Surface Atomic Arrangement of Aluminum Ultra-Thin Layers Grown on Si(111)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raja, S.S.; Cheng, C.-W.; Sang, Y.; Chen, C.-A.; Zhang, X.-Q.; Dubey, A.; Yen, T.-J.; Chang, Y.-M.; Lee, Y.-H.; Gwo, S. Epitaxial Aluminum Surface-Enhanced Raman Spectroscopy Substrates for Large-Scale 2D Material Characterization. ACS Nano 2020, 14, 8838–8845. [Google Scholar] [CrossRef] [PubMed]
- Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M.-C.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Continuous Germanene Layer on Al (111). Nano Lett. 2015, 15, 2510–2516. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Liu, S.B.; Xu, B.; Ouyang, C.Y.; Song, H.Y.; Guan, S.; Yang, S.A. Multiple Dirac Points and Hydrogenation-Induced Magnetism of Germanene Layer on Al (111) Surface. J. Phys. Chem. Lett. 2015, 6, 4936–4942. [Google Scholar] [CrossRef] [PubMed]
- Morishita, T.; Spencer, M.J.S.; Kawamoto, S.; Snook, I.K. A New Surface and Structure for Silicene: Polygonal Silicene Formation on the Al (111) Surface. J. Phys. Chem. C 2013, 117, 22142–22148. [Google Scholar] [CrossRef]
- Sassa, Y.; Johansson, F.O.; Lindblad, A.; Yazdi, M.G.; Simonov, K.; Weissenrieder, J.; Muntwiler, M.; Iyikanat, F.; Sahin, H.; Angot, T.; et al. Kagome-like silicene: A novel exotic form of two-dimensional epitaxial silicon. Appl. Surf. Sci. 2020, 530, 147195. [Google Scholar] [CrossRef]
- Bakulin, A.V.; Chumakova, L.S.; Korchuganov, A.V.; Kulkova, S.E. Role of Oxygen and Fluorine in Passivation of the GaSb (111) Surface Depending on Its Termination. Crystals 2022, 12, 477. [Google Scholar] [CrossRef]
- Sanna, S.; Plaickner, J.; Holtgrewe, K.; Wettig, V.; Speiser, E.; Chandola, S.; Esser, N. Spectroscopic Analysis of Rare-Earth Silicide Structures on the Si (111) Surface. Materials 2021, 14, 4104. [Google Scholar] [CrossRef]
- Goswami, R.; Qadri, S.; Nepal, N.; Eddy, C., Jr. Microstructure and Interfaces of Ultra-Thin Epitaxial AlN Films Grown by Plasma-Enhanced Atomic Layer Deposition at Relatively Low Temperatures. Coatings 2021, 11, 482. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Ding, W.; Gong, Y.; Chen, H.; Ju, D. Exploring the Dual Characteristics of CH3OH Adsorption to Metal Atomic Structures on Si (111)-7 × 7 Surface. Molecules 2021, 26, 5824. [Google Scholar] [CrossRef]
- Lee, T.; Kim, J.; Park, C.; Kim, H.; Kim, M.; Park, H.; Kim, I.; Ko, J.; Pak, K.; Choi, S.Q.; et al. Large-Area Synthesis of Ultrathin, Flexible, and Transparent Conductive Metal–Organic Framework Thin Films via a Microfluidic-Based Solution Shearing Process. Adv. Mater. 2022, 34, 2107696. [Google Scholar] [CrossRef]
- Kumar, S.; Joshi, K.L.; Van Duin, A.C.T.; Haque, M.A. Can amorphization take place in nanoscale interconnects? Nanotechnology 2012, 23, 095701. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Garcia, D.; Jin, J.; Haque, A. Mechanical strain mediated carrier scattering and its role in charge and thermal transport in freestanding nanocrystalline aluminum thin films. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2015, 33, 022002. [Google Scholar] [CrossRef]
- Battaglia, C.; Cuevas, A.; De Wolf, S. High-efficiency crystalline silicon solar cells: Status and perspectives. Energy Environ. Sci. 2016, 9, 1552–1576. [Google Scholar] [CrossRef] [Green Version]
- Bivour, M.; Reichel, C.; Hermle, M.; Glunz, S.W. Improving the a-Si:H(p) rear emitter contact of n-type silicon solar cells. Sol. Energy Mater. Sol. Cells 2012, 106, 11–16. [Google Scholar] [CrossRef]
- Zhang, X.; Chabal, Y.J.; Christman, S.B.; Chaban, E.E.; Garfunkel, E. Oxidation of H-covered flat and vicinal Si (111)-1 × 1 surfaces. J. Vac. Sci. Technol. A Vac. Surf. Film. 2001, 19, 1725–1729. [Google Scholar] [CrossRef]
- Ye, S.; Ichihara, T.; Uosaki, K. Spectroscopic Studies on Electroless Deposition of Copper on a Hydrogen-Terminated Si (111) Surface in Fluoride Solutions. J. Electrochem. Soc. 2001, 148, C421–C426. [Google Scholar] [CrossRef] [Green Version]
- Saranin, A.; Lifshits, V.; Ignatovich, K.; Bethge, H.; Kayser, R.; Goldbach, H.; Klust, A.; Wollschläger, J.; Henzler, M. Restructuring process of the Si (111) surface upon Ca deposition. Surf. Sci. 2000, 448, 87–92. [Google Scholar] [CrossRef]
- Shibata, A.; Kimura, Y.; Takayanagi, K. In situ high-temperature STM study of the restructuring process on the Si(111)7 × 7 surface upon Ag deposition. Surf. Sci. 1994, 303, 161–170. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Wang, D.; Pan, M.; Jia, J.; Xue, Q. Two-dimensional growth of Al films on Si (111)-7 × 7 at low-temperature. Surf. Sci. 2004, 571, 5–11. [Google Scholar] [CrossRef]
- Piot, L.; Le Floch, S.; Cornier, T.; Daniele, S.; Machon, D. Amorphization in Nanoparticles. J. Phys. Chem. C 2013, 117, 11133–11140. [Google Scholar] [CrossRef]
- Yeh, C.-W.; Chen, G.-H.; Ho, S.-J.; Chen, H.-S. Inhibiting the Surface Oxidation of Low-Cadmim-Content ZnS:(Cd,Se) Quantum Dots for Enhancing Application Reliability. ACS Appl. Nano Mater. 2019, 2, 5290–5301. [Google Scholar] [CrossRef]
- Kern, W. Overview and evolution of silicon wafer cleaning technology. In Handbook of Silicon Wafer Cleaning Technology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–85. [Google Scholar]
- Kern, W. Cleaning solution based on hydrogen peroxide for use in silicon semiconductor technology. RCA Rev. 1970, 31, 187–206. [Google Scholar]
- Machine, W. RCA Clean. Materials at Colorado School of Mines. Available online: https://inside.mines.edu/fs_home/cwolden/Wolden_Webpages/index.html (accessed on 1 January 2019).
- Latyshev, A.; Krasilnikov, A.; Aseev, A.; Sokolov, L.; Stenin, S. Reflection electron microscopy study of clean Si (111) surface reconstruction during the (7 × 7) ς (1 × 1) phase transition. Surf. Sci. 1991, 254, 90–96. [Google Scholar] [CrossRef]
- Takayanagi, K.; Tanishiro, Y.; Takahashi, M. Structural analysis of Si (111)-7 × 7 by UHV-transmission electron diffraction and microscopy. J. Vac. Sci. Technol. A Vac. Surf. Film. 1985, 3, 1502–1506. [Google Scholar] [CrossRef]
- Jiang, Y.; Kim, Y.-H.; Zhang, S.B.; Ebert, P.; Yang, S.; Tang, Z.; Wu, K.; Wang, E.G. Growing extremely thin bulklike metal film on a semiconductor surface: Monolayer Al (111) on Si (111). Appl. Phys. Lett. 2007, 91, 181902. [Google Scholar] [CrossRef]
- Northrup, J.E. Si (111)3 × 3-Al: An Adatom-Induced Reconstruction. Phys. Rev. Lett. 1984, 53, 683–686. [Google Scholar] [CrossRef]
- Uhrberg, R.I.G.; Hansson, G.V.; Nicholls, J.M.; Persson, P.E.S.; Flodström, S.A. Photoemission study of the surface and bulk electronic structures of Si (111) 7 × 7 and Si (111) ≤3¯ × ≤3¯: Al. Phys. Rev. B 1985, 31, 3805–3810. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, K.; Tang, Z.; Ebert, P.; Wang, E.G. Quantum size effect induced dilute atomic layers in ultrathin Al films. Phys. Rev. B 2007, 76, 035409. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Lin, Y.-C.; Nagashio, K.; Maruyama, M.; Solís-Fernández, P.; Aji, A.S.; Panchal, V.; Okada, S.; Suenaga, K.; Ago, H. Hydrogen-Assisted Epitaxial Growth of Monolayer Tungsten Disulfide and Seamless Grain Stitching. Chem. Mater. 2018, 30, 403–411. [Google Scholar] [CrossRef]
- Grant, J.T. AES: Basic principles, spectral features and qualitative analysis. In Surface Analysis by Auger and X-ray Photoelectron Spectroscopy; IM Publications: Amsterdam, The Netherlands, 2003; pp. 57–88. [Google Scholar]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D.; Chastian, J. X-ray photoelectron spectroscopy. In Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corp.: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, J.R. NIST Standard Reference Database 20, Version 3.4 (Web Version); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2003; p. 20899.
- Nist, X. Ray Photoelectron Spectroscopy Database. Default. aspx, 2015. Available online: http://srdata.nist.gov/xps (accessed on 2 February 2019).
- Nakanishi, S.; Horiguchi, T. Surface Lattice Constants of Si (111), Ni (111) and Cu (111). Jpn. J. Appl. Phys. 1981, 20, L214. [Google Scholar] [CrossRef]
- Yin, C.; Negreiros, F.R.; Barcaro, G.; Beniya, A.; Sementa, L.; Tyo, E.C.; Bartling, S.; Meiwes-Broer, K.-H.; Seifert, S.; Hirata, H.; et al. Alumina-supported sub-nanometer Pt10 clusters: Amorphization and role of the support material in a highly active CO oxidation catalyst. J. Mater. Chem. A 2017, 5, 4923–4931. [Google Scholar] [CrossRef] [Green Version]
- Olafsen, J.S.; Urbach, J.S. Clustering, Order, and Collapse in a Driven Granular Monolayer. Phys. Rev. Lett. 1998, 81, 4369–4372. [Google Scholar] [CrossRef] [Green Version]
- Huanca, D.R. Aluminum modified silicon surfaces: Optical and electrical characterization. Appl. Surf. Sci. 2021, 565, 150496. [Google Scholar] [CrossRef]
- Noh, J.-S. Aluminum silicide microparticles transformed from aluminum thin films by hypoeutectic interdiffusion. Nanoscale Res. Lett. 2014, 9, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Zheng, L.; Zhan, J.; Du, N.; Liu, W.; Ma, J.; Su, L.; Wang, L. Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes. J. Power Sources 2020, 449, 227513. [Google Scholar] [CrossRef]
- Sun, C.; Zeng, R.; Zhang, J.; Qiu, Z.-J.; Wu, D. Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al2O3 Sensing Film. Materials 2017, 10, 1432. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.-Y.; Li, C.; Engelmann, S.; Bruce, R.L.; Joseph, E.A.; Metzler, D.; Oehrlein, G.S. Achieving ultrahigh etching selectivity of SiO2 over Si3N4 and Si in atomic layer etching by exploiting chemistry of complex hydrofluorocarbon precursors. J. Vac. Sci. Technol. A Vac. Surf. Film. 2018, 36, 040601. [Google Scholar] [CrossRef]
- Dvoretckaia, L.; Gridchin, V.; Mozharov, A.; Maksimova, A.; Dragunova, A.; Melnichenko, I.; Mitin, D.; Vinogradov, A.; Mukhin, I.; Cirlin, G. Light-Emitting Diodes Based on InGaN/GaN Nanowires on Microsphere-Lithography-Patterned Si Substrates. Nanomaterials 2022, 12, 1993. [Google Scholar] [CrossRef]
- Deng, S.; Xu, R.; Seh, W.; Sun, J.; Cai, W.; Zou, J.; Zhang, Q. Current degradation mechanism of tip contact metal-silicon Schottky nanogenerator. Nano Energy 2022, 94, 10688. [Google Scholar] [CrossRef]
Take-Off Angle | ||||||
---|---|---|---|---|---|---|
NH-116 | NH-117 | NH-121 | ||||
Element | 0° | 45° | 0° | 45° | 0° | 45° |
Si | 37.6 | 30.3 | 38.3 | 31.3 | 39.5 | 28.3 |
Al | 3.6 | 2.1 | 1.6 | 2.1 | 1.3 | 1.2 |
O | 27.2 | 27.0 | 31.7 | 35.7 | 21.2 | 20.4 |
C | 31.6 | 40.6 | 28.4 | 30.9 | 32.4 | 42.8 |
F | - | - | - | - | 5.6 | 7.3 |
Si Species | Peak Position (eV) | Assignment | ||
---|---|---|---|---|
NH-116 | NH-117 | NH-121 | ||
#1 | 99.4 | 99.4 | 99.4 | Elemental Silicon |
100.0 | 100.0 | 100.0 | ||
#2 | 102.9 | 103.1 | 103.1 | SiO2 or AlxSiyOz |
103.5 | 103.7 | 103.7 | ||
#3 | - | 100.4 | 100.4 | AlSi, SiC |
- | 101.1 | 101.1 | ||
#4 | 101.9 | 102.5 | 102.5 | SiO or AlxSiyOz |
102.6 | 103.2 | 103.2 |
Sample | Peak Position (eV) | Assignment |
---|---|---|
NH-116 | 75.5 | Al2O3/Si |
NH-117 | 75.5 | Al2O3/Si |
NH-121 | 75.5 | Al2O3/Si |
C 1s Peak | Peak Position (eV) | Assignment | ||
---|---|---|---|---|
NH-116 | NH-117 | NH-121 | ||
1 | 285.7 | 285.7 | 285.4 | -CH2C(O)O |
2 | 287.5 | 287.3 | 287.2 | -C(O)-, CH3OH/Si |
3 | 290.0 | 290.0 | 289.3 | -C(O)O, CO3, CO3 |
4 | 283.5 | 283.6 | SiC | |
5 | 292.0 | -CF8 |
MSE | Thickness (nm) | Voids % | Al% | SiO2% | Al2O3% | |
---|---|---|---|---|---|---|
NH-116 | 2.87 | 2.70 | 43.2 | 4.9 | 26.8 | 25.1 |
NH-117 | 2.88 | 2.73 | 42.2 | 5.4 | 26.6 | 25.8 |
NH-121 | 2.43 | 3.38 | 25.2 | 0.5 | 29.3 | 45.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jum’h, I.; Abu-Safe, H.H.; Ware, M.E.; Qattan, I.A.; Telfah, A.; Tavares, C.J. Surface Atomic Arrangement of Aluminum Ultra-Thin Layers Grown on Si(111). Nanomaterials 2023, 13, 970. https://doi.org/10.3390/nano13060970
Jum’h I, Abu-Safe HH, Ware ME, Qattan IA, Telfah A, Tavares CJ. Surface Atomic Arrangement of Aluminum Ultra-Thin Layers Grown on Si(111). Nanomaterials. 2023; 13(6):970. https://doi.org/10.3390/nano13060970
Chicago/Turabian StyleJum’h, Inshad, Husam H. Abu-Safe, Morgan E. Ware, I. A. Qattan, Ahmad Telfah, and Carlos J. Tavares. 2023. "Surface Atomic Arrangement of Aluminum Ultra-Thin Layers Grown on Si(111)" Nanomaterials 13, no. 6: 970. https://doi.org/10.3390/nano13060970
APA StyleJum’h, I., Abu-Safe, H. H., Ware, M. E., Qattan, I. A., Telfah, A., & Tavares, C. J. (2023). Surface Atomic Arrangement of Aluminum Ultra-Thin Layers Grown on Si(111). Nanomaterials, 13(6), 970. https://doi.org/10.3390/nano13060970