Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Authors = Achim Lilienthal ORCID = 0000-0003-0217-9326

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5429 KiB  
Article
Video WeAther RecoGnition (VARG): An Intensity-Labeled Video Weather Recognition Dataset
by Himanshu Gupta, Oleksandr Kotlyar, Henrik Andreasson and Achim J. Lilienthal
J. Imaging 2024, 10(11), 281; https://doi.org/10.3390/jimaging10110281 - 5 Nov 2024
Viewed by 1646
Abstract
Adverse weather (rain, snow, and fog) can negatively impact computer vision tasks by introducing noise in sensor data; therefore, it is essential to recognize weather conditions for building safe and robust autonomous systems in the agricultural and autonomous driving/drone sectors. The performance degradation [...] Read more.
Adverse weather (rain, snow, and fog) can negatively impact computer vision tasks by introducing noise in sensor data; therefore, it is essential to recognize weather conditions for building safe and robust autonomous systems in the agricultural and autonomous driving/drone sectors. The performance degradation in computer vision tasks due to adverse weather depends on the type of weather and the intensity, which influences the amount of noise in sensor data. However, existing weather recognition datasets often lack intensity labels, limiting their effectiveness. To address this limitation, we present VARG, a novel video-based weather recognition dataset with weather intensity labels. The dataset comprises a diverse set of short video sequences collected from various social media platforms and videos recorded by the authors, processed into usable clips, and categorized into three major weather categories, rain, fog, and snow, with three intensity classes: absent/no, moderate, and high. The dataset contains 6742 annotated clips from 1079 videos, with the training set containing 5159 clips and the test set containing 1583 clips. Two sets of annotations are provided for training, the first set to train the models as a multi-label weather intensity classifier and the second set to train the models as a multi-class classifier for three weather scenarios. This paper describes the dataset characteristics and presents an evaluation study using several deep learning-based video recognition approaches for weather intensity prediction. Full article
Show Figures

Figure 1

24 pages, 738 KiB  
Article
Crossing-Point Estimation in Human–Robot Navigation—Statistical Linearization versus Sigma-Point Transformation
by Rainer Palm and Achim J. Lilienthal
Sensors 2024, 24(11), 3303; https://doi.org/10.3390/s24113303 - 22 May 2024
Viewed by 1112
Abstract
Interactions between mobile robots and human operators in common areas require a high level of safety, especially in terms of trajectory planning, obstacle avoidance and mutual cooperation. In this connection, the crossings of planned trajectories and their uncertainty based on model fluctuations, system [...] Read more.
Interactions between mobile robots and human operators in common areas require a high level of safety, especially in terms of trajectory planning, obstacle avoidance and mutual cooperation. In this connection, the crossings of planned trajectories and their uncertainty based on model fluctuations, system noise and sensor noise play an outstanding role. This paper discusses the calculation of the expected areas of interactions during human–robot navigation with respect to fuzzy and noisy information. The expected crossing points of the possible trajectories are nonlinearly associated with the positions and orientations of the robots and humans. The nonlinear transformation of a noisy system input, such as the directions of the motion of humans and robots, to a system output, the expected area of intersection of their trajectories, is performed by two methods: statistical linearization and the sigma-point transformation. For both approaches, fuzzy approximations are presented and the inverse problem is discussed where the input distribution parameters are computed from the given output distribution parameters. Full article
(This article belongs to the Special Issue Mobile Robots: Navigation, Control and Sensing)
Show Figures

Figure 1

29 pages, 1835 KiB  
Article
Exploration and Gas Source Localization in Advection–Diffusion Processes with Potential-Field-Controlled Robotic Swarms
by Patrick Hinsen, Thomas Wiedemann, Dmitriy Shutin and Achim J. Lilienthal
Sensors 2023, 23(22), 9232; https://doi.org/10.3390/s23229232 - 16 Nov 2023
Cited by 7 | Viewed by 1749
Abstract
Mobile multi-robot systems are well suited for gas leak localization in challenging environments. They offer inherent advantages such as redundancy, scalability, and resilience to hazardous environments, all while enabling autonomous operation, which is key to efficient swarm exploration. To efficiently localize gas sources [...] Read more.
Mobile multi-robot systems are well suited for gas leak localization in challenging environments. They offer inherent advantages such as redundancy, scalability, and resilience to hazardous environments, all while enabling autonomous operation, which is key to efficient swarm exploration. To efficiently localize gas sources using concentration measurements, robots need to seek out informative sampling locations. For this, domain knowledge needs to be incorporated into their exploration strategy. We achieve this by means of partial differential equations incorporated into a probabilistic gas dispersion model that is used to generate a spatial uncertainty map of process parameters. Previously, we presented a potential-field-control approach for navigation based on this map. We build upon this work by considering a more realistic gas dispersion model, now taking into account the mechanism of advection, and dynamics of the gas concentration field. The proposed extension is evaluated through extensive simulations. We find that introducing fluctuations in the wind direction makes source localization a fundamentally harder problem to solve. Nevertheless, the proposed approach can recover the gas source distribution and compete with a systematic sampling strategy. The estimator we present in this work is able to robustly recover source candidates within only a few seconds. Larger swarms are able to reduce total uncertainty faster. Our findings emphasize the applicability and robustness of robotic swarm exploration in dynamic and challenging environments for tasks such as gas source localization. Full article
(This article belongs to the Special Issue Robotics for Environment Sensing)
Show Figures

Figure 1

18 pages, 2824 KiB  
Article
Robust Scan Registration for Navigation in Forest Environment Using Low-Resolution LiDAR Sensors
by Himanshu Gupta, Henrik Andreasson, Achim J. Lilienthal and Polina Kurtser
Sensors 2023, 23(10), 4736; https://doi.org/10.3390/s23104736 - 14 May 2023
Cited by 5 | Viewed by 2110
Abstract
Automated forest machines are becoming important due to human operators’ complex and dangerous working conditions, leading to a labor shortage. This study proposes a new method for robust SLAM and tree mapping using low-resolution LiDAR sensors in forestry conditions. Our method relies on [...] Read more.
Automated forest machines are becoming important due to human operators’ complex and dangerous working conditions, leading to a labor shortage. This study proposes a new method for robust SLAM and tree mapping using low-resolution LiDAR sensors in forestry conditions. Our method relies on tree detection to perform scan registration and pose correction using only low-resolution LiDAR sensors (16Ch, 32Ch) or narrow field of view Solid State LiDARs without additional sensory modalities like GPS or IMU. We evaluate our approach on three datasets, including two private and one public dataset, and demonstrate improved navigation accuracy, scan registration, tree localization, and tree diameter estimation compared to current approaches in forestry machine automation. Our results show that the proposed method yields robust scan registration using detected trees, outperforming generalized feature-based registration algorithms like Fast Point Feature Histogram, with an above 3 m reduction in RMSE for the 16Chanel LiDAR sensor. For Solid-State LiDAR the algorithm achieves a similar RMSE of 3.7 m. Additionally, our adaptive pre-processing and heuristic approach to tree detection increased the number of detected trees by 13% compared to the current approach of using fixed radius search parameters for pre-processing. Our automated tree trunk diameter estimation method yields a mean absolute error of 4.3 cm (RSME = 6.5 cm) for the local map and complete trajectory maps. Full article
(This article belongs to the Special Issue Sensor Based Perception for Field Robotics)
Show Figures

Figure 1

25 pages, 637 KiB  
Article
URSIM: Unique Regions for Sketch Map Interpretation and Matching
by Malcolm Mielle, Martin Magnusson and Achim J. Lilienthal
Robotics 2019, 8(2), 43; https://doi.org/10.3390/robotics8020043 - 5 Jun 2019
Cited by 3 | Viewed by 6129
Abstract
We present a method for matching sketch maps to a corresponding metric map, with the aim of later using the sketch as an intuitive interface for human–robot interactions. While sketch maps are not metrically accurate and many details, which are deemed unnecessary, are [...] Read more.
We present a method for matching sketch maps to a corresponding metric map, with the aim of later using the sketch as an intuitive interface for human–robot interactions. While sketch maps are not metrically accurate and many details, which are deemed unnecessary, are omitted, they represent the topology of the environment well and are typically accurate at key locations. Thus, for sketch map interpretation and matching, one cannot only rely on metric information. Our matching method first finds the most distinguishable, or unique, regions of two maps. The topology of the maps, the positions of the unique regions, and the size of all regions are used to build region descriptors. Finally, a sequential graph matching algorithm uses the region descriptors to find correspondences between regions of the sketch and metric maps. Our method obtained higher accuracy than both a state-of-the-art matching method for inaccurate map matching, and our previous work on the subject. The state of the art was unable to match sketch maps while our method performed only 10% worse than a human expert. Full article
Show Figures

Graphical abstract

21 pages, 3383 KiB  
Article
The Auto-Complete Graph: Merging and Mutual Correction of Sensor and Prior Maps for SLAM
by Malcolm Mielle, Martin Magnusson and Achim J. Lilienthal
Robotics 2019, 8(2), 40; https://doi.org/10.3390/robotics8020040 - 29 May 2019
Cited by 10 | Viewed by 7163
Abstract
Simultaneous Localization And Mapping (SLAM) usually assumes the robot starts without knowledge of the environment. While prior information, such as emergency maps or layout maps, is often available, integration is not trivial since such maps are often out of date and have uncertainty [...] Read more.
Simultaneous Localization And Mapping (SLAM) usually assumes the robot starts without knowledge of the environment. While prior information, such as emergency maps or layout maps, is often available, integration is not trivial since such maps are often out of date and have uncertainty in local scale. Integration of prior map information is further complicated by sensor noise, drift in the measurements, and incorrect scan registrations in the sensor map. We present the Auto-Complete Graph (ACG), a graph-based SLAM method merging elements of sensor and prior maps into one consistent representation. After optimizing the ACG, the sensor map’s errors are corrected thanks to the prior map, while the sensor map corrects the local scale inaccuracies in the prior map. We provide three datasets with associated prior maps: two recorded in campus environments, and one from a fireman training facility. Our method handled up to 40% of noise in odometry, was robust to varying levels of details between the prior and the sensor map, and could correct local scale errors of the prior. In field tests with ACG, users indicated points of interest directly on the prior before exploration. We did not record failures in reaching them. Full article
(This article belongs to the Special Issue Robotics in Extreme Environments)
Show Figures

Figure 1

21 pages, 6309 KiB  
Article
Multi-Domain Airflow Modeling and Ventilation Characterization Using Mobile Robots, Stationary Sensors and Machine Learning
by Victor Hernandez Bennetts, Kamarulzaman Kamarudin, Thomas Wiedemann, Tomasz Piotr Kucner, Sai Lokesh Somisetty and Achim J. Lilienthal
Sensors 2019, 19(5), 1119; https://doi.org/10.3390/s19051119 - 5 Mar 2019
Cited by 5 | Viewed by 5002
Abstract
Ventilation systems are critically important components of many public buildings and workspaces. Proper ventilation is often crucial for preventing accidents, such as explosions in mines and avoiding health issues, for example, through long-term exposure to harmful respirable matter. Validation and maintenance of ventilation [...] Read more.
Ventilation systems are critically important components of many public buildings and workspaces. Proper ventilation is often crucial for preventing accidents, such as explosions in mines and avoiding health issues, for example, through long-term exposure to harmful respirable matter. Validation and maintenance of ventilation systems is thus of key interest for plant operators and authorities. However, methods for ventilation characterization, which allow us to monitor whether the ventilation system in place works as desired, hardly exist. This article addresses the critical challenge of ventilation characterization—measuring and modelling air flow at micro-scales—that is, creating a high-resolution model of wind speed and direction from airflow measurements. Models of the near-surface micro-scale flow fields are not only useful for ventilation characterization, but they also provide critical information for planning energy-efficient paths for aerial robots and many applications in mobile robot olfaction. In this article we propose a heterogeneous measurement system composed of static, continuously sampling sensing nodes, complemented by localized measurements, collected during occasional sensing missions with a mobile robot. We introduce a novel, data-driven, multi-domain airflow modelling algorithm that estimates (1) fields of posterior distributions over wind direction and speed (“ventilation maps”, spatial domain); (2) sets of ventilation calendars that capture the evolution of important airflow characteristics at measurement positions (temporal domain); and (3) a frequency domain analysis that can reveal periodic changes of airflow in the environment. The ventilation map and the ventilation calendars make use of an improved estimation pipeline that incorporates a wind sensor model and a transition model to better filter out sporadic, noisy airflow changes. These sudden changes may originate from turbulence or irregular activity in the surveyed environment and can, therefore, disturb modelling of the relevant airflow patterns. We tested the proposed multi-domain airflow modelling approach with simulated data and with experiments in a semi-controlled environment and present results that verify the accuracy of our approach and its sensitivity to different turbulence levels and other disturbances. Finally, we deployed the proposed system in two different real-world industrial environments (foundry halls) with different ventilation regimes for three weeks during full operation. Since airflow ground truth cannot be obtained, we present a qualitative discussion of the generated airflow models with plant operators, who concluded that the computed models accurately depicted the expected airflow patterns and are useful to understand how pollutants spread in the work environment. This analysis may then provide the basis for decisions about corrective actions to avoid long-term exposure of workers to harmful respirable matter. Full article
Show Figures

Figure 1

28 pages, 5949 KiB  
Article
Towards Gas Discrimination and Mapping in Emergency Response Scenarios Using a Mobile Robot with an Electronic Nose
by Han Fan, Victor Hernandez Bennetts, Erik Schaffernicht and Achim J. Lilienthal
Sensors 2019, 19(3), 685; https://doi.org/10.3390/s19030685 - 7 Feb 2019
Cited by 47 | Viewed by 7096
Abstract
Emergency personnel, such as firefighters, bomb technicians, and urban search and rescue specialists, can be exposed to a variety of extreme hazards during the response to natural and human-made disasters. In many of these scenarios, a risk factor is the presence of hazardous [...] Read more.
Emergency personnel, such as firefighters, bomb technicians, and urban search and rescue specialists, can be exposed to a variety of extreme hazards during the response to natural and human-made disasters. In many of these scenarios, a risk factor is the presence of hazardous airborne chemicals. The recent and rapid advances in robotics and sensor technologies allow emergency responders to deal with such hazards from relatively safe distances. Mobile robots with gas-sensing capabilities allow to convey useful information such as the possible source positions of different chemicals in the emergency area. However, common gas sampling procedures for laboratory use are not applicable due to the complexity of the environment and the need for fast deployment and analysis. In addition, conventional gas identification approaches, based on supervised learning, cannot handle situations when the number and identities of the present chemicals are unknown. For the purpose of emergency response, all the information concluded from the gas detection events during the robot exploration should be delivered in real time. To address these challenges, we developed an online gas-sensing system using an electronic nose. Our system can automatically perform unsupervised learning and update the discrimination model as the robot is exploring a given environment. The online gas discrimination results are further integrated with geometrical information to derive a multi-compound gas spatial distribution map. The proposed system is deployed on a robot built to operate in harsh environments for supporting fire brigades, and is validated in several different real-world experiments of discriminating and mapping multiple chemical compounds in an indoor open environment. Our results show that the proposed system achieves high accuracy in gas discrimination in an online, unsupervised, and computationally efficient manner. The subsequently created gas distribution maps accurately indicate the presence of different chemicals in the environment, which is of practical significance for emergency response. Full article
Show Figures

Figure 1

24 pages, 1376 KiB  
Article
Analysis of Model Mismatch Effects for a Model-Based Gas Source Localization Strategy Incorporating Advection Knowledge
by Thomas Wiedemann, Achim J. Lilienthal and Dmitriy Shutin
Sensors 2019, 19(3), 520; https://doi.org/10.3390/s19030520 - 26 Jan 2019
Cited by 17 | Viewed by 4493
Abstract
In disaster scenarios, where toxic material is leaking, gas source localization is a common but also dangerous task. To reduce threats for human operators, we propose an intelligent sampling strategy that enables a multi-robot system to autonomously localize unknown gas sources based on [...] Read more.
In disaster scenarios, where toxic material is leaking, gas source localization is a common but also dangerous task. To reduce threats for human operators, we propose an intelligent sampling strategy that enables a multi-robot system to autonomously localize unknown gas sources based on gas concentration measurements. This paper discusses a probabilistic, model-based approach for incorporating physical process knowledge into the sampling strategy. We model the spatial and temporal dynamics of the gas dispersion with a partial differential equation that accounts for diffusion and advection effects. We consider the exact number of sources as unknown, but assume that gas sources are sparsely distributed. To incorporate the sparsity assumption we make use of sparse Bayesian learning techniques. Probabilistic modeling can account for possible model mismatch effects that otherwise can undermine the performance of deterministic methods. In the paper we evaluate the proposed gas source localization strategy in simulations using synthetic data. Compared to real-world experiments, a simulated environment provides us with ground truth data and reproducibility necessary to get a deeper insight into the proposed strategy. The investigation shows that (i) the probabilistic model can compensate imperfect modeling; (ii) the sparsity assumption significantly accelerates the source localization; and (iii) a-priori advection knowledge is of advantage for source localization, however, it is only required to have a certain level of accuracy. These findings will help in the future to parameterize the proposed algorithm in real world applications. Full article
Show Figures

Figure 1

25 pages, 10669 KiB  
Article
Smelling Nano Aerial Vehicle for Gas Source Localization and Mapping
by Javier Burgués, Victor Hernández, Achim J. Lilienthal and Santiago Marco
Sensors 2019, 19(3), 478; https://doi.org/10.3390/s19030478 - 24 Jan 2019
Cited by 118 | Viewed by 17653
Abstract
This paper describes the development and validation of the currently smallest aerial platform with olfaction capabilities. The developed Smelling Nano Aerial Vehicle (SNAV) is based on a lightweight commercial nano-quadcopter (27 g) equipped with a custom gas sensing board that can host up [...] Read more.
This paper describes the development and validation of the currently smallest aerial platform with olfaction capabilities. The developed Smelling Nano Aerial Vehicle (SNAV) is based on a lightweight commercial nano-quadcopter (27 g) equipped with a custom gas sensing board that can host up to two in situ metal oxide semiconductor (MOX) gas sensors. Due to its small form-factor, the SNAV is not a hazard for humans, enabling its use in public areas or inside buildings. It can autonomously carry out gas sensing missions of hazardous environments inaccessible to terrestrial robots and bigger drones, for example searching for victims and hazardous gas leaks inside pockets that form within the wreckage of collapsed buildings in the aftermath of an earthquake or explosion. The first contribution of this work is assessing the impact of the nano-propellers on the MOX sensor signals at different distances to a gas source. A second contribution is adapting the ‘bout’ detection algorithm, proposed by Schmuker et al. (2016) to extract specific features from the derivative of the MOX sensor response, for real-time operation. The third and main contribution is the experimental validation of the SNAV for gas source localization (GSL) and mapping in a large indoor environment (160 m2) with a gas source placed in challenging positions for the drone, for example hidden in the ceiling of the room or inside a power outlet box. Two GSL strategies are compared, one based on the instantaneous gas sensor response and the other one based on the bout frequency. From the measurements collected (in motion) along a predefined sweeping path we built (in less than 3 min) a 3D map of the gas distribution and identified the most likely source location. Using the bout frequency yielded on average a higher localization accuracy than using the instantaneous gas sensor response (1.38 m versus 2.05 m error), however accurate tuning of an additional parameter (the noise threshold) is required in the former case. The main conclusion of this paper is that a nano-drone has the potential to perform gas sensing tasks in complex environments. Full article
Show Figures

Figure 1

4 pages, 998 KiB  
Proceeding Paper
3D Gas Distribution with and without Artificial Airflow: An Experimental Study with a Grid of Metal Oxide Semiconductor Gas Sensors
by Javier Burgués, Victor Hernandez, Achim J. Lilienthal and Santiago Marco
Proceedings 2018, 2(13), 911; https://doi.org/10.3390/proceedings2130911 - 29 Nov 2018
Cited by 3 | Viewed by 5426
Abstract
Gas distribution modelling can provide potentially life-saving information when assessing the hazards of gaseous emissions and for localization of explosives, toxic or flammable chemicals. In this work, we deployed a three-dimensional (3D) grid of metal oxide semiconductor (MOX) gas sensors deployed in an [...] Read more.
Gas distribution modelling can provide potentially life-saving information when assessing the hazards of gaseous emissions and for localization of explosives, toxic or flammable chemicals. In this work, we deployed a three-dimensional (3D) grid of metal oxide semiconductor (MOX) gas sensors deployed in an office room, which allows for novel insights about the complex patterns of indoor gas dispersal. 12 independent experiments were carried out to better understand dispersion patters of a single gas source placed at different locations of the room, including variations in height, release rate and air flow profiles. This dataset is denser and richer than what is currently available, i.e., 2D datasets in wind tunnels. We make it publicly available to enable the community to develop, validate, and compare new approaches related to gas sensing in complex environments. Full article
(This article belongs to the Proceedings of EUROSENSORS 2018)
Show Figures

Figure 1

13 pages, 1059 KiB  
Article
Compressed Voxel-Based Mapping Using Unsupervised Learning
by Daniel Ricao Canelhas, Erik Schaffernicht, Todor Stoyanov, Achim J. Lilienthal and Andrew J. Davison
Robotics 2017, 6(3), 15; https://doi.org/10.3390/robotics6030015 - 29 Jun 2017
Cited by 10 | Viewed by 10431
Abstract
In order to deal with the scaling problem of volumetric map representations, we propose spatially local methods for high-ratio compression of 3D maps, represented as truncated signed distance fields. We show that these compressed maps can be used as meaningful descriptors for selective [...] Read more.
In order to deal with the scaling problem of volumetric map representations, we propose spatially local methods for high-ratio compression of 3D maps, represented as truncated signed distance fields. We show that these compressed maps can be used as meaningful descriptors for selective decompression in scenarios relevant to robotic applications. As compression methods, we compare using PCA-derived low-dimensional bases to nonlinear auto-encoder networks. Selecting two application-oriented performance metrics, we evaluate the impact of different compression rates on reconstruction fidelity as well as to the task of map-aided ego-motion estimation. It is demonstrated that lossily reconstructed distance fields used as cost functions for ego-motion estimation can outperform the original maps in challenging scenarios from standard RGB-D (color plus depth) data sets due to the rejection of high-frequency noise content. Full article
(This article belongs to the Special Issue Robotics and 3D Vision)
Show Figures

Figure 1

16 pages, 4959 KiB  
Article
GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments
by Javier Monroy, Victor Hernandez-Bennetts, Han Fan, Achim Lilienthal and Javier Gonzalez-Jimenez
Sensors 2017, 17(7), 1479; https://doi.org/10.3390/s17071479 - 23 Jun 2017
Cited by 101 | Viewed by 17397
Abstract
This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion [...] Read more.
This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

19 pages, 14375 KiB  
Article
Building an Enhanced Vocabulary of the Robot Environment with a Ceiling Pointing Camera
by Alejandro Rituerto, Henrik Andreasson, Ana C. Murillo, Achim Lilienthal and José Jesús Guerrero
Sensors 2016, 16(4), 493; https://doi.org/10.3390/s16040493 - 7 Apr 2016
Cited by 2 | Viewed by 7682
Abstract
Mobile robots are of great help for automatic monitoring tasks in different environments. One of the first tasks that needs to be addressed when creating these kinds of robotic systems is modeling the robot environment. This work proposes a pipeline to build an [...] Read more.
Mobile robots are of great help for automatic monitoring tasks in different environments. One of the first tasks that needs to be addressed when creating these kinds of robotic systems is modeling the robot environment. This work proposes a pipeline to build an enhanced visual model of a robot environment indoors. Vision based recognition approaches frequently use quantized feature spaces, commonly known as Bag of Words (BoW) or vocabulary representations. A drawback using standard BoW approaches is that semantic information is not considered as a criteria to create the visual words. To solve this challenging task, this paper studies how to leverage the standard vocabulary construction process to obtain a more meaningful visual vocabulary of the robot work environment using image sequences. We take advantage of spatio-temporal constraints and prior knowledge about the position of the camera. The key contribution of our work is the definition of a new pipeline to create a model of the environment. This pipeline incorporates (1) tracking information to the process of vocabulary construction and (2) geometric cues to the appearance descriptors. Motivated by long term robotic applications, such as the aforementioned monitoring tasks, we focus on a configuration where the robot camera points to the ceiling, which captures more stable regions of the environment. The experimental validation shows how our vocabulary models the environment in more detail than standard vocabulary approaches, without loss of recognition performance. We show different robotic tasks that could benefit of the use of our visual vocabulary approach, such as place recognition or object discovery. For this validation, we use our publicly available data-set. Full article
(This article belongs to the Special Issue Robotic Sensory Systems for Environment Protection and Conservation)
Show Figures

Figure 1

27 pages, 7652 KiB  
Article
Global Coverage Measurement Planning Strategies for Mobile Robots Equipped with a Remote Gas Sensor
by Muhammad Asif Arain, Marco Trincavelli, Marcello Cirillo, Erik Schaffernicht and Achim J. Lilienthal
Sensors 2015, 15(3), 6845-6871; https://doi.org/10.3390/s150306845 - 20 Mar 2015
Cited by 16 | Viewed by 9414
Abstract
The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote [...] Read more.
The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop