Characterization of Unusual Serogroups of Neisseria meningitidis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of the Study Cohort
2.2. Characterization of Clinical Isolates
2.3. Bactericidal Activity Assays and Prediction of Strain Vaccine Coverage
2.4. Measure of Complement Deposit on the Bacterial Surface
3. Results
3.1. Characteristics of IMD Cases of Unusual Serogroups
3.2. Complement Activation on Meningococcal Bacterial Surface
3.3. Coverage of Serogroup E Isolates by Vaccines Against Meningococci B
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caugant, D.A.; Maiden, M.C. Meningococcal carriage and disease–population biology and evolution. Vaccine 2009, 27 (Suppl. 2), B64–B70. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, R.; Bai, X.; Borrow, R.; Caugant, D.A.; Carlos, J.; Ceyhan, M.; Christensen, H.; Climent, Y.; De Wals, P.; Dinleyici, E.C.; et al. The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: Epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Rev. Vaccines 2019, 18, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Rosain, J.; Hong, E.; Fieschi, C.; Martins, P.V.; El Sissy, C.; Deghmane, A.E.; Ouachee, M.; Thomas, C.; Launay, D.; de Pontual, L.; et al. Strains Responsible for Invasive Meningococcal Disease in Patients with Terminal Complement Pathway Deficiencies. J. Infect. Dis. 2017, 215, 1331–1338. [Google Scholar] [CrossRef]
- McNamara, L.A.; Topaz, N.; Wang, X.; Hariri, S.; Fox, L.; MacNeil, J.R. High Risk for Invasive Meningococcal Disease Among Patients Receiving Eculizumab (Soliris) Despite Receipt of Meningococcal Vaccine. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 734–737. [Google Scholar] [CrossRef]
- Biolchi, A.; Tomei, S.; Brunelli, B.; Giuliani, M.; Bambini, S.; Borrow, R.; Claus, H.; Gorla, M.C.O.; Hong, E.; Lemos, A.P.S.; et al. 4CMenB Immunization Induces Serum Bactericidal Antibodies Against Non-Serogroup B Meningococcal Strains in Adolescents. Infect. Dis. Ther. 2021, 10, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Ladhani, S.N.; Campbell, H.; Lucidarme, J.; Gray, S.; Parikh, S.; Willerton, L.; Clark, S.A.; Lekshmi, A.; Walker, A.; Patel, S.; et al. Invasive meningococcal disease in patients with complement deficiencies: A case series (2008–2017). BMC Infect. Dis. 2019, 19, 522. [Google Scholar] [CrossRef]
- Langereis, J.D.; van den Broek, B.; Franssen, S.; Joosten, I.; Blijlevens, N.M.A.; de Jonge, M.I.; Langemeijer, S. Eculizumab impairs Neisseria meningitidis serogroup B killing in whole blood despite 4CMenB vaccination of PNH patients. Blood Adv. 2020, 4, 3615–3620. [Google Scholar] [CrossRef]
- Taha, S.; Taha, M.K.; Deghmane, A.E. Impact of mandatory vaccination against serogroup C meningococci in targeted and non-targeted populations in France. NPJ Vaccines 2022, 7, 73. [Google Scholar] [CrossRef]
- Haut Conseil de la santé publique. Avis. Relatif à L’utilisation du Vaccin Méningococcique Tétravalent Conjugué A, C, Y, W135 NIMENRIX® et à la Place Respective Des Vaccins Méningococciques Tétravalents Conjugués et Non Conjugués; Haut Conseil de la santé publique: Paris, France, 2012. [Google Scholar]
- Haut Conseil de la santé publique. Vaccination Contre Les Infections Invasives à Méningocoque, B. Place du Vaccin Bexsero®; Haut Conseil de la santé publique: Paris, France, 2014. [Google Scholar]
- Haut Conseil de la santé publique. Stratégie de Vaccination Contre Les Infections Invasives à Méningocoques. Révision de la Stratégie Contre Les Sérogroupes ACWY et B; Haut Conseil de la santé publique: Paris, France, 2024. [Google Scholar]
- Hong, E.; Terrade, A.; Taha, M.K. Immunogenicity and safety among laboratory workers vaccinated with Bexsero(R) vaccine. Hum. Vaccin. Immunother. 2017, 13, 645–648. [Google Scholar] [CrossRef]
- Rodrigues, C.M.C.; Jolley, K.A.; Smith, A.; Cameron, J.C.; Feavers, I.M.; Maiden, M.C.J. Meningococcal Deduced Vaccine Antigen Reactivity (MenDeVAR) Index: A Rapid and Accessible Tool That Exploits Genomic Data in Public Health and Clinical Microbiology Applications. J. Clin. Microbiol. 2020, 59, 10-1128. [Google Scholar] [CrossRef]
- Girmenia, C.; Barcellini, W.; Bianchi, P.; Di Bona, E.; Iori, A.P.; Notaro, R.; Sica, S.; Zanella, A.; De Vivo, A.; Barosi, G.; et al. Management of infection in PNH patients treated with eculizumab or other complement inhibitors: Unmet clinical needs. Blood Rev. 2023, 58, 101013. [Google Scholar] [CrossRef] [PubMed]
- Hillmen, P.; Elebute, M.; Kelly, R.; Urbano-Ispizua, A.; Hill, A.; Rother, R.P.; Khursigara, G.; Fu, C.L.; Omine, M.; Browne, P.; et al. Long-term effect of the complement inhibitor eculizumab on kidney function in patients with paroxysmal nocturnal hemoglobinuria. Am. J. Hematol. 2010, 85, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Stefanelli, P.; Neri, A.; Vacca, P.; Picicco, D.; Daprai, L.; Mainardi, G.; Rossolini, G.M.; Bartoloni, A.; Anselmo, A.; Ciammaruconi, A.; et al. Meningococci of Serogroup X Clonal Complex 181 in Refugee Camps, Italy. Emerg. Infect. Dis. 2017, 23, 870–872. [Google Scholar] [CrossRef]
- Taha, S.; Hong, E.; Denizon, M.; Falguieres, M.; Terrade, A.; Deghmane, A.E.; Taha, M.K. The rapid rebound of invasive meningococcal disease in France at the end of 2022. J. Infect. Public Health 2023, 16, 1954–1960. [Google Scholar] [CrossRef]
- Lewis, L.A.; Ram, S. Meningococcal disease and the complement system. Virulence 2014, 5, 98–126. [Google Scholar] [CrossRef]
- Kahler, C.M.; Martin, L.E.; Shih, G.C.; Rahman, M.M.; Carlson, R.W.; Stephens, D.S. The (alpha2-->8)-linked polysialic acid capsule and lipooligosaccharide structure both contribute to the ability of serogroup B Neisseria meningitidis to resist the bactericidal activity of normal human serum. Infect. Immun. 1998, 66, 5939–5947. [Google Scholar] [CrossRef] [PubMed]
- Ram, S.; Lewis, L.A.; Agarwal, S. Meningococcal group W-135 and Y capsular polysaccharides paradoxically enhance activation of the alternative pathway of complement. J. Biol. Chem. 2011, 286, 8297–8307. [Google Scholar] [CrossRef]
- Vogel, U.; Weinberger, A.; Frank, R.; Muller, A.; Kohl, J.; Atkinson, J.P.; Frosch, M. Complement factor C3 deposition and serum resistance in isogenic capsule and lipooligosaccharide sialic acid mutants of serogroup B Neisseria meningitidis. Infect. Immun. 1997, 65, 4022–4029. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.A.; Ram, S.; Prasad, A.; Gulati, S.; Getzlaff, S.; Blom, A.M.; Vogel, U.; Rice, P.A. Defining targets for complement components C4b and C3b on the pathogenic neisseriae. Infect. Immun. 2008, 76, 339–350. [Google Scholar] [CrossRef]
- Platonov, A.E.; Beloborodov, V.B.; Vershinina, I.V. Meningococcal disease in patients with late complement component deficiency: Studies in the U.S.S.R. Medicine 1993, 72, 374–392. [Google Scholar] [CrossRef]
- Figueroa, J.E.; Densen, P. Infectious diseases associated with complement deficiencies. Clin. Microbiol. Rev. 1991, 4, 359–395. [Google Scholar] [CrossRef] [PubMed]
- Taieb, A.; Nassim, B.H.S.; Asma, G.; Jabeur, M.; Ghada, S.; Asma, B.A. The Growing Understanding of the Pituitary Implication in the Pathogenesis of Long COVID-19 Syndrome: A Narrative Review. Adv. Respir. Med. 2024, 92, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Jasdanwala, S.; Agarwal, A.; Eng, M. Fatal Waterhouse-Friderichsen syndrome due to serotype C Neisseria meningitidis in a young HIV negative MSM (men who have sex with men). BMJ Case Rep. 2014, 2014, bcr2014206295. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.; Harris, M.D.; Foweraker, J.; Gresham, G.A. Waterhouse-Friderichsen syndrome as a result of non-meningococcal infection. J. Clin. Pathol. 2004, 57, 208–209. [Google Scholar] [CrossRef]
- Orren, A.; Caugant, D.A.; Fijen, C.A.; Dankert, J.; van Schalkwyk, E.J.; Poolman, J.T.; Coetzee, G.J. Characterization of strains of Neisseria meningitidis recovered from complement-sufficient and complement-deficient patients in the Western Cape Province, South Africa. J. Clin. Microbiol. 1994, 32, 2185–2191. [Google Scholar] [CrossRef]
- Lemee, L.; Hong, E.; Etienne, M.; Deghmane, A.E.; Delbos, V.; Terrade, A.; Berthelot, G.; Caron, F.; Taha, M.K. Genetic diversity and levels of expression of factor H binding protein among carriage isolates of Neisseria meningitidis. PLoS ONE 2014, 9, e107240. [Google Scholar] [CrossRef]
- Yazdankhah, S.P.; Kriz, P.; Tzanakaki, G.; Kremastinou, J.; Kalmusova, J.; Musilek, M.; Alvestad, T.; Jolley, K.A.; Wilson, D.J.; McCarthy, N.D.; et al. Distribution of Serogroups and Genotypes among Disease-Associated and Carried Isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. J. Clin. Microbiol. 2004, 42, 5146–5153. [Google Scholar] [CrossRef]
- Christensen, H.; May, M.; Bowen, L.; Hickman, M.; Trotter, C.L. Meningococcal carriage by age: A systematic review and meta-analysis. Lancet Infect. Dis. 2010, 10, 853–861. [Google Scholar] [CrossRef]
- Keating, G.M. Eculizumab: A review of its use in atypical haemolytic uraemic syndrome. Drugs 2013, 73, 2053–2066. [Google Scholar] [CrossRef]
- Habib, A.A.; Klink, A.J.; Muppidi, S.; Parthan, A.; Sader, S.C.; Balanean, A.; Gajra, A.; Nowak, R.J.; Howard, J.F., Jr.; Group, E.S. United States clinical practice experience with eculizumab in myasthenia gravis: Symptoms, function, and immunosuppressant therapy use. J. Neurol. 2024, 271, 6114–6126. [Google Scholar] [CrossRef]
- Stascheit, F.; Sousa, C.D.F.; Aigner, A.; Behrens, M.; Keller, C.W.; Klotz, L.; Lehnerer, S.; Stein, M.; Herdick, M.; Doksani, P.; et al. Ravulizumab and Efgartigimod in Myasthenia Gravis: A Real-World Study. Neurol. Neuroimmunol. Neuroinflamm 2024, 12, e200331. [Google Scholar] [CrossRef] [PubMed]
- Pittock, S.J.; Zekeridou, A.; Weinshenker, B.G. Hope for patients with neuromyelitis optica spectrum disorders—From mechanisms to trials. Nat. Rev. Neurol. 2021, 17, 759–773. [Google Scholar] [CrossRef]
- Konar, M.; Granoff, D.M. Eculizumab treatment and impaired opsonophagocytic killing of meningococci by whole blood from immunized adults. Blood 2017, 130, 891–899. [Google Scholar] [CrossRef]
- Gackler, A.; Kaulfuss, M.; Rohn, H.; Vogel, U.; Claus, H.; Feldkamp, T.; Kribben, A.; Witzke, O. Failure of first meningococcal vaccination in patients with atypical haemolytic uraemic syndrome treated with eculizumab. Nephrol. Dial. Transplant. 2020, 35, 298–303. [Google Scholar] [CrossRef]
- Parikh, S.R.; Lucidarme, J.; Bingham, C.; Warwicker, P.; Goodship, T.; Borrow, R.; Ladhani, S.N. Meningococcal B Vaccine Failure With a Penicillin-Resistant Strain in a Young Adult on Long-Term Eculizumab. Pediatrics 2017, 140, e20162452. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.H.; Neuzil, K.M.; Boyce, C.R.; Pasetti, M.F.; Reymann, M.K.; Martellet, L.; Hosken, N.; LaForce, F.M.; Dhere, R.M.; Pisal, S.S.; et al. Safety and immunogenicity of a pentavalent meningococcal conjugate vaccine containing serogroups A, C, Y, W, and X in healthy adults: A phase 1, single-centre, double-blind, randomised, controlled study. Lancet Infect. Dis. 2018, 18, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.; Drazan, D.; Czajka, H.; Maguire, J.; Pregaldien, J.L.; Seppa, I.; Maansson, R.; O’Neill, R.; Balmer, P.; Jodar, L.; et al. Immunogenicity and safety of a pentavalent meningococcal ABCWY vaccine in adolescents and young adults: An observer-blind, active-controlled, randomised trial. Lancet Infect. Dis. 2023, 23, 1370–1382. [Google Scholar] [CrossRef]
- Peterson, J.; Drazan, D.; Moughan, B.; Maguire, J.D.; Zolotas, L.; Maansson, R.; O’Neill, R.; Peyrani, P.; Jodar, L.; Gruber, W.C.; et al. Randomized trial showing persistence of hSBA titers elicited by a pentavalent meningococcal MenABCWY vaccine for up to 4 years following a primary series and safety and immunogenicity of a booster dose. Vaccine 2024, 43, 126469. [Google Scholar] [CrossRef]
- Loirat, C.; Fakhouri, F.; Ariceta, G.; Besbas, N.; Bitzan, M.; Bjerre, A.; Coppo, R.; Emma, F.; Johnson, S.; Karpman, D.; et al. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr. Nephrol. 2015, 31, 15–39. [Google Scholar] [CrossRef]
- Patriquin, C.J.; Kuo, K.H.M. Eculizumab and Beyond: The Past, Present, and Future of Complement Therapeutics. Transfus. Med. Rev. 2019, 33, 256–265. [Google Scholar] [CrossRef]
- Jolley, K.A.; Maiden, M.C. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010, 11, 595. [Google Scholar] [CrossRef] [PubMed]
Year | B | C | W | Y | B, C, W, Y | Others | X | E ¥ | Z | NG § | All |
---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 217 | 111 | 19 | 40 | 387 | 2 | 1 | 0 | 0 | 1 | 389 |
2015 | 213 | 110 | 27 | 51 | 401 | 9 | 1 | 2 | 0 | 6 | 410 |
2016 | 219 | 111 | 45 | 57 | 432 | 6 | 4 | 1 | 0 | 1 | 438 |
2017 | 190 | 121 | 69 | 73 | 453 | 3 | 2 | 0 | 0 | 1 | 456 |
2018 | 191 | 88 | 57 | 55 | 391 | 2 | 0 | 1 | 0 | 1 | 393 |
2019 | 210 | 51 | 87 | 51 | 399 | 10 | 8 | 1 | 0 | 1 | 409 |
2020 | 112 | 20 | 39 | 23 | 194 | 5 | 2 | 1 | 0 | 2 | 199 |
2021 | 66 | 3 | 16 | 16 | 101 | 5 | 2 | 0 | 0 | 3 | 106 |
2022 | 142 | 8 | 55 | 66 | 271 | 6 | 0 | 0 | 1 | 5 | 277 |
2023 | 224 | 4 | 161 | 133 | 522 | 11 | 1 | 5 | 0 | 5 | 533 |
2014–2023 | 1784 | 627 | 575 | 565 | 3551 | 59 | 21 | 11 | 1 | 26 | 3610 |
Age Median | 17.7 | 27.8 | 40.6 | 53.4 | 22.3 | 21.5 | 21.5 | 21.1 | 19.7 | 23.3 | 22.3 |
% of under 18 years of age | 51% | 30% | 27% | 19% | 38% | 29% | 43% | 9% | 0% | 27% | 37% |
M/F sex ratio | 1.1 | 1.0 | 0.8 | 0.8 | 1.0 | 1.1 | 0.3 | 2.7 | 1.9 | 1.0 |
E (n = 8) * | X (n = 13) | Z (n = 1) | NG (n = 16) | All (n = 38) | |
---|---|---|---|---|---|
4CMenB vaccine | |||||
Covered | 0 | 3 | 0 | 4 | 7 |
Unpredictable | 8 | 10 | 1 | 12 | 31 |
Bivalent fHbp vaccine | |||||
Covered | 8 | 6 | 1 | 5 | 20 |
Unpredictable | 0 | 7 | 0 | 11 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, S.; Fantoni, G.; Hong, E.; Terrade, A.; Doucoure, O.; Deghmane, A.-E.; Taha, M.-K. Characterization of Unusual Serogroups of Neisseria meningitidis. Microorganisms 2024, 12, 2528. https://doi.org/10.3390/microorganisms12122528
Taha S, Fantoni G, Hong E, Terrade A, Doucoure O, Deghmane A-E, Taha M-K. Characterization of Unusual Serogroups of Neisseria meningitidis. Microorganisms. 2024; 12(12):2528. https://doi.org/10.3390/microorganisms12122528
Chicago/Turabian StyleTaha, Samy, Giulia Fantoni, Eva Hong, Aude Terrade, Oumar Doucoure, Ala-Eddine Deghmane, and Muhamed-Kheir Taha. 2024. "Characterization of Unusual Serogroups of Neisseria meningitidis" Microorganisms 12, no. 12: 2528. https://doi.org/10.3390/microorganisms12122528
APA StyleTaha, S., Fantoni, G., Hong, E., Terrade, A., Doucoure, O., Deghmane, A.-E., & Taha, M.-K. (2024). Characterization of Unusual Serogroups of Neisseria meningitidis. Microorganisms, 12(12), 2528. https://doi.org/10.3390/microorganisms12122528