuador and its molecular identification through sequencing of ribosomal 16S fragments. BMC Vet. Res. 2017, 13, 392. [Google Scholar] [CrossRef] [Green Version]
- Kocan, K.M.; de la Fuente, J.; Blouin, E.F.; Garcia-Garcia, J.C. Anaplasma marginale (Rickettsiales: Anaplasmataceae): Recent advances in defining host-pathogen adaptations of a tick-borne rickettsia. Parasitology 2004, 129, S285–S300. [Google Scholar] [PubMed]
- Hairgrove, T.; Schroeder, M.E.; Budke, C.M. Molecular and serological in-herd prevalence of Anaplasma marginale infection in Texas cattle, Prevent. Vet. Med. 2015, 119, 1–9. [Google Scholar]
- Camus, E.; Uilenberg, G. Anaplasmosis. In Infectious and Parasitic Diseases of Livestock: Bacterial Diseases, Fungal Diseases, Parasitic Diseases; Lefevre, P.-C., Blancou, J., Chermette, R., Uilenberg, G., Eds.; Lavoisier: Paris, France, 2010; pp. 1247–1263. [Google Scholar]
- Kumar, T.; Sindhu, N.; Charaya, G.; Kumar, A.; Kumar, P.; Chandratere, G.; Agnihotri, D.; Khurana, R. Emerging status of anaplasmosis in cattle in Hisar. Vet. World 2015, 8, 768–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atif, F.A.; Mehnaz, S.; Qamar, M.F.; Roheen, T.; Sajid, M.S.; Ehtisham-Ul-Haque, S.; Kashif, M.; Ben Said, M. Epidemiology, Diagnosis, and Control of Canine Infectious Cyclic Thrombocytopenia and Granulocytic Anaplasmosis: Emerging Diseases of Veterinary and Public Health Significance. Vet. Sci. 2021, 8, 312. [Google Scholar] [CrossRef] [PubMed]
- Rafael, L.; Humberto, T.; Andrés, C.; Renato, L.; Lenin, V.; Verónica, B. Optimization of a DNA extraction protocol for hemolyzed and coagulated bovine blood for use in molecular detection of Anaplasma spp. Rev. Mex. Cienc. Pecu. 2021, 12, 653–664. [Google Scholar] [CrossRef]
- Ben Said, M.; Ben Asker, A.; Belkahia, H.; Ghribi, R.; Selmi, R.; Messadi, L. Genetic characterization of Anaplasma marginale strains from Tunisia using single and multiple gene typing reveals novel variants with an extensive genetic diversity. Ticks Tick Borne Dis. 2018, 9, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Ben Said, M.; Belkahia, H.; Messadi, L. Anaplasma spp. in North Africa: A review on molecular epidemiology, associated risk factors and genetic characteristics. Ticks Tick Borne Dis. 2018, 9, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Corona, B.; Dasiel Obregón, D.; AIfonso, Y.; Vega, E.; Díaz, A.; Martinez, S. Tendencies in diagnostic of bovine anaplasmosis. Rev. Salud Anim. 2014, 36, 73–79. [Google Scholar]
- OIE. Bovine anaplasmosis. In OIE Terrestrial Manual; OIE: Paris, France, 2012; pp. 589–600. [Google Scholar]
- Ben Said, M.; Belkahia, H.; Selmi, R.; Messadi, L. Computational selection of minimum length groESL operon required for Anaplasma species attribution and strain diversity analysis. Mol. Cells Probes 2019, 48, 101467. [Google Scholar] [CrossRef] [PubMed]
- Tanveer, M.; Farooq, M.; Amjad, M.; Asif, M.; Kashif, M.; Latif, M.; Khan, A.; Aktas, M.; Ben Said, M.; Iqbal, F. Molecular prevalence, associated risk factors and phylogeny of Anaplasma marginale, Theileria ovis and T. lestoquardi in sheep from Pakistan. Comp. Immunol. Microbiol. Infect. Dis. 2022, 86, 101822. [Google Scholar] [CrossRef]
- Riaz, M.; Tasawar, Z. Detection and discrimination of Theileria species infection by using PCR amplification in small ruminants in and around Multan, Pakistan. Int. J. Biosci. 2016, 9, 61–71. [Google Scholar]
- Asif, M.; Ben Said, M.; Parveen, A.; Arusa, E.; Ikram, M.; Awais, M.M.; Aktas, M.; Ozubek, S.; Baber, M.; Iqbal, F. Seasonal survey, risk factor’s analysis and genotyping of Theileria annulata infecting cattle in Punjab province, Pakistan. Acta Trop. 2022, 234, 106587. [Google Scholar] [CrossRef]
- Saeed, Z.; Iqbal, F.; Hussain, M.; Shaikh, R.S.; Gulsher, M.; Aktas, M. Molecular Prevalence and Haematology of Tropical Theileriosis in in Cholistani Cattle from Nomadic Herds of the Cholistan Desert, Pakistan. Kafkas Univ. Vet. Fak. Derg. J. 2016, 22, 281–286. [Google Scholar]
- Ganguly, A.; Bilsa, R.S.; Singh, H.; Kumar, A.; Gadhwal, S.; Ganguly, I. Prevalence and haemato-biochemical changes of tick-borne haemoparasitic diseases in crossbred cattle of Haryana. Indian J. Anim. Sci. 2017, 87, 552–557. [Google Scholar]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Saitou, N.; Nei, M. The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Kamani, J.; Schaer, J.; Umar, A.G.; Pilarshimwi, J.Y.; LaminuBukar, L.; González-Miguel, J. Molecular detection and genetic characterization of Anaplasma marginale and Anaplasma platys in cattle in Nigeria. Ticks Tick Borne Dis. 2022, 13, 101955. [Google Scholar] [CrossRef]
- Zafar, S.N.A.; Khan, A.; Niaz, S.; Aktas, M.; Ozubek, S.; Farooq, M.; Adil, M.M.; Zajqc, Z.; Iqbal, F.; Alhimaidi, A.R.; et al. Prevalence of Anaplasma marginale in cattle blood samples collected from two important livestock regions in Punjab (Pakistan) with a note on epidemiology and phylogeny of parasite. Saudi J. Biol. Sci. 2021, 29, 1515–1520. [Google Scholar] [CrossRef]
- Farooqi, S.H.; Ijaz, M.; Saleem, M.H.; Nabi, H.; Islam, S.; Aqib, A.J.; Hussain, K.; Khan, A.; Rizvi, S.N.B.; Mahmood, S.; et al. Molecular epidemiology of bovine anaplasmosis in KhyberPakhtunkhwa Pakistan. Trop. Anim. Health Prod. 2018, 50, 1591–1598. [Google Scholar] [CrossRef]
- Turi, A.T.; Rahman, A.; Ali, I. Comparative analysis of indirect ELISA and real time PCR for the detection of Anaplasma marginale in buffalo, cattle and sheep in district Peshawar and Lakki Marwat, Pakistan. South Asia J. Life Sci. 2018, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Belkahia, H.; Ben Said, M.; Alberti, A. First molecular survey and novel genetic variants’ identification of Anaplasma marginale, A. centrale and A. bovis in cattle from Tunisia. Infect. Genet. Evol. 2015, 34, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Cao, S.; Sevinc, F.; Sevinc, M.; Ceylan, O.; Moumouni, P.F.A.; Jirapattharasate, C.; Liu, M.; Wang, G.; Iguchi, A.; et al. Molecular detection and genetic identification of Babesia bigemina, Theileria annulata, Theileria orientalis and Anaplasma marginale in Turkey. Ticks Tick Borne Dis. 2016, 7, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.L.; Canever, M.F.; Cardozo, L.L.; Cardoso, C.P.; Herkenhoff, M.E.; Neto, A.T.; Vogel, C.I.G.; Miletti, L.C. Prevalence of Anaplasma marginale, Babesia bovis and Babesia bigemina in cattle in the Campos de Lages region, Santa Catarina state, Brazil, estimated by multiplex-PCR. Parasite Epidemiol. Control 2019, 6, e00114. [Google Scholar] [CrossRef] [PubMed]
- Gioia, G.V.; Vinueza, R.L.; Marsot, M.; Devillers, E.; Cruz, M.; Petit, E.; Boulouis, H.J.; Moutailler, S.; Monroy, F.; Coello, M.A.; et al. Bovine anaplasmosis and tick-borne pathogens in cattle of the Galapagos Islands. Transbound. Emerg. Dis. 2018, 65, 1262–1271. [Google Scholar] [CrossRef]
- Roy, S.; Tiwari, A.; Galdhar, C.N. Seasonal prevalence of haemoprotozoan diseases in crossbred cattle and buffaloes. Indian J. Vet. Med. 2004, 24, 5–7. [Google Scholar]
- Magona, J.W.; Walubengo, J.; Olaho-Mukani, W. Spatial variation of tick abundance and seroconversion rates of indigenous cattle to Anaplasma marginale, Babesia bigemina and Therileria parva infections in Uganda. Exp. Appl. Acarol. 2011, 55, 203–213. [Google Scholar] [CrossRef]
- Khan, A.; Saeed, K.; Nasreen, S. Prevalence of Anaplasmosis in cows and bufaloes of district Charsadda, Khyber Pakhtunkhwa, Pakistan. Glob. Vet. 2016, 16, 431–440. [Google Scholar]
- Tay, S.T.; Koh, F.X.; Kho, K.L. Molecular survey and sequence analysis of Anaplasma spp. in cattle and ticks in a Malaysian farm. Trop. Biomed. 2014, 31, 769–776. [Google Scholar]
- Swai, E.S.; Karimuribo, E.D.; Ogden, N.H. Seroprevalence estimation and risk factors for Anaplasma marginale on small holder dairy farmers in Tanzania. Trop. Anim. Health Prod. 2005, 37, 599–610. [Google Scholar] [CrossRef]
- Atif, F.A.; Khan, M.S.; Iqbal, H.J. Prevalence of tick borne diseases in Punjab (Pakistan) and hematological profile of Anaplasma marginale infection in indigenous and crossbred cattle. Pak. J. Sci. 2012, 64, 11–15. [Google Scholar]
- Riond, B.; Meli, M.L.; Braun, U. Concurrent infections with vectorborne pathogens associated with fatal anaemia in cattle: Haematology and blood chemistry. Comp. Clin. Pathol. 2007, 17, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Boudreaux, M.K.; Spangler, E.A.; Welles, E.G. Hemostasis. In Duncan and Prasse’s Veterinary Laboratory Medicine: Clinical Pathology, 5th ed.; Latimer, K.S., Ed.; Wiley: Chichester, UK, 2011; pp. 107–144. [Google Scholar]
- Belkahia, H.; Ben Abdallah, M.; Andolsi, R.; Selmi, R.; Zamiti, S.; Kratou, M.; Mhadhbi, M.; Darghouth, M.A.; Messadi, L.; Ben Said, M. Screening and Analysis of Anaplasma marginale Tunisian isolates reveal the diversity of lipA Phylogeographic marker and the conservation of OmpA Protein vaccine candidate. Front. Vet. Sci. 2021, 8, 731200. [Google Scholar] [CrossRef] [PubMed]
Season | A. marginale-Positive Samples/Total (% ± C.I. 1) | ||||
---|---|---|---|---|---|
Crossbred | Holstein Friesian | Sahiwal | Total | p-Value 2 | |
Spring (n = 255) | 5/85 (5.9 ± 0.05) | 6/85 (7.1 ± 0.01) | 8/85 (9.4 ± 0.02) | 19/255 (7.5 ± 0.03) | 0.671 |
Summer (n = 255) | 8/85 (9.4 ± 0.02) | 6/85 (7.1 ± 0.01) | 11/85 (12.9 ± 0.07) | 25/255 (9.8 ± 0.03) | 0.419 |
Autumn (n = 255) | 18/85 (21.2 ± 0.08) | 9/85 (10.6 ± 0.06) | 15/85 (17.6 ± 0.08) | 42/255 (16.5 ± 0.04) | 0.165 |
Winter (n = 255) | 12/85 (14.1 ± 0.07) | 6/85 (7.1 ± 0.01) | 9/85 (10.6 ± 0.06) | 27/255 (10.6 ± 0.03) | 0.326 |
Total (n = 1020) | 43/340 (12.6 ± 0.03) | 27/340 (7.9 ± 0.02) | 43/340 (12.6 ± 0.03) | 113/1020 (11.1 ± 0.01) | 0.078 |
p-value 3 | 0.017 * | 0.780 | 0.382 | 0.009 * | - |
Rick Factors | Classes | A. marginale-Positive Samples/Total (Infection Rate (%) ± C.I. 1) | |||||||
---|---|---|---|---|---|---|---|---|---|
Spring | p-Value | Summer | p-Value | Autumn | p-Value | Winter | p-Value | ||
Tick loads on cattle | Present | 2/45 (4.4 ± 0.06) | 0.552 | 8/80 (10 ± 0.06) | 0.460 | 14/69 (20.3 ± 0.09) | 0.679 | 11/61 (18.0 ± 0.09) | 0.100 |
Absent | 3/40 (7.5 ± 0.08) | 0/5 (0) | 4/16 (25 ± 0.21) | 1/24 (4.2 ± 0.08) | |||||
Other dairy animals at farm | Present | 1/42 (2.4 ± 0.04) | 0.177 | 6/43 (13.9 ± 0.10) | 0.149 | 11/62 (17.7 ± 0.09) | 0.205 | 5/36 (13.9 ± 0.11) | 0.958 |
Absent | 4/43 (9.3 ± 0.08) | 2/42 (4.8 ± 0.06) | 7/23 (30.4 ± 0.18) | 7/49 (14.3 ± 0.09) | |||||
Dogs at farm | Present | 4/54 (7.4 ± 0.07) | 0.433 | 6/70 (8.5 ± 0.06) | 0.568 | 14/53 (26.4 ± 0.11) | 0.255 | 10/64 (15.6 ± 0.08) | 0.488 |
Absent | 1/31 (3.2 ± 0.06) | 2/15 (20.0 ± 0.20) | 4/32 (12.5 ± 0.11) | 2/21 (9.5 ± 0.12) | |||||
Tick loads on dogs | Present | 2/15 (13.3 ± 0.17) | 0.179 | 6/60 (10 ± 0.07) | 0.774 | 11/40 (27.5 ± 0.13) | 0.181 | 11/66 (16.7 ± 0.09) | 0.211 |
Absent | 3/70 (4.3 ± 0.04) | 2/25 (8.0 ± 0.10) | 7/45 (15.6 ± 0.10) | 1/19 (5.3 ± 0.09) | |||||
Total | 5/85 (5.9 ± 0.05) | 8/85 (9.4 ± 0.06) | 18/85 (21.2 ± 0.08) | 12/85 (14.1 ± 0.07) |
Rick Factors | Classes | A. marginale-Positive Samples/Total (Infection Rate (%) ± C.I. 1) | |||||||
---|---|---|---|---|---|---|---|---|---|
Spring | p-Value | Summer | p-Value | Autumn | p-Value | Winter | p-Value | ||
Tick loads on cattle | Present | 2/30 (6.7 ± 0.09) | 0.917 | 2/34 (5.8 ± 0.07) | 0.731 | 6/20 (30.0 ± 0.19) | 0.001 * | 5/57 (8.8 ± 0.07) | 0.381 |
Absent | 4/55 (7.3 ± 0.06) | 4/51 (7.8 ± 0.07) | 3/65 (4.6 ± 0.05) | 1/28 (3.6 ± 0.06) | |||||
Other dairy animals at farm | Present | 1/6 (16.7 ± 0.29) | 0.343 | 4/68 (5.9 ± 0.05) | 0.399 | 6/28 (21.4 ± 0.15) | 0.023 * | 5/62 (8.1 ± 0.06) | 0.554 |
Absent | 5/79 (6.3 ± 0.05) | 2/17 (11.8 ± 0.15) | 3/57 (5.3 ± 0.05) | 1/23 (4.3 ± 0.08) | |||||
Dogs at farm | Present | 5/31 (16.1 ± 0.12) | 0.013 * | 4/51 (7.8 ± 0.07) | 0.731 | 8/51 (15.7 ± 0.09) | 0.062 | 6/71 (8.4 ± 0.06) | 0.262 |
Absent | 1/54 (1.8 ± 0.03) | 2/34 (5.9 ± 0.07) | 1/34 (2.9 ± 0.05) | 0/14 (0) | |||||
Tick loads on dogs | Present | 4/11 (36.4 ± 0.04) | 0.000 * | 4/51 (7.8 ± 0.07) | 0.731 | 6/32 (18.7 ± 0.13) | 0.058 | 5/57 (8.8 ± 0.07) | 0.381 |
Absent | 2/74 (2.7 ± 0.03) | 2/34 (5.9 ± 0.07) | 3/53 (5.7 ± 0.06) | 1/28 (3.6 ± 0.06) | |||||
Total | 6/85 (7.1 ± 0.05) | 6/85 (7.1 ± 0.05) | 9/85 (10.6 ± 0.07) | 6/85 (7.1 ± 0.05) |
Rick Factors | Classes | A. marginale-Positive Samples/Total (Infection Rate (%) ± C.I. 1) | |||||||
---|---|---|---|---|---|---|---|---|---|
Spring | p-Value | Summer | p-Value | Autumn | p-Value | Winter | p-Value | ||
Tick loads on cattle | Present | 7/63 (11.1 ± 0.07) | 0.366 | 10/59 (16.9 ± 0.09) | 0.099 | 14/80 (17.5 ± 0.08) | 0.214 | 9/74 (12.2 ± 0.07) | 0.223 |
Absent | 1/22 (4.5 ± 0.08) | 1/26 (3.8 ± 0.07) | 2/5 (40 ± 0.42) | 0/11 (0) | |||||
Other dairy animals at farm | Present | 7/72 (9.7 ± 0.06) | 0.818 | 11/69 (15.9 ± 0.08) | 0.088 | 14/66 (21.2 ± 0.09) | 0.296 | 5/48 (10.4 ± 0.08) | 0.953 |
Absent | 1/13 (7.7 ± 0.14) | 0/16 (0) | 2/19 (10.5 ± 0.13) | 4/37 (10.8 ± 0.09) | |||||
Dogs at farm | Present | 4/44 (9.1 ± 0.08) | 0.916 | 10/72 (13.8 ± 0.08) | 0.542 | 14/78 (17.9 ± 0.08) | 0.493 | 6/50 (12.0 ± 0.09) | 0.615 |
Absent | 4/41 (9.8.2 ± 0.09) | 1/13 (7.7 ± 0.14) | 2/7 (28.0 ± 0.33) | 3/35 (8.6 ± 0.09) | |||||
Tick loads on dogs | Present | 3/34 (8.8 ± 0.09) | 0.880 | 10/62 (16.1 ± 0.09) | 0.152 | 11/78 (14.1 ± 0.07) | 0.000 * | 5/38 (13.2 ± 0.10) | 0.491 |
Absent | 5/51 (9.8 ± 0.08) | 1/23 (4.3 ± 0.08) | 5/7 (71.4 ± 0.33) | 4/47 (8.5 ± 0.08) | |||||
Total | 8/85 (9.4 ± 0.06) | 11/85 (12.9 ± 0.07) | 16/85 (18.8 ± 0.08) | 9/85 (15.3 ± 0.06) |
Parameters | Spring | Summer | Autumn | Winter | ||||
---|---|---|---|---|---|---|---|---|
A. marginale-Positive (n = 05) | A. marginale-Negative (n = 80) | A. marginale-Positive (n = 08) | A. marginale-Negative (n = 77) | A. marginale-Positive (n = 18) | A. marginale-Negative (n = 67) | A. marginale-Positive (n = 12) | A. marginale-Negative (n = 73) | |
White blood cells | 11.04 ± 2.0 | 10.37 ± 0.50 | 7.70 ± 0.71 | 8.90 ± 0.82 | 8.39 ± 0.55 | 11.4 ± 1.4 * | 8.5 ± 0.29 | 10.27 ± 0.79 * |
Lymphocytes (%) | 54.4 ± 9.2 | 56.1 ± 2.4 | 76.88 ± 1.9 | 75.55 ± 1.1 | 27.6 ± 3.5 | 23.4 ± 1.4 | 36 ± 3.8 | 38.8 ± 1.7 |
Monocytes (%) | 4.7 ± 0.4 | 5.89 ± 0.5 | 4.37 ± 0.26 | 4.75 ± 0.48 | 3.06 ± 0.13 | 3.15 ± 0.05 | 4.7 ± 0.63 | 7.2 ± 0.79 ** |
Red blood cells | 5.7 ± 0.4 | 6 ± 0.2 | 4.64 ± 0.36 | 5.19 ± 0.26 | 4.356 ± 0.20 | 4.396 ± 0.096 | 4.9 ± 0.17 | 5 ± 0.13 |
Hemoglobin | 8.9 ± 1.0 | 9.17 ± 0.19 | 8.86 ± 0.47 | 9.35 ± 0.16 | 11.04 ± 0.33 | 11.04 ± 0.22 | 9.1 ± 0.3 | 8.9 ± 0.2 |
Mean cell volume | 43.42 ± 1.1 | 43.66 ± 0.55 | 75.9 ± 4.9 | 70.9 ± 2.4 | 78.28 ± 1.5 | 82.27 ± 0.79 ** | 74.75 ± 2.4 | 71.9 ± 1.7 |
Hematocit | 24.74 ± 1.9 | 26.59 ± 0.55 | 36.1 ± 3.8 | 32.23 ± 0.77 | 34.33 ± 1.5 | 35.43 ± 0.83 | 35.1 ± 1.1 | 38.4 ± 1 * |
Mean cell volume | 15.24 ± 0.86 | 14.84 ± 0.17 | 20 ± 2.1 | 19.05 ± 0.69 | 27.61 ± 0.52 | 28.97 ± 0.33 * | 29.6 ± 0.5 | 28.4 ± 0.7 |
MCHC | 36.60 ± 2.3 | 34.13 ± 0.42 | 26.5 ± 1.1 | 30.24 ± 0.54 ** | 33.44 ± 0.44 | 33.40 ± 0.30 | 33.3 ± 1.1 | 33.7 ± 0.4 |
Platelets | 291 ± 53 | 246 ± 16 | 146.6 ± 26 | 247 ± 14 ** | 243.6 ± 18 | 240.4 ± 12 | 268.4 ± 13 | 274.8 ± 10 |
Parameters | Spring | Summer | Autumn | Winter | ||||
---|---|---|---|---|---|---|---|---|
A. marginale-Positive (n = 06) | A. marginale-Negative (n = 79) | A. marginale-Positive (n = 06) | A. marginale-Negative (n = 79) | A. marginale-Positive (n = 09) | A. marginale-Negative (n = 76) | A. marginale-Positive (n = 06) | A. marginale-Negative (n = 79) | |
White blood cells | 10.2 ± 0.5 | 10.1 ± 0.3 | 8.0 ± 0.9 | 8.7 ± 0.3 | 9.8 ± 0.7 | 10.8 ± 0.3 | 8.1 ± 0.3 | 11 ± 0.9 ** |
Lymphocytes (%) | 44.2 ± 4.3 | 47.8 ± 1.6 | 45.7 ± 4.5 | 53.2 ± 1.3 | 39.6 ± 4.8 | 45.7 ± 2.2 | 23.2 ± 4.9 | 39.1 ± 1.8 * |
Monocytes (%) | 3.7 ± 0.5 | 5.7 ± 0.3 ** | 1.7 ± 0.1 | 0.87 ± 0.1 *** | 2.4 ± 0.6 | 2.3 ± 0.2 | 8.2 ± 4.4 | 7.3 ± 0.7 |
Red blood cells | 5.8 ± 0.3 | 5.9 ± 0.1 | 5.02 ± 0.3 | 5.3 ± 0.1 | 5 ± 0.4 | 5 ± 0.1 | 4.5 ± 0.4 | 5 ± 0.1 |
Hemoglobin | 9.9 ± 0.7 | 9.5 ± 0.2 | 8.1 ± 0.4 | 8.2 ± 0.2 | 8.9 ± 0.3 | 8.6 ± 0.2 | 9 ± 0.2 | 8.9 ± 0.1 |
Mean cell volume | 43.2 ± 1.8 | 44.6 ± 0.5 | 47 ± 2 | 46.4 ± 0.7 | 54.6 ± 6.1 | 55.1 ± 2.1 | 69.2 ± 5.4 | 72.6 ± 1.6 |
Hematocit | 24.8 ± 1.2 | 26 ± 0.4 | 24.8 ± 1.7 | 24.3 ± 0.6 | 26.9 ± 1.3 | 25.6 ± 0.6 | 34.1 ± 4.3 | 38.2 ± 1 |
Mean cell hemoglobin | 17.1 ± 0.7 | 16.2 ± 0.2 | 14.7 ± 0.3 | 14.7 ± 0.1 | 18.4 ± 2 | 18.6 ± 0.7 | 28.2 ± 3.1 | 28.5 ± 0.7 |
MCHC | 39.9 ± 2.0 | 36.6 ± 0.4 | 33 ± 1.3 | 33 ± 0.4 | 34.1 ± 0.7 | 34.6 ± 0.5 | 31.4 ± 1.2 | 33.5 ± 0.3 |
Platelets | 465 ± 36 | 291 ± 13 ** | 296 ± 33 | 290 ± 13 | 263 ± 29 | 268 ± 16 | 276 ± 10 | 265 ± 6.9 |
Parameters | Spring | Summer | Autumn | Winter | ||||
---|---|---|---|---|---|---|---|---|
A. marginale-Positive (n = 08) | A. marginale-Negative (n = 77) | A. marginale-Positive (n = 11) | A. marginale-Negative (n = 74) | A. marginale-Positive (n = 16) | A. marginale-Negative (n = 69) | A. marginale-Positive (n = 09) | A. marginale-Negative (n = 76) | |
White blood cells | 8.48 ± 0.88 | 9.21 ± 0.30 | 7.65 ± 0.45 | 7.91 ± 0.26 | 9.16 ± 0.87 | 10.58 ± 1.1 | 10.99 ± 2.8 | 9.57 ± 0.67 |
Lymphocytes (%) | 40.3 ± 5.3 | 40.3 ± 1.9 | 75.09 ± 1.8 | 77.24 ± 0.96 | 31.5 ± 4.1 | 25.5 ± 1.4 | 43 ± 5.7 | 47.8 ± 1.7 |
Monocytes (%) | 5.99 ± 0.81 | 5.63 ± 0.34 | 3.18 ± 0.12 | 3.98 ± 0.33 * | 3.07 ± 0.07 | 3.1 ± 0.03 | 5.03 ± 1.2 | 4.69 ± 0.48 |
Red blood cells | 5.84 ± 0.32 | 6.46 ± 0.42 | 4.31 ± 0.28 | 4.54 ± 0.15 | 4.04 ± 0.14 | 4.2 ± 0.08 | 4.94 ± 0.92 | 4.96 ± 0.17 |
Hemoglobin | 9.13 ± 0.33 | 9.18 ± 0.12 | 9.13 ± 0.33 | 9.32 ± 0.14 | 9.59 ± 0.48 | 10.48 ± 0.26 | 9.74 ± 0.89 | 9.29 ± 0.13 |
Mean cell volume | 42.1 ± 1.2 | 43.34 ± 0.82 | 79.7 ± 3.8 | 77.1 ± 2.0 | 76.87 ± 1.6 | 80.41 ± 0.85 | 72.5 ± 4.3 | 74.6 ± 1.6 |
Hematocit | 24.57 ± 1.5 | 26.33 ± 0.47 | 31.6 ± 1.5 | 31.1 ± 0.77 | 29.93 ± 1.4 | 32.76 ± 0.85 | 37.89 ± 2.7 | 40.77 ± 0.76 |
Mean cell hemoglobin | 25.4 ± 10 | 16.08 ± 0.94 | 24.1 ± 0.17 | 17.7 ± 0.15 | 26.93 ± 1.1 | 27.34 ± 0.40 | 28.60 ± 1.9 | 29.63 ± 0.91 |
MCHC | 37.75 ± 2.7 | 34.46 ± 0.63 | 29.8 ± 1.1 | 30.65 ± 0.46 | 33.27 ± 0.42 | 33.41 ± 0.22 | 33.58 ± 1.3 | 34.33 ± 0.31 |
Platelets | 287 ± 23 | 250 ± 13 | 216 ± 26 | 258 ± 32 | 233 ± 19 | 242.2 ± 8.2 | 245 ± 26 | 279 ± 8.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asif, M.; Ben Said, M.; Vinueza, R.L.; Leon, R.; Ahmad, N.; Parveen, A.; Khan, A.; Ejaz, A.; Ali, M.; Khan, A.U.; et al. Seasonal Investigation of Anaplasma marginale Infection in Pakistani Cattle Reveals Hematological and Biochemical Changes, Multiple Associated Risk Factors and msp5 Gene Conservation. Pathogens 2022, 11, 1261. https://doi.org/10.3390/pathogens11111261
Asif M, Ben Said M, Vinueza RL, Leon R, Ahmad N, Parveen A, Khan A, Ejaz A, Ali M, Khan AU, et al. Seasonal Investigation of Anaplasma marginale Infection in Pakistani Cattle Reveals Hematological and Biochemical Changes, Multiple Associated Risk Factors and msp5 Gene Conservation. Pathogens. 2022; 11(11):1261. https://doi.org/10.3390/pathogens11111261
Chicago/Turabian StyleAsif, Muhammad, Mourad Ben Said, Rommel Lenin Vinueza, Renato Leon, Nadeem Ahmad, Asia Parveen, Adil Khan, Arusa Ejaz, Muhammad Ali, Asmat Ullah Khan, and et al. 2022. "Seasonal Investigation of Anaplasma marginale Infection in Pakistani Cattle Reveals Hematological and Biochemical Changes, Multiple Associated Risk Factors and msp5 Gene Conservation" Pathogens 11, no. 11: 1261. https://doi.org/10.3390/pathogens11111261
APA StyleAsif, M., Ben Said, M., Vinueza, R. L., Leon, R., Ahmad, N., Parveen, A., Khan, A., Ejaz, A., Ali, M., Khan, A. U., Baber, M., & Iqbal, F. (2022). Seasonal Investigation of Anaplasma marginale Infection in Pakistani Cattle Reveals Hematological and Biochemical Changes, Multiple Associated Risk Factors and msp5 Gene Conservation. Pathogens, 11(11), 1261. https://doi.org/10.3390/pathogens11111261