Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Authors = Ahmad Telfah ORCID = 0000-0003-1478-8620

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2572 KiB  
Article
Synthesized PANI/CeO2 Nanocomposite Films for Enhanced Anti-Corrosion Performance
by Ahmad M. Alsaad, Mohannad Al-Hmoud, Taha M. Rababah, Mohammad W. Marashdeh, Mamduh J. Aljaafreh, Sharif Abu Alrub, Ayed Binzowaimil and Ahmad Telfah
Nanomaterials 2024, 14(6), 526; https://doi.org/10.3390/nano14060526 - 15 Mar 2024
Cited by 5 | Viewed by 2216
Abstract
This study introduces a novel nanocomposite coating composed of PANI/CeO2 nanocomposite films, aimed at addressing corrosion protection needs. Analysis through FTIR spectra and XRD patterns confirms the successful formation of the nanocomposite films. Notably, the PANI/CeO2 nanocomposite films exhibit a hydrophilic [...] Read more.
This study introduces a novel nanocomposite coating composed of PANI/CeO2 nanocomposite films, aimed at addressing corrosion protection needs. Analysis through FTIR spectra and XRD patterns confirms the successful formation of the nanocomposite films. Notably, the PANI/CeO2 nanocomposite films exhibit a hydrophilic nature. The bandgap energy of the PANI composite film is measured to be 3.74 eV, while the introduction of CeO2 NPs into the PANI matrix reduces the bandgap energy to 3.67 eV. Furthermore, the electrical conductivity of the PANI composite film is observed to be 0.40 S·cm−1, with the incorporation of CeO2 NPs leading to an increase in electrical conductivity to 1.07 S·cm−1. To evaluate its efficacy, electrochemical measurements were conducted to assess the corrosion protection performance. Results indicate a high protection efficiency of 92.25% for the PANI/CeO2 nanocomposite film. Full article
(This article belongs to the Topic Advances in Functional Thin Films)
Show Figures

Figure 1

11 pages, 3064 KiB  
Article
Switchable Polyacrylic Acid Polyelectrolyte Brushes for Surface Plasmon Resonance Applications
by Qais M. Al-Bataineh, Ahmad D. Telfah, Victoria Shpacovitch, Carlos J. Tavares and Roland Hergenröder
Sensors 2023, 23(9), 4283; https://doi.org/10.3390/s23094283 - 26 Apr 2023
Cited by 7 | Viewed by 2082
Abstract
Imaging wide-field surface plasmon resonance (SPR) microscopy sensors based on polyacrylic acid polyelectrolyte brushes (PAA PEBs) were designed to enhance the sensitivity of nano-object detection. The switching behavior of the PAA PEBs against changes in the pH values was investigated by analyzing the [...] Read more.
Imaging wide-field surface plasmon resonance (SPR) microscopy sensors based on polyacrylic acid polyelectrolyte brushes (PAA PEBs) were designed to enhance the sensitivity of nano-object detection. The switching behavior of the PAA PEBs against changes in the pH values was investigated by analyzing the chemical, morphological, optical, and electrical properties. At pH ~1, the brushes collapse on the surface with the dominance of carboxylic groups (COOH). Upon the increase in the pH to nine, the switching process completes, and the brushes swell from dissociating most of the COOH groups and converting them into COO groups. The domination of the negatively charged COO groups increases the electrostatic repulsion in the polymer chains and stretches the brushes. The sensitivity of the SPR sensing device was investigated using a theoretical approach, as well as experimental measurements. The signal-to-noise ratio for a Au layer increases from six to eighteen after coating with PAA PEBs. In addition, the linewidth of the recorded image decreases from six pixels to five pixels by using the Au-PAA layers, which results from the enhanced spatial resolution of the recorded images. Coating a Au-layer with PAA PEBs enhances the sensitivity of the SPR sensing device, and improves the spatial resolution of the recorded image. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

11 pages, 3308 KiB  
Article
Physicochemical Properties of Organic Molecular Ferroelectric Diisopropylammonium Chloride Thin Films
by Ahmad M. Alsaad, Qais M. Al-Bataineh, Issam A. Qattan, Ihsan A. Aljarrah, Areen A. Bani-Salameh, Ahmad A. Ahmad, Borhan A. Albiss, Ahmad Telfah and Renat F. Sabirianov
Nanomaterials 2023, 13(7), 1200; https://doi.org/10.3390/nano13071200 - 28 Mar 2023
Viewed by 2183
Abstract
We fabricated ferroelectric films of the organic molecular diisopropylammonium chloride (DIPAC) using the dip-coating technique and characterized their properties using various methods. Fourier-transform infrared, scanning electron microscopy, and X-ray diffraction analysis revealed the structural features of the films. We also performed ab-initio calculations [...] Read more.
We fabricated ferroelectric films of the organic molecular diisopropylammonium chloride (DIPAC) using the dip-coating technique and characterized their properties using various methods. Fourier-transform infrared, scanning electron microscopy, and X-ray diffraction analysis revealed the structural features of the films. We also performed ab-initio calculations to investigate the electronic and polar properties of the DIPAC crystal, which were found to be consistent with the experimental results. In particular, the optical band gap of the DIPAC crystal was estimated to be around 4.5 eV from the band structure total density-of-states obtained by HSE06 hybrid functional methods, in good agreement with the value derived from the Tauc plot analysis (4.05 ± 0.16 eV). The films displayed an island-like morphology on the surface and showed increasing electrical conductivity with temperature, with a calculated thermal activation energy of 2.24 ± 0.03 eV. Our findings suggest that DIPAC films could be a promising alternative to lead-based perovskites for various applications such as piezoelectric devices, optoelectronics, sensors, data storage, and microelectromechanical systems. Full article
(This article belongs to the Topic Advances in Functional Thin Films)
Show Figures

Figure 1

12 pages, 2780 KiB  
Article
Surface Atomic Arrangement of Aluminum Ultra-Thin Layers Grown on Si(111)
by Inshad Jum’h, Husam H. Abu-Safe, Morgan E. Ware, I. A. Qattan, Ahmad Telfah and Carlos J. Tavares
Nanomaterials 2023, 13(6), 970; https://doi.org/10.3390/nano13060970 - 8 Mar 2023
Cited by 1 | Viewed by 1978
Abstract
Surface atomic arrangement and physical properties of aluminum ultrathin layers on c-Si(111)-7 × 7 and hydrogen-terminated c-Si(111)-1 × 1 surfaces deposited using molecular beam epitaxy were investigated. X-ray photoelectron spectroscopy spectra were collected in two configurations (take-off angle of 0° and 45°) to [...] Read more.
Surface atomic arrangement and physical properties of aluminum ultrathin layers on c-Si(111)-7 × 7 and hydrogen-terminated c-Si(111)-1 × 1 surfaces deposited using molecular beam epitaxy were investigated. X-ray photoelectron spectroscopy spectra were collected in two configurations (take-off angle of 0° and 45°) to precisely determine the surface species. Moreover, 3D atomic force microscopy (AFM) images of the air-exposed samples were acquired to investigate the clustering formations in film structure. The deposition of the Al layers was monitored in situ using a reflection high-energy electron diffraction (RHEED) experiments to confirm the surface crystalline structure of the c-Si(111). The analysis of the RHEED patterns during the growth process suggests the settlement of aluminum atoms in Al(111)-1 × 1 clustered formations on both types of surfaces. The surface electrical conductivity in both configurations was tested against atmospheric oxidation. The results indicate differences in conductivity based on the formation of various alloys on the surface. Full article
Show Figures

Figure 1

19 pages, 4915 KiB  
Article
Machine Learning in Automated Monitoring of Metabolic Changes Accompanying the Differentiation of Adipose-Tissue-Derived Human Mesenchymal Stem Cells Employing 1H-1H TOCSY NMR
by Lubaba Migdadi, Nour Sharar, Hanan Jafar, Ahmad Telfah, Roland Hergenröder and Christian Wöhler
Metabolites 2023, 13(3), 352; https://doi.org/10.3390/metabo13030352 - 27 Feb 2023
Cited by 2 | Viewed by 1995
Abstract
The ability to monitor the dynamics of stem cell differentiation is a major goal for understanding biochemical evolution pathways. Automating the process of metabolic profiling using 2D NMR helps us to understand the various differentiation behaviors of stem cells, and therefore sheds light [...] Read more.
The ability to monitor the dynamics of stem cell differentiation is a major goal for understanding biochemical evolution pathways. Automating the process of metabolic profiling using 2D NMR helps us to understand the various differentiation behaviors of stem cells, and therefore sheds light on the cellular pathways of development, and enhances our understanding of best practices for in vitro differentiation to guide cellular therapies. In this work, the dynamic evolution of adipose-tissue-derived human Mesenchymal stem cells (AT-derived hMSCs) after fourteen days of cultivation, adipocyte and osteocyte differentiation, was inspected based on 1H-1H TOCSY using machine learning. Multi-class classification in addition to the novelty detection of metabolites was established based on a control hMSC sample after four days’ cultivation and we successively detected the changes of metabolites in differentiated MSCs following a set of 1H-1H TOCSY experiments. The classifiers Kernel Null Foley-Sammon Transform and Kernel Density Estimation achieved a total classification error between 0% and 3.6% and false positive and false negative rates of 0%. This approach was successfully able to automatically reveal metabolic changes that accompanied MSC cellular evolution starting from their undifferentiated status to their prolonged cultivation and differentiation into adipocytes and osteocytes using machine learning supporting the research in the field of metabolic pathways of stem cell differentiation. Full article
(This article belongs to the Section Bioinformatics and Data Analysis)
Show Figures

Graphical abstract

17 pages, 5374 KiB  
Article
Surface Plasmon Resonance Sensitivity Enhancement Based on Protonated Polyaniline Films Doped by Aluminum Nitrate
by Qais M. Al-Bataineh, Victoria Shpacovitch, Diyar Sadiq, Ahmad Telfah and Roland Hergenröder
Biosensors 2022, 12(12), 1122; https://doi.org/10.3390/bios12121122 - 3 Dec 2022
Cited by 15 | Viewed by 2240
Abstract
Complex composite films based on polyaniline (PANI) doped hydrochloric acid (HCl) incorporated with aluminum nitrate (Al(NO3)3) on Au-layer were designed and synthesized as a surface plasmon resonance (SPR) sensing device. The physicochemical properties of (PANI-HCl)/Al(NO3)3 complex [...] Read more.
Complex composite films based on polyaniline (PANI) doped hydrochloric acid (HCl) incorporated with aluminum nitrate (Al(NO3)3) on Au-layer were designed and synthesized as a surface plasmon resonance (SPR) sensing device. The physicochemical properties of (PANI-HCl)/Al(NO3)3 complex composite films were studied for various Al(NO3)3 concentrations (0, 2, 4, 8, 16, and 32 wt.%). The refractive index of the (PANI-HCl)/Al(NO3)3 complex composite films increased continuously as Al(NO3)3 concentrations increased. The electrical conductivity values increased from 5.10 µS/cm to 10.00 µS/cm as Al(NO3)3 concentration increased to 32 wt.%. The sensitivity of the SPR sensing device was investigated using a theoretical approach and experimental measurements. The theoretical system of SPR measurement confirmed that increasing Al(NO3)3 in (PANI-HCl)/Al(NO3)3 complex composite films enhanced the sensitivity from about 114.5 [Deg/RIU] for Au-layer to 159.0 [Deg/RIU] for Au-((PANI-HCl)/Al(NO3)3 (32 wt.%)). In addition, the signal-to-noise ratio for Au-layer was 3.95, which increased after coating by (PANI-HCl)/Al(NO3)3 (32 wt.%) complex composite layer to 8.82. Finally, we conclude that coating Au-layer by (PANI-HCl)/Al(NO3)3 complex composite films enhances the sensitivity of the SPR sensing device. Full article
Show Figures

Figure 1

17 pages, 5146 KiB  
Article
Effect of Iodine Filler on Photoisomerization Kinetics of Photo-Switchable Thin Films Based on PEO-BDK-MR
by Qais M. Al-Bataineh, A. A. Ahmad, A. M. Alsaad, I. A. Qattan, Ihsan A. Aljarrah and Ahmad D. Telfah
Polymers 2021, 13(5), 841; https://doi.org/10.3390/polym13050841 - 9 Mar 2021
Cited by 1 | Viewed by 2725
Abstract
We report the effect of an iodine filler on photoisomerization kinetics of photo-switchable PEO-BDK-MR thin films. The kinetics of photoisomerization and time progression of PEO-BDK-MR/I2 nanocomposite thin films are investigated using UV-Vis, FTIR spectroscopies, and modified mathematical models developed using new analytical [...] Read more.
We report the effect of an iodine filler on photoisomerization kinetics of photo-switchable PEO-BDK-MR thin films. The kinetics of photoisomerization and time progression of PEO-BDK-MR/I2 nanocomposite thin films are investigated using UV-Vis, FTIR spectroscopies, and modified mathematical models developed using new analytical methods. Incorporating iodine filler into the PEO-BDK-MR polymeric matrix enhances the isomerization energy barrier and considerably increases the processing time. Our outcomes propose that enhanced photoisomerized and time processed (PEO-BDK-MR)/I2 thin films could be potential candidates for a variety of applications involving molecular solar thermal energy storage media. Full article
Show Figures

Graphical abstract

15 pages, 13602 KiB  
Article
New Insight on Photoisomerization Kinetics of Photo-Switchable Thin Films Based on Azobenzene/Graphene Hybrid Additives in Polyethylene Oxide
by Qais M. Al-Bataineh, Ahmad A. Ahmad, Ahmad M. Alsaad and Ahmad Telfah
Polymers 2020, 12(12), 2954; https://doi.org/10.3390/polym12122954 - 10 Dec 2020
Cited by 17 | Viewed by 2842
Abstract
In this work, we reported a new insight on the kinetics of photoisomerization and time evolution of hybrid thin films considering the azo-dye methyl red (MR) incorporated with graphene accommodated in polyethylene oxide (PEO). The kinetics of photoisomerization and time-evolution of hybrid thin [...] Read more.
In this work, we reported a new insight on the kinetics of photoisomerization and time evolution of hybrid thin films considering the azo-dye methyl red (MR) incorporated with graphene accommodated in polyethylene oxide (PEO). The kinetics of photoisomerization and time-evolution of hybrid thin films were investigated using UV-Vis s and FTIR spectroscopies, as well as appropriate models developed with new analytical methods. The existence of azo-dye MR in the complex is crucial for the resource action of the transcis cycles through UV-illumination Visible-illumination relaxations. The results of the UV–Vis and the FTIR investigations prove the cyclical trans  cis-states. Consequently, PEO-(MR-Graphene) hybrid composite thin films can be introduced as possible applicants for photochromic molecular switches, light-gated transistors, and molecular solar thermal energy storage media. Full article
(This article belongs to the Special Issue Organic-Inorganic Hybrid Materials II)
Show Figures

Figure 1

19 pages, 5228 KiB  
Article
Synthesis, Crystallography, Microstructure, Crystal Defects, Optical and Optoelectronic Properties of ZnO:CeO2 Mixed Oxide Thin Films
by Qais M. Al-Bataineh, Mahmoud Telfah, Ahmad A. Ahmad, Ahmad M. Alsaad, Issam A. Qattan, Hakim Baaziz, Zoulikha Charifi and Ahmad Telfah
Photonics 2020, 7(4), 112; https://doi.org/10.3390/photonics7040112 - 18 Nov 2020
Cited by 59 | Viewed by 5467
Abstract
We report the synthesis and characterization of pure ZnO, pure CeO2, and ZnO:CeO2 mixed oxide thin films dip-coated on glass substrates using a sol-gel technique. The structural properties of as-prepared thin film are investigated using the XRD technique. In particular, [...] Read more.
We report the synthesis and characterization of pure ZnO, pure CeO2, and ZnO:CeO2 mixed oxide thin films dip-coated on glass substrates using a sol-gel technique. The structural properties of as-prepared thin film are investigated using the XRD technique. In particular, pure ZnO thin film is found to exhibit a hexagonal structure, while pure CeO2 thin film is found to exhibit a fluorite cubic structure. The diffraction patterns also show the formation of mixed oxide materials containing well-dispersed phases of semi-crystalline nature from both constituent oxides. Furthermore, optical properties of thin films are investigated by performing UV–Vis spectrophotometer measurements. In the visible region, transmittance of all investigated thin films attains values as high as 85%. Moreover, refractive index of pure ZnO film was found to exhibit values ranging between 1.57 and 1.85 while for CeO2 thin film, it exhibits values ranging between 1.73 and 2.25 as the wavelength of incident light decreases from 700 nm to 400 nm. Remarkably, refractive index of ZnO:CeO2 mixed oxide-thin films are tuned by controlling the concentration of CeO2 properly. Mixed oxide-thin films of controllable refractive indices constitute an important class of smart functional materials. We have also investigated the optoelectronic and dispersion properties of ZnO:CeO2 mixed oxide-thin films by employing well-established classical models. The melodramatic boost of optical and optoelectronic properties of ZnO:CeO2 mixed oxide thin films establish a strong ground to modify these properties in a skillful manner enabling their use as key potential candidates for the fabrication of scaled optoelectronic devices and thin film transistors. Full article
(This article belongs to the Special Issue Advanced Optical Materials and Devices II)
Show Figures

Figure 1

15 pages, 4313 KiB  
Article
Catalytic Electrochemical Water Splitting Using Boron Doped Diamond (BDD) Electrodes as a Promising Energy Resource and Storage Solution
by Yousef Al-Abdallat, Inshad Jumah, Rami Jumah, Hanadi Ghanem and Ahmad Telfah
Energies 2020, 13(20), 5265; https://doi.org/10.3390/en13205265 - 10 Oct 2020
Cited by 9 | Viewed by 3093
Abstract
The present study developed a new system of electrochemical water splitting using a boron doped diamond (BDD) electrode in the electrochemical reactor. The new method assessed the electrical current, acidity (pH), electrical conductivity, absorbance, dissipation, and splitting energies in addition to the water [...] Read more.
The present study developed a new system of electrochemical water splitting using a boron doped diamond (BDD) electrode in the electrochemical reactor. The new method assessed the electrical current, acidity (pH), electrical conductivity, absorbance, dissipation, and splitting energies in addition to the water splitting efficiency of the overall process. Employing CuO NPs and ZnO NPs as catalysts induced a significant impact in reducing the dissipated energy and in increasing the efficiency of splitting water. Specifically, CuO NPs showed a significant enhancement in reducing the dissipated energy and in keeping the electrical current of the reaction stable. Meanwhile, the system catalyzed with ZnO NPs induced a similar impact as that for CuO NPs at a lower rate only. The energy dissipation rates in the system were found to be 48% and 65% by using CuO and ZnO NPs, respectively. However, the dissipation rate for the normalized system without catalysis (water buffer at pH = 6.5) is known to be 100%. The energy efficiency of the system was found to be 25% without catalysis, while it was found to be 82% for the system catalyzed with ZnO NPs compared to that for CuO NPs (normalized to 100%). The energy dissipated in the case of the non-catalyzed system was found to be the highest. Overall, water splitting catalyzed with CuO NPs exhibits the best performance under the applied experimental conditions by using the BDD/Niobium (Nb) electrodes. Full article
(This article belongs to the Special Issue Technologies for Biofuels and Energy)
Show Figures

Figure 1

14 pages, 5882 KiB  
Article
Kinematics of Photoisomerization Processes of PMMA-BDK-MR Polymer Composite Thin Films
by Qais M. Al-Bataineh, A. A. Ahmad, A. M. Alsaad, I. A. Qattan, Areen A. Bani-Salameh and Ahmad D. Telfah
Polymers 2020, 12(6), 1275; https://doi.org/10.3390/polym12061275 - 3 Jun 2020
Cited by 13 | Viewed by 3765
Abstract
We investigate and report on the kinematics of photoisomerization processes of polymer composite thin films based on azo dye methyl red (MR) hosted in polymethylmethacrylate (PMMA) incorporated with Benzyl dimethyl ketal (BDK) as a photo-initiator. Understanding photoisomerization mechanisms is crucial for several optical [...] Read more.
We investigate and report on the kinematics of photoisomerization processes of polymer composite thin films based on azo dye methyl red (MR) hosted in polymethylmethacrylate (PMMA) incorporated with Benzyl dimethyl ketal (BDK) as a photo-initiator. Understanding photoisomerization mechanisms is crucial for several optical applications such as Read/Write/Erase (WRE) optical data storage media, UV light Read/Write heads, and UV light sensors. The as-prepared polymer composite thin films are characterized using UV–Vis spectroscopy. Furthermore, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) are employed to investigate the optical, chemical, and morphological properties of trans- and cis-states of PMMA-BDK-MR polymer composite thin films. The presence of the azo dye MR in the composite is essential for the efficient performance of the cis ↔ trans cycles through illumination ↔ thermal relaxation for Write/Read/Erase optical data storage and UV-light sensors. Moreover, UV–Vis and FTIR results confirm the hysteresis cycle of trans- and cis-states and that PMMA-BDK-MR thin films may be regarded as potential candidates for successful Write/Read/Erase optical data storage and UV-light sensors. In addition, the morphology of the thin film surface is investigated by SEM technique. The SEM images indicate that uncured surfaces of PMMA-BDK-MR thin films are inhomogeneous compared with the corresponding surfaces after curing. The transformation from inhomogeneous surfaces to homogeneous surfaces is attributed to the polymerization of thin films by UV curing. Full article
Show Figures

Figure 1

17 pages, 3025 KiB  
Article
Optical, Structural, and Crystal Defects Characterizations of Dip Synthesized (Fe-Ni) Co-Doped ZnO Thin Films
by Ahmad M. Alsaad, Ahmad A. Ahmad, Qais M. Al-Bataineh, Areen A. Bani-Salameh, Hadeel S. Abdullah, Issam A. Qattan, Zaid M. Albataineh and Ahmad D. Telfah
Materials 2020, 13(7), 1737; https://doi.org/10.3390/ma13071737 - 8 Apr 2020
Cited by 80 | Viewed by 3912
Abstract
Sol-gel technique is used to synthesize as-grown zinc oxide (ZnO) and iron-nickel (Fe-Ni) co-doped ZnO thin films deposited on glass substrates using dip coating technique. The structural properties and crystal imperfections of as-prepared thin films are investigated. We performed the structural analysis of [...] Read more.
Sol-gel technique is used to synthesize as-grown zinc oxide (ZnO) and iron-nickel (Fe-Ni) co-doped ZnO thin films deposited on glass substrates using dip coating technique. The structural properties and crystal imperfections of as-prepared thin films are investigated. We performed the structural analysis of films using X-ray diffraction (XRD). The XRD analysis reveal that the as-prepared films exhibit wurtzite structure. Furthermore, XRD-line profile analysis is performed to study the correlation between structural properties and imperfections of the nanocomposite thin films. The crystallite size and microstrains parameters are predicted using the Williamson–Hall method. We found that the crystallites size increases as the co-doped (Fe-Ni) concentration is increased. However, microstrains of the nanocomposite films decreases as (Fe-Ni) concentration is increased. The optical properties of the (Fe-Ni) co-doped nanocomposite films are investigated by performing UV-Vis (250 nm–700 nm) spectrophotometer measurements. We found that as the (Fe-Ni) concentration level is steadily increased, transmittance of the undoped ZnO thin films is decreased. Remarkably, refractive index of undoped ZnO thin films is found to exhibit values extending from 1.55 to1.88 that would increase as (Fe-Ni) concentration is increased. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

Back to TopTop