Optical, Structural, and Crystal Defects Characterizations of Dip Synthesized (Fe-Ni) Co-Doped ZnO Thin Films
Abstract
:1. Introduction
2. Experimental Details
2.1. Undoped ZnO Solution Preparation
2.2. (Fe-Ni) Co-Doped ZnO Solution Preparation
2.3. Undoped ZnO and (Fe-Ni) Co-Doped ZnO Thin Films Fabrication
3. Results and Discussion
3.1. X-ray Diffraction (XRD) Analysis
3.1.1. ZnO and (Fe-Ni) Co-Doped ZnO Thin Films Structure Analysis
3.1.2. The Crystallite Size and Microstrain Analysis
3.3.3. Dislocation Density and Crystalline Density
3.3.4. Crystal Imperfections Studies
3.2. Optical Characterization Analysis
3.3. Optoelectronic Parameters
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chandrasekar, L.B.; Nagarajan, S.; Karunakaran, M.; Toal, D. Structural, Optical and Electrical Properties of Undoped and Doped ZnO Thin Films. In 2D Materials; IntechOpen: London, UK, 2019. [Google Scholar]
- Li, S.; Pan, J.; Li, H.; Liu, Y.; Ou, W.; Wang, J.; Song, C.; Zhao, W.; Zheng, Y.; Li, C. The transparent SnO/ZnO quantum dots/SnO2 p-n junction towards the enhancement of photovoltaic conversion. Chem. Eng. J. 2019, 366, 305–312. [Google Scholar] [CrossRef]
- Baradaran, M.; Ghodsi, F.E.; Bittencourt, C.; Llobet, E. The role of Al concentration on improving the photocatalytic performance of nanostructured ZnO/ZnO:Al/ZnO multilayer thin films. J. Alloy. Compd. 2019, 788, 289–301. [Google Scholar] [CrossRef]
- Bazta, O.; Urbieta, A.; Piqueras, J.; Fernández, P.; Addou, M.; Calvino, J.; Hungría, A. Influence of yttrium doping on the structural, morphological and optical properties of nanostructured ZnO thin films grown by spray pyrolysis. Ceram. Int. 2019, 45, 6842–6852. [Google Scholar] [CrossRef]
- Rong, P.; Ren, S.; Yu, Q. Fabrications and Applications of ZnO Nanomaterials in Flexible Functional Devices-A Review. Crit. Rev. Anal. Chem. 2018, 49, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Bechelany, M.; Pal, K.; Rahier, H.; Uludag, H.; Kim, I.S.; Bechelany, M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today 2019, 17, 1–35. [Google Scholar]
- Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photon. 2012, 6, 809–817. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [Green Version]
- Suma, M.N.; Prasad, M.V.N.; Gaddam, V.; Rajanna, K.; Nayak, M. Development of a Novel Acoustic Sensor using Sputtered ZnO Thin Film. J. Pure Appl. Ind. Phys. 2019, 9, 1–7. [Google Scholar]
- Tab, A.; Abderrahmane, A.; Bakha, Y.; Hamzaoui, S.; Zerdali, M. Investigation on the optical transmission in UV range of sol-gel spin coated zinc oxide nanofilms deposited on glass. Optics 2019, 194, 163073. [Google Scholar] [CrossRef]
- Hussein, M.T.; Kadhim, M.J.H. Study the Optical and Structural Properties for Thin Film Zinc Oxide (ZNO) Produced by Pulsed Laser Deposition. J. Univ. Babylon Pure Appl. Sci. 2019, 27, 223–229. [Google Scholar]
- Salem, M.; Akir, S.; Ghrib, T.; Daoudi, K.; Gaidi, M. Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films. J. Alloy. Compd. 2016, 685, 107–113. [Google Scholar] [CrossRef]
- Aydin, H. Munzur University the investigation of variations in optical properties depending on sintering temperature of ni:zno nano powders. Middle East J. Sci. 2019, 5, 23–32. [Google Scholar] [CrossRef]
- Salaken, S.M.; Farzana, E.; Podder, J. Effect of Fe-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis. J. Semicond. 2013, 34, 73003. [Google Scholar] [CrossRef]
- Bera, A.; Chattopadhyay, S. Optical Properties of Fe-Doped ZnO Thin Film on p-Si by Spin Coating. In Lecture Notes in Electrical Engineering; Springer Science and Business Media LLC: Berlin, Germany, 2019; pp. 387–395. [Google Scholar]
- Han, C.; Duan, L.; Zhao, X.; Hu, Z.; Niu, Y.; Geng, W. Effect of Fe doping on structural and optical properties of ZnO films and nanorods. J. Alloy. Compd. 2019, 770, 854–863. [Google Scholar] [CrossRef]
- Gareso, P.L.; Pakabu, M.; Rauf, N.; Juarlin, E.; Aryanto, D. Synthesis and Characterization of Ni-doped ZnO Thin Films Grown by Sol-Gel Spin Coating. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Gowa, South Sulawesi, Indonesia, 6–8 November 2018; IOP Publishing: Bristol, UK; Volume 619, p. 012055. [Google Scholar]
- Manahan, S. Environmental Chemistry, 10th ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Dillard, C.R.; Goldberg, D.E. Chemistry: Reactions, Structure and Properties; Macmillan: New York, NY, USA, 1978. [Google Scholar]
- Ahmad, A.; Alsaad, A.M.; Al-Bataineh, Q.; Al-Naafa, M.A. Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures. Appl. Phys. A 2018, 124, 458. [Google Scholar] [CrossRef]
- Al-Bataineh, Q.; Alsaad, A.M.; Ahmad, A.A.; Al-Sawalmih, A. Structural, Electronic and Optical Characterization of ZnO Thin Film-Seeded Platforms for ZnO Nanostructures: Sol–Gel Method Versus Ab Initio Calculations. J. Electron. Mater. 2019, 48, 5028–5038. [Google Scholar] [CrossRef]
- Hassanien, A.S.; Akl, A.A. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 2016, 89, 153–169. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Elements of X-ray Diffraction, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Zak, A.K.; Majid, W.A.; Abrishami, M.; Yousefi, R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 2011, 13, 251–256. [Google Scholar]
- Cullity, B.D. Elements of X-ray Diffraction; Addison: Wesley Mass, MA, USA, 1978. [Google Scholar]
- Ahmad, A.; Alsaad, A.; Al-Bataineh, Q.; Bani-Salameh, A.; Al-Khateeb, H.; Al-Naafa, M. Optical and Structural Characterization of Dip Synthesized Al-B Co-doped ZnO Seeded Platforms for ZnO Nanostructures. Jordan J. Phys. 2017, 10, 33–48. [Google Scholar]
- Bussi, Y.; Golan, S.; Dosoretz, C.G.; Eisen, M.S. Synthesis, characterization and performance of polystyrene/PMMA blend membranes for potential water treatment. Desalination 2018, 431, 35–46. [Google Scholar] [CrossRef]
- Lu, H.; Li, T.; Poddar, S.; Goit, O.; Lipatov, A.; Sinitskii, A.; Ducharme, S.; Gruverman, A. Statics and Dynamics of Ferroelectric Domains in Diisopropylammonium Bromide. Adv. Mater. 2015, 27, 7832–7838. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Xu, C.; Cui, Z.; Liu, C.; Gao, L.; Li, C.; Wu, D.; Cai, H.-L.; Wu, X.S. The growth mechanism and ferroelectric domains of diisopropylammonium bromide films synthesized via 12-crown-4 addition at room temperature. Phys. Chem. Chem. Phys. 2016, 18, 7626–7631. [Google Scholar] [CrossRef] [PubMed]
- Mulla, S.; Phale, P.; Saraf, M. Use of Ray Diffraction Technique for Polymer Characterization and Studying the Effect of Optical Accessories; Automotive Materials Lab, ARAI: Pune, India, 2012; Volume 6. [Google Scholar]
- Solliard, C.; Flueli, M. Surfaces stress and size effect on the lattice parameter in small particles of gold and platinum. Surf. Sci. Lett. 1985, 156, A321. [Google Scholar] [CrossRef]
- Ramakanth, K. Basics of X-ray Diffraction and its Application; I.K. International Publishing House Pvt. Ltd.: New Delhi, India, 2007. [Google Scholar]
- Fu, D.-W.; Zhang, W.; Cai, H.-L.; Ge, J.-Z.; Zhang, Y.; Xiong, R.-G. Diisopropylammonium Chloride: A Ferroelectric Organic Salt with a High Phase Transition Temperature and Practical Utilization Level of Spontaneous Polarization. Adv. Mater. 2011, 23, 5658–5662. [Google Scholar] [CrossRef]
- Shull, C.G. The Determination of X-Ray Diffraction Line Widths. Phys. Rev. 1946, 70, 679–684. [Google Scholar] [CrossRef]
- Pielaszek, R. Diffraction Studies of Microstructure of Nanocrystals Exposed to High Pressure. Ph. D. Thesis, Warsaw University, Department of Physics, Warsaw, Poland, 2003. [Google Scholar]
- Zhang, J.-M.; Zhang, Y.; Xu, K.-W.; Ji, V. General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Commun. 2006, 139, 87–91. [Google Scholar] [CrossRef]
- Valášek, J. Piezo-Electric and Allied Phenomena in Rochelle Salt. Phys. Rev. 1921, 17, 475–481. [Google Scholar] [CrossRef]
- Jona, F.; Shirane, G. Ferroelectric Crystals, International Series of Monographs on Solid State Physics; Pergamon Press: Oxford, UK, 1962. [Google Scholar]
- Wang, S.-K.; Lin, T.-C.; Jian, S.-R.; Juang, J.-Y.; Jang, J.; Tseng, J.-Y. Effects of post-annealing on the structural and nanomechanical properties of Ga-doped ZnO thin films deposited on glass substrate by rf-magnetron sputtering. Appl. Surf. Sci. 2011, 258, 1261–1266. [Google Scholar] [CrossRef]
- Kumar, N.S.; Bangera, K.V.; Shivakumar, G. Effect of annealing on the properties of Bi doped ZnO thin films grown by spray pyrolysis technique. Superlattices Microstruct. 2014, 75, 303–310. [Google Scholar] [CrossRef]
- Yogamalar, R.; Srinivasan, R.; Vinu, A.; Ariga, K.; Bose, A.C. X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 2009, 149, 1919–1923. [Google Scholar] [CrossRef]
- Horiuchi, S.; Tokunaga, Y.; Giovannetti, G.; Picozzi, S.; Itoh, H.; Shimano, R.; Kumai, R.; Tokura, Y. Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 2010, 463, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Akl, A.A.; Hassanien, A. Microstructure and crystal imperfections of nanosized CdSxSe1− X thermally evaporated thin films. Superlat. Microstruct. 2015, 85, 67–81. [Google Scholar] [CrossRef]
- Akl, A.; Mahmoud, S.A.; Al-Shomar, S.; Hassanien, A.S. Improving microstructural properties and minimizing crystal imperfections of nanocrystalline Cu2O thin films of different solution molarities for solar cell applications. Mater. Sci. Semicond. Process. 2018, 74, 183–192. [Google Scholar] [CrossRef]
- Williamson, G.K.; Smallman, R.E., III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1956, 1, 34–46. [Google Scholar] [CrossRef]
- Fu, D.-W.; Cai, H.-L.; Liu, Y.; Ye, Q.; Zhang, W.; Zhang, Y.; Chen, Z.; Giovannetti, G.; Capone, M.; Li, J.; et al. Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal. Science 2013, 339, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Dawber, M.; Rabe, K.M.; Scott, J.F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 2005, 77, 1083–1130. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.F. Applications of Modern Ferroelectrics. Science 2007, 315, 954–959. [Google Scholar] [CrossRef]
- Fitzpatrick, M.; Fry, A.; Holdway, P.; Kandil, F.; Shackleton, J.; Suominen, L. Determination of Residual Stresses by X-ray Diffraction; Open University: Milton Keynes, UK, 2005. [Google Scholar]
- Adachi, S. Handbook on Physical Properties of Semiconductors; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2004; Volume 2. [Google Scholar]
- Srivastav, A.K.; Chawake, N.; Murty, B. Grain-size-dependent non-monotonic lattice parameter variation in nanocrystalline W: The role of non-equilibrium grain boundary structure. Scr. Mater. 2015, 98, 20–23. [Google Scholar] [CrossRef]
- Aly, K.A.; Khalil, N.; Algamal, Y.; Saleem, Q.M. Estimation of lattice strain for zirconia nano-particles based on Williamson- Hall analysis. Mater. Chem. Phys. 2017, 193, 182–188. [Google Scholar] [CrossRef]
- Hassanien, A.S.; Akl, A.A. Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50− xSex thin films. J. Alloy. Compd. 2015, 648, 280–290. [Google Scholar] [CrossRef]
- Goktas, A. High-quality solution-based Co and Cu co-doped ZnO nanocrystalline thin films: Comparison of the effects of air and argon annealing environments. J. Alloy. Compd. 2018, 735, 2038–2045. [Google Scholar] [CrossRef]
- Gungor, E.; Güngör, T.; Caliskan, D.; Ceylan, A.; Ozbay, E. Co doping induced structural and optical properties of sol–gel prepared ZnO thin films. Appl. Surf. Sci. 2014, 318, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Samanta, K. Synthesis and Characterization of 3d-transation Metal Ions Doped ZnO Based Dilute Magnetic Semiconductor Thin Films; Universidad de Puerto Rico: San Juan, Puerto Rico, 2009. [Google Scholar]
- Goktas, A. Role of simultaneous substitution of Cu2+ and Mn2+ in ZnS thin films: Defects-induced enhanced room temperature ferromagnetism and photoluminescence. Phys. E Low-dimens. Syst. Nanostructures 2020, 117, 113828. [Google Scholar] [CrossRef]
- Tumbul, A.; Aslan, F.; Demirozu, S.; Goktas, A.; Kilic, A.; Durgun, M.; Zarbali, M.Z.; Kılıç, A. Solution processed boron doped ZnO thin films: Influence of different boron complexes. Mater. Res. Express 2018, 6, 035903. [Google Scholar] [CrossRef]
- Chaudhari, J.; Deshpande, N.; Gudage, Y.; Ghosh, A.; Huse, V.; Sharma, R. Studies on growth and characterization of ternary CdS1− xSex alloy thin films deposited by chemical bath deposition technique. Appl. Surf. Sci. 2008, 254, 6810–6816. [Google Scholar] [CrossRef]
- Mariappan, R.; Ponnuswamy, V.; Ragavendar, M. Characterization of CdS1− xSex thin films by chemical bath deposition technique. Opt. Int. J. Light Electron Opt. 2012, 123, 1196–1200. [Google Scholar] [CrossRef]
- Yadav, A.; Masumdar, E. Optical and electrical transport properties of spray deposited CdS1− xSex thin films. J. Alloys Compd. 2010, 505, 787–792. [Google Scholar] [CrossRef]
- Oubaha, M.; Elmaghrum, S.; Copperwhite, R.; Corcoran, B.; McDonagh, C.; Gorin, A. Optical properties of high refractive index thin films processed at low-temperature. Opt. Mater. 2012, 34, 1366–1370. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Hamberg, I.; Granqvist, C.G. Optical properties of sputter-deposited ZnO:Al thin films. J. Appl. Phys. 1988, 64, 5117–5131. [Google Scholar] [CrossRef]
- Tauc, J. Amorphous and Liquid Semiconductors; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Fasasi, A.Y.; Osagie, E.; Pelemo, D.; Obiajunwa, E.; Ajenifuja, E.; Ajao, J.; Osinkolu, G.; Makinde, W.O.; Adeoye, A.E. Effect of Precursor Solvents on the Optical Properties of Copper Oxide Thin Films Deposited Using Spray Pyrolysis for Optoelectronic Applications. Am. J. Mater. Synth. Process. 2018, 3, 12. [Google Scholar]
- Spitzer, W.G.; Fan, H.Y. Determination of Optical Constants and Carrier Effective Mass of Semiconductors. Phys. Rev. 1957, 106, 882–890. [Google Scholar] [CrossRef]
- Hassanien, A.S. Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd50S50− xSex thin films. J. Alloys Compd. 2016, 671, 566–578. [Google Scholar] [CrossRef]
- Farag, A.; Ashery, A.; Shenashen, M.A. Optical absorption and spectrophotometric studies on the optical constants and dielectric of poly (o-toluidine) (POT) films grown by spin coating deposition. Phys. B Condens. Matter 2012, 407, 2404–2411. [Google Scholar] [CrossRef]
- Ibupoto, Z.H.; Khun, K.; Beni, V.; Liu, X.; Willander, M. Synthesis of Novel CuO Nanosheets and Their Non-Enzymatic Glucose Sensing Applications. Sensors 2013, 13, 7926–7938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | ZnO | Fe-Ni/ZnO 2% | Fe-Ni/ZnO 4% | Fe-Ni/ZnO 8% |
---|---|---|---|---|
Density of states, () | 1.208 | 2.167 | 2.990 | 4.008 |
Charge carrier density, () | 4.841 | 8.687 | 11.985 | 16.067 |
High-frequency dielectric constant, | 2.993 | 3.562 | 4.171 | 5.703 |
Relaxation time, (s) | 0.913 | 1.276 | 1.657 | 7.874 |
Plasma frequency, | 5.720 | 8.620 | 10.200 | 9.960 |
Optical mobility, | 3.643 | 5.095 | 6.612 | 31.143 |
Optical resistivity, | 3.544 | 1.412 | 0.789 | 0.124 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaad, A.M.; Ahmad, A.A.; Al-Bataineh, Q.M.; Bani-Salameh, A.A.; Abdullah, H.S.; Qattan, I.A.; Albataineh, Z.M.; Telfah, A.D. Optical, Structural, and Crystal Defects Characterizations of Dip Synthesized (Fe-Ni) Co-Doped ZnO Thin Films. Materials 2020, 13, 1737. https://doi.org/10.3390/ma13071737
Alsaad AM, Ahmad AA, Al-Bataineh QM, Bani-Salameh AA, Abdullah HS, Qattan IA, Albataineh ZM, Telfah AD. Optical, Structural, and Crystal Defects Characterizations of Dip Synthesized (Fe-Ni) Co-Doped ZnO Thin Films. Materials. 2020; 13(7):1737. https://doi.org/10.3390/ma13071737
Chicago/Turabian StyleAlsaad, Ahmad M., Ahmad A. Ahmad, Qais M. Al-Bataineh, Areen A. Bani-Salameh, Hadeel S. Abdullah, Issam A. Qattan, Zaid M. Albataineh, and Ahmad D. Telfah. 2020. "Optical, Structural, and Crystal Defects Characterizations of Dip Synthesized (Fe-Ni) Co-Doped ZnO Thin Films" Materials 13, no. 7: 1737. https://doi.org/10.3390/ma13071737
APA StyleAlsaad, A. M., Ahmad, A. A., Al-Bataineh, Q. M., Bani-Salameh, A. A., Abdullah, H. S., Qattan, I. A., Albataineh, Z. M., & Telfah, A. D. (2020). Optical, Structural, and Crystal Defects Characterizations of Dip Synthesized (Fe-Ni) Co-Doped ZnO Thin Films. Materials, 13(7), 1737. https://doi.org/10.3390/ma13071737