Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Authors = Adamantis G. Zapris

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6842 KiB  
Article
Non-Conventional and Sustainable Retrofitting of Fire-Exposed Reinforced Concrete Columns Using Basalt Fiber–Engineered Geopolymer Composites
by Ruba Palanivelu, Bhuvaneshwari Panchanatham, Adamantis G. Zapris and Violetta K. Kytinou
Buildings 2025, 15(12), 1962; https://doi.org/10.3390/buildings15121962 - 6 Jun 2025
Cited by 2 | Viewed by 620
Abstract
The increasing demand for sustainable and resilient construction solutions calls for the integration of innovative, non-conventional materials in structural retrofitting. This study investigates the use of basalt fiber-based engineered geopolymer composites (BFEGC) as a retrofitting material for fire-damaged reinforced concrete (RC) short columns. [...] Read more.
The increasing demand for sustainable and resilient construction solutions calls for the integration of innovative, non-conventional materials in structural retrofitting. This study investigates the use of basalt fiber-based engineered geopolymer composites (BFEGC) as a retrofitting material for fire-damaged reinforced concrete (RC) short columns. A total of 14 columns (150 mm × 150 mm × 650 mm) were cast. Two columns were used as control specimens. The remaining 12 columns were exposed to various fire conditions: 300 °C for 30 min, 600 °C for 20 min, and 900 °C for 15 min, followed by gradual (GC) or rapid cooling (RC). Among the columns, six were left unwrapped (GC-NW, RC-NW), while six others were retrofitted with BFEGC (GC-W, RC-W) and subjected to axial loading until failure. The results showed that BFEGC wrapping improved the mechanical performance of fire-damaged columns, especially at 600 °C. The 600RC-W columns exhibited 1.85 times higher ultimate load, 1.56 times greater displacement ductility, and 2.99 times higher energy ductility compared to unwrapped columns. The strength index and confinement coefficient of the 600RC-W columns increased by 2.31 times and 40.2%, respectively. Microstructural analysis confirmed the formation of salient hydration products under elevated temperatures. BFEGC shows significant reduction in carbon emissions and embodied energy, compared to conventional cement-based binders for fiber-reinforced polymer systems. Full article
Show Figures

Figure 1

16 pages, 5084 KiB  
Article
Novel Ductile Moment-Resisting Frame Compound of Steel Gusset Plate for Beam-to-Column Connections and I-Shaped FRP Profile Sections
by Ali Ghamari, Chanachai Thongchom, Adamantis G. Zapris and Violetta K. Kytinou
J. Compos. Sci. 2025, 9(6), 280; https://doi.org/10.3390/jcs9060280 - 30 May 2025
Viewed by 518
Abstract
Moment-resisting frames (MRFs) are characterized by high energy dissipation capacity relying on plastic hinge formation at the two ends of beams. Despite their numerous advantages, Fiber-Reinforced Polymer (FRP) profile sections used in MRF systems suffer from low ductility, which remains a dilemma. FRP [...] Read more.
Moment-resisting frames (MRFs) are characterized by high energy dissipation capacity relying on plastic hinge formation at the two ends of beams. Despite their numerous advantages, Fiber-Reinforced Polymer (FRP) profile sections used in MRF systems suffer from low ductility, which remains a dilemma. FRP profiles have emerged as a novel and valuable material with significant advancement in structural engineering. In this paper, an MRF system composed of novel gusset plate steel connections (to provide ductility) and FRP profile sections for beams and columns is proposed and investigated numerically and parametrically. The results indicate that up to a rotation of 0.04 rad, the proposed gusset plate dissipates energy, whereas the beam and columns remain essentially elastic. Accordingly, with an increase in the ratio of vertical length to thickness of the gusset plate, energy dissipation is reduced. Through an increase in the ratio of horizontal length to thickness of the gusset plate from 63.5 to 127 and 254, the ultimate strength of the connection is reduced by 4% to 10% and 3% to 7%, respectively. It is suggested that gusset plate thickness be selected in such a way that its slenderness is not less than 47. Subsequently, the required equation is proposed to achieve the optimum performance of the system. Full article
Show Figures

Figure 1

20 pages, 12862 KiB  
Article
Innovative Fiber-Reinforced Polymer Rope-Based Closed-Form Retrofitting Methods Applied in Reinforced Concrete T-Shaped Beams under Torsion
by Adamantis G. Zapris, Violetta K. Kytinou and Constantin E. Chalioris
Polymers 2024, 16(18), 2634; https://doi.org/10.3390/polym16182634 - 18 Sep 2024
Cited by 6 | Viewed by 1480
Abstract
The fiber-reinforced polymer (FRP) strengthening of reinforced concrete (RC) elements with torsional deficiencies has not yet been extensively studied. Existing studies have primarily focused on rectangular RC beams. The few studies on L or T-shaped beams have used open-form retrofitting methods. However, premature [...] Read more.
The fiber-reinforced polymer (FRP) strengthening of reinforced concrete (RC) elements with torsional deficiencies has not yet been extensively studied. Existing studies have primarily focused on rectangular RC beams. The few studies on L or T-shaped beams have used open-form retrofitting methods. However, premature debonding of the retrofitting from concrete surfaces often leads to detachment before achieving enhanced torsional capacity. This study introduces an innovative application of closed-form FRP retrofitting for RC T-beams against torsion. Two novel closed-form torsional upgrading methods were proposed and investigated through a comprehensive experimental program involving eight large-scale T-beams. One method employs FRP ropes embedded in transverse grooves near the surface, while the other combines U-shaped EB-FRP strips with FRP ropes. Additionally, two configurations were examined replicating scenarios where the upper part of the slab is accessible or inaccessible. The results demonstrate that the closed-form methods improve torsional strength by 9% to 25% and twist at failure by 92% to 536% compared to unstrengthened beams, with beams retrofitting through the slab exhibiting superior performance. Step-by-step technical guidelines of the proposed methods are presented to minimize construction defects and ensure effective implementation in real RC structures. Full article
Show Figures

Figure 1

16 pages, 11263 KiB  
Article
Optimizing Building Rehabilitation through Nondestructive Evaluation of Fire-Damaged Steel-Fiber-Reinforced Concrete
by Anastasios C. Mpalaskas, Violetta K. Kytinou, Adamantis G. Zapris and Theodore E. Matikas
Sensors 2024, 24(17), 5668; https://doi.org/10.3390/s24175668 - 31 Aug 2024
Cited by 12 | Viewed by 1687
Abstract
Fire incidents pose significant threats to the structural integrity of reinforced concrete buildings, often necessitating comprehensive rehabilitation to restore safety and functionality. Effective rehabilitation of fire-damaged structures relies heavily on accurate damage assessment, which can be challenging with traditional invasive methods. This paper [...] Read more.
Fire incidents pose significant threats to the structural integrity of reinforced concrete buildings, often necessitating comprehensive rehabilitation to restore safety and functionality. Effective rehabilitation of fire-damaged structures relies heavily on accurate damage assessment, which can be challenging with traditional invasive methods. This paper explores the impact of severe damage due to fire exposure on the mechanical behavior of steel-fiber-reinforced concrete (SFRC) using nondestructive evaluation (NDE) techniques. After being exposed to direct fire, the SFRC specimens are subjected to fracture testing to assess their mechanical properties. NDE techniques, specifically acoustic emission (AE) and ultrasonic pulse velocity (UPV), are employed to assess fire-induced damage. The primary aim of this study is to reveal that AE parameters—such as amplitude, cumulative hits, and energy—are strongly correlated with mechanical properties and damage of SFRC due to fire. Additionally, AE monitoring is employed to assess structural integrity throughout the loading application. The distribution of AE hits and the changes in specific AE parameters throughout the loading can serve as valuable indicators for differentiating between healthy and thermally damaged concrete. Compared to the well-established relationship between UPV and strength in bending and compression, the sensitivity of AE to fracture events shows its potential for in situ application, providing new characterization capabilities for evaluating the post-fire mechanical performance of SFRC. The test results of this study reveal the ability of the examined NDE methods to establish the optimum rehabilitation procedure to restore the capacity of the fire-damaged SFRC structural members. Full article
Show Figures

Figure 1

19 pages, 10113 KiB  
Article
Fiber Reinforced Polymer Debonding Failure Identification Using Smart Materials in Strengthened T-Shaped Reinforced Concrete Beams
by Adamantis G. Zapris, Maria C. Naoum, Violetta K. Kytinou, George M. Sapidis and Constantin E. Chalioris
Polymers 2023, 15(2), 278; https://doi.org/10.3390/polym15020278 - 5 Jan 2023
Cited by 25 | Viewed by 3203
Abstract
The favorable contribution of externally bonded fiber-reinforced polymer (EB-FRP) sheets to the shear strengthening of reinforced concrete (RC) beams is widely acknowledged. Nonetheless, the premature debonding of EB-FRP materials remains a limitation for widespread on-site application. Once debonding appears, it is highly likely [...] Read more.
The favorable contribution of externally bonded fiber-reinforced polymer (EB-FRP) sheets to the shear strengthening of reinforced concrete (RC) beams is widely acknowledged. Nonetheless, the premature debonding of EB-FRP materials remains a limitation for widespread on-site application. Once debonding appears, it is highly likely that brittle failure will occur in the strengthened RC structural member; therefore, it is essential to be alerted of the debonding incident immediately and to intervene. This may not be always possible, particularly if the EB-FRP strengthened RC member is located in an inaccessible area for fast inspection, such as bridge piers. The ability to identify debonding immediately via remote control would contribute to the safer application of the technique by eliminating the negative outcomes of debonding. The current investigation involves the detection of EB-FRP sheet debonding using a remotely controlled electromechanical admittance (EMA)-based structural health monitoring (SHM) system that utilizes piezoelectric lead zirconate titanate (PZT) sensors. An experimental investigation on RC T-beams strengthened for shear with EB-FRP sheets has been performed. The PZT sensors are installed at various locations on the surface of the EB-FRP sheets to evaluate the SHM system’s ability to detect debonding. Additionally, strain gauges were attached on the surface of the EB-FRP sheets near the PZT sensors to monitor the deformation of the FRP and draw useful conclusions through comparison of the results to the wave-based data provided by the PZT sensors. The experimental results indicate that although EB-FRP sheets increase the shear resistance of the RC T-beams, premature failure occurs due to sheet debonding. The applied SHM system can sufficiently identify the debonding in real-time and appears to be feasible for on-site applications. Full article
Show Figures

Figure 1

24 pages, 20710 KiB  
Article
Multivariable Regression Strength Model for Steel Fiber-Reinforced Concrete Beams under Torsion
by Ahmed F. Deifalla, Adamantis G. Zapris and Constantin E. Chalioris
Materials 2021, 14(14), 3889; https://doi.org/10.3390/ma14143889 - 12 Jul 2021
Cited by 61 | Viewed by 3570
Abstract
Torsional behavior and analysis of steel fiber reinforced concrete (SFRC) beams is investigated in this paper. The purpose of this study is twofold; to examine the torsion strength models for SFRC beams available in the literature and to address properly verified design formulations [...] Read more.
Torsional behavior and analysis of steel fiber reinforced concrete (SFRC) beams is investigated in this paper. The purpose of this study is twofold; to examine the torsion strength models for SFRC beams available in the literature and to address properly verified design formulations for SFRC beams under torsion. A total of 210 SFRC beams tested under torsion from 16 different experimental investigations around the world are compiled. The few strength models available from the literature are adapted herein and used to calculate the torsional strength of the beams. The predicted strength is compared with the experimental values measured by the performed torsional tests and these comparisons showed a room for improvement. First, a proposed model is based on optimizing the constants of the existing formulations using multi-linear regression. Further, a second model is proposed, which is based on modifying the American Concrete Institute (ACI) design code for reinforced concrete (RC) members to include the effect of steel fibers on the torsional capacity of SFRC beams. Applications of the proposed models showed better compliance and consistency with the experimental results compared to the available design models providing safe and verified predictions. Further, the second model implements the ACI code for RC using a simple and easy-to-apply formulation. Full article
(This article belongs to the Special Issue Fiber-Reinforced Concrete: Design, Characterization, and Applications)
Show Figures

Figure 1

15 pages, 5341 KiB  
Article
Application of X-Shaped CFRP Ropes for Structural Upgrading of Reinforced Concrete Beam–Column Joints under Cyclic Loading–Experimental Study
by Emmanouil Golias, Adamantis G. Zapris, Violetta K. Kytinou, Mourhat Osman, Michail Koumtzis, Danai Siapera, Constantin E. Chalioris and Chris G. Karayannis
Fibers 2021, 9(7), 42; https://doi.org/10.3390/fib9070042 - 1 Jul 2021
Cited by 55 | Viewed by 7161
Abstract
The effectiveness of externally applied fiber-reinforced polymer (FRP) ropes made of carbon fibers in X-shape formation and in both sides of the joint area of reinforced concrete (RC) beam–column connections is experimentally investigated. Six full-scale exterior RC beam–column joint specimens are tested under [...] Read more.
The effectiveness of externally applied fiber-reinforced polymer (FRP) ropes made of carbon fibers in X-shape formation and in both sides of the joint area of reinforced concrete (RC) beam–column connections is experimentally investigated. Six full-scale exterior RC beam–column joint specimens are tested under reverse cyclic deformation. Three of them have been strengthened using carbon FRP (CFRP) ropes that have been placed diagonally in the joint as additional, near surface-mounted reinforcements against shear. Full hysteretic curves, maximum applied load capacity, damage modes, stiffness and energy dissipation values per each loading step are presented and compared. Test results indicated that joint sub assemblages with X-shaped CFRP ropes exhibited improved hysteretic behavior and ameliorated performance with respect to the reference specimens. The effectiveness and the easy-to-apply character of the presented strengthening technique is also discussed. Full article
Show Figures

Figure 1

19 pages, 5148 KiB  
Article
Effectiveness of the Novel Rehabilitation Method of Seismically Damaged RC Joints Using C-FRP Ropes and Comparison with Widely Applied Method Using C-FRP Sheets—Experimental Investigation
by Emmanouil Golias, Adamantis G. Zapris, Violetta K. Kytinou, George I. Kalogeropoulos, Constantin E. Chalioris and Chris G. Karayannis
Sustainability 2021, 13(11), 6454; https://doi.org/10.3390/su13116454 - 6 Jun 2021
Cited by 61 | Viewed by 4725
Abstract
The necessity of ensuring the long-term sustainability of existing structures is rising. An important issue concerning existing reinforced concrete (RC) structures in seismically active regions is that a significant number of them lack the required earthquake-resistant capacities to meet the increased design earthquake [...] Read more.
The necessity of ensuring the long-term sustainability of existing structures is rising. An important issue concerning existing reinforced concrete (RC) structures in seismically active regions is that a significant number of them lack the required earthquake-resistant capacities to meet the increased design earthquake demands. Inexpensive, fast and long-term strengthening strategies for repairing/strengthening RC structures are urgently required, not only after destructive earthquakes, but even before they occur. Retrofitting existing buildings extending their service life rather than demolishing and rebuilding new ones is the best option in terms of economic gain and environmental protection. This paper experimentally investigates the effectiveness of externally applied (i) carbon fiber-reinforced polymer (C-FRP) ropes in X-type form and (b) C-FRP sheets that are bonded on both sides of the joint area of RC beam-column joint connections. Six comparative full-scale exterior RC beam-column joint specimens were tested under reverse cyclic deformation. Two of them were control specimens, two were strengthened using C-FRP ropes (novel technique) and two were retrofitted using C-FRP sheets (widely used technique). Extensive comparisons and discussion of the test results derive new quantitative and qualitative results concerning the seismic capacity and the service life extension of the strengthened RC members using the proposed retrofitting scheme. Full article
(This article belongs to the Special Issue Innovations in Sustainable Materials and Construction Technologies)
Show Figures

Figure 1

21 pages, 3359 KiB  
Article
U-Jacketing Applications of Fiber-Reinforced Polymers in Reinforced Concrete T-Beams against Shear—Tests and Design
by Constantin E. Chalioris, Adamantis G. Zapris and Chris G. Karayannis
Fibers 2020, 8(2), 13; https://doi.org/10.3390/fib8020013 - 17 Feb 2020
Cited by 82 | Viewed by 8460
Abstract
The application of externally bonded fiber-reinforced polymer (EB-FRP) as shear transverse reinforcement applied in vulnerable reinforced concrete (RC) beams has been proved to be a promising strengthening technique. However, past studies revealed that the effectiveness of this method depends on how well the [...] Read more.
The application of externally bonded fiber-reinforced polymer (EB-FRP) as shear transverse reinforcement applied in vulnerable reinforced concrete (RC) beams has been proved to be a promising strengthening technique. However, past studies revealed that the effectiveness of this method depends on how well the reinforcement is bonded to the concrete surface. Thus, although the application of EB-FRP wrapping around the perimeter of rectangular cross-sections leads to outstanding results, U-jacketing in shear-critical T-beams seems to undergo premature debonding failures resulting in significant reductions of the predictable strength. In this work, five shear-critical RC beams with T-shaped cross-section were constructed, strengthened and tested in four-point bending. Epoxy bonded carbon FRP (C-FRP) sheets were applied on the three sides and along the entire length of the shear-strengthened T-beams as external transverse reinforcement. Furthermore, the potential enhancement of the C-FRP sheets anchorage using bolted steel laminates has been examined. Test results indicated that although the C-FRP strengthened beams exhibited increased shear capacity, the brittle failure mode was not prevented due to the debonding of the FRP from the concrete surface. Nevertheless, the applied mechanical anchor of the C-FRP sheets delayed the debonding. Moreover, the design provisions of three different code standards (Greek Code of Interventions, Eurocode 8 and ACI Committee 440) concerning the shear capacity of T-shaped RC beams retrofitted with EB-FRP jackets or strips in U-jacketing configuration are investigated. The ability of these code standards to predict safe design estimations is checked against 165 test data from the current experimental project and data available in the literature. Full article
(This article belongs to the Special Issue Steel Fibre Reinforced Concrete Behaviour)
Show Figures

Figure 1

Back to TopTop