Combined Effects of the Pijolavirus UFJF_PfSW6 Phage and Sodium Hypochlorite for Reducing Pseudomonas fluorescens Biofilm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Culture Conditions
2.2. Phages and Titration of Stock Solution
2.3. Biofilm Formation on Stainless Steel Surface
2.4. Effects of Phage Treatments on the Removal of Biofilms
2.5. Extending Contact Time of Phage Treatment
2.6. Sequential UFJF_PFSW6 Phage and Sanitizer Treatments
2.7. Quantification of Survivor Cells in Biofilm
2.8. Statistical Analysis
3. Results
3.1. Biofilm Formation on SSC
3.2. Effects of Individual Phages and Sanitizer on Biofilms Removal
3.3. Effect of Extending UFJF_PFSW6 Phage Treatment on Biofilm Removal
3.4. Effect of Sequential Treatment with UFJF_PFSW6 Phage and Sodium Hypochlorite on Biofilm Removal
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silby, M.W.; Winstanley, C.; Godfrey, S.A.C.; Levy, S.B.; Jackson, R.W. Pseudomonas Genomes: Diverse and Adaptable. FEMS Microbiol. Rev. 2011, 35, 652–680. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, M.; Kimothi, A.; Sharma, A.; Pandey, A. Cold Adapted Pseudomonas: Ecology to Biotechnology. Front. Microbiol. 2023, 14, 1218708. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Rahimi, S.; Saris, P.E.J.; Yousefvand, A. Pseudomonas fluorescens Group Bacterial Strains Interact Differently with Pathogens during Dual-Species Biofilm Formation on Stainless Steel Surfaces in Milk. Front. Microbiol. 2022, 13, 1053239. [Google Scholar] [CrossRef] [PubMed]
- Lauer Cruz, K.; de Souza da Motta, A. Characterization of Biofilm Production by Pseudomonas fluorescens Isolated from Refrigerated Raw Buffalo Milk. J. Food Sci. Technol. 2019, 56, 4595–4604. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Sun, J.; Liu, Y. Understanding Bacterial Biofilms: From Definition to Treatment Strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef]
- González-Rivas, F.; Ripolles-Avila, C.; Fontecha-Umaña, F.; Ríos-Castillo, A.G.; Rodríguez-Jerez, J.J. Biofilms in the Spotlight: Detection, Quantification, and Removal Methods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1261–1276. [Google Scholar] [CrossRef]
- Phillips, C.A. Bacterial Biofilms in Food Processing Environments: A Review of Recent Developments in Chemical and Biological Control. Int. J. Food Sci. Technol. 2016, 51, 1731–1743. [Google Scholar] [CrossRef]
- De Maayer, P.; Anderson, D.; Cary, C.; Cowan, D.A. Some like It Cold: Understanding the Survival Strategies of Psychrophiles. EMBO Rep. 2014, 15, 508–517. [Google Scholar] [CrossRef]
- Rapuano, R.; Graziano, G. Some Clues about Enzymes from Psychrophilic Microorganisms. Microorganisms 2022, 10, 1161. [Google Scholar] [CrossRef]
- Kumar, H.; Franzetti, L.; Kaushal, A.; Kumar, D. Pseudomonas fluorescens: A Potential Food Spoiler and Challenges and Advances in Its Detection. Ann. Microbiol. 2019, 69, 873–883. [Google Scholar] [CrossRef]
- Alvarez-Ordóñez, A.; Coughlan, L.M.; Briandet, R.; Cotter, P.D. Biofilms in Food Processing Environments: Challenges and Opportunities. Annu. Rev. Food Sci. Technol. 2019, 10, 173–195. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, V. Impact of Environmental Biofilms: Industrial Components and Its Remediation. J. Basic Microbiol. 2020, 60, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Marchand, S.; De Block, J.; De Jonghe, V.; Coorevits, A.; Heyndrickx, M.; Herman, L. Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety. Compr. Rev. Food Sci. Food Saf. 2012, 11, 133–147. [Google Scholar] [CrossRef]
- Dula, S.; Ajayeoba, T.A.; Ijabadeniyi, O.A. Bacterial Biofilm Formation on Stainless Steel in the Food Processing Environment and Its Health Implications. Folia Microbiol. 2021, 66, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Awad, T.S.; Asker, D.; Hatton, B.D. Food-Safe Modification of Stainless Steel Food-Processing Surfaces to Reduce Bacterial Biofilms. ACS Appl. Mater. Interfaces 2018, 10, 22902–22912. [Google Scholar] [CrossRef]
- Coughlan, L.M.; Cotter, P.D.; Hill, C.; Alvarez-Ordóñez, A. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)Control of Bacterial Biofilms in the Food Industry. Front. Microbiol. 2016, 7, 01641. [Google Scholar] [CrossRef]
- Galié, S.; García-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front. Microbiol. 2018, 9, 00898. [Google Scholar] [CrossRef]
- Sharma, S.; Chatterjee, S.; Datta, S.; Prasad, R.; Dubey, D.; Prasad, R.K.; Vairale, M.G. Bacteriophages and Its Applications: An Overview. Folia Microbiol. 2017, 62, 17–55. [Google Scholar] [CrossRef]
- Sharahi, J.Y.; Azimi, T.; Shariati, A.; Safari, H.; Tehrani, M.K.; Hashemi, A. Advanced Strategies for Combating Bacterial Biofilms. J. Cell. Physiol. 2019, 234, 14689–14708. [Google Scholar] [CrossRef]
- Chegini, Z.; Khoshbayan, A.; Taati Moghadam, M.; Farahani, I.; Jazireian, P.; Shariati, A. Bacteriophage Therapy against Pseudomonas aeruginosa Biofilms: A Review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 45. [Google Scholar] [CrossRef]
- Imran, A.; Shehzadi, U.; Islam, F.; Afzaal, M.; Ali, R.; Ali, Y.A.; Chauhan, A.; Biswas, S.; Khurshid, S.; Usman, I.; et al. Bacteriophages and Food Safety: An Updated Overview. Food Sci. Nutr. 2023, 11, 3621–3630. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, L.; Bolton, D.; McAuliffe, O.; Coffey, A. Bacteriophages in Food Applications: From Foe to Friend. Annu. Rev. Food Sci. Technol. 2019, 10, 151–172. [Google Scholar] [CrossRef] [PubMed]
- Byun, K.-H.; Han, S.H.; Choi, M.W.; Kim, B.-H.; Park, S.H.; Ha, S.-D. Biofilm Eradication Ability of Phage Cocktail against Listeria monocytogenes Biofilms Formed on Food Contact Materials and Effect on Virulence-Related Genes and Biofilm Structure. Food Res. Int. 2022, 157, 111367. [Google Scholar] [CrossRef] [PubMed]
- Sadekuzzaman, M.; Yang, S.; Mizan, M.F.R.; Kim, H.S.; Ha, S. Do Effectiveness of a Phage Cocktail as a Biocontrol Agent against L. monocytogenes Biofilms. Food Control 2017, 78, 256–263. [Google Scholar] [CrossRef]
- Islam, M.S.; Zhou, Y.; Liang, L.; Nime, I.; Liu, K.; Yan, T.; Wang, X.; Li, J. Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses 2019, 11, 841. [Google Scholar] [CrossRef]
- Korzeniowski, P.; Śliwka, P.; Kuczkowski, M.; Mišić, D.; Milcarz, A.; Kuźmińska-Bajor, M. Bacteriophage Cocktail Can Effectively Control Salmonella Biofilm in Poultry Housing. Front. Microbiol. 2022, 13, 901770. [Google Scholar] [CrossRef]
- Hungaro, H.M.; Vidigal, P.M.P.; Do Nascimento, E.C.; Oliveira, F.G.d.C.; Gontijo, M.T.P.; Lopez, M.E.S. Genomic Characterisation of UFJF_PfDIW6: A Novel Lytic Pseudomonas fluorescens-Phage with Potential for Biocontrol in the Dairy Industry. Viruses 2022, 14, 629. [Google Scholar] [CrossRef]
- Nascimento, E.C.d.; Sabino, M.C.; Corguinha, L.d.R.; Targino, B.N.; Lange, C.C.; Pinto, C.L.d.O.; Pinto, P.d.F.; Vidigal, P.M.P.; Sant’Ana, A.S.; Hungaro, H.M. Lytic Bacteriophages UFJF_PfDIW6 and UFJF_PfSW6 Prevent Pseudomonas fluorescens Growth in Vitro and the Proteolytic-Caused Spoilage of Raw Milk during Chilled Storage. Food Microbiol. 2022, 101, 103892. [Google Scholar] [CrossRef]
- Vidigal, P.M.P.; Hungaro, H.M. Genome Sequencing of Pseudomonas fluorescens Phage UFJF_PfSW6: A Novel Lytic Pijolavirus Specie with Potential for Biocontrol in the Dairy Industry. 3 Biotech 2023, 13, 67. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001; ISBN 978-0-87969-309-1. [Google Scholar]
- Adams, M.H. Bacteriophages; Interscience Publishers: New York, NY, USA, 1959. [Google Scholar]
- Parizzi, S.Q.F.; De Andrade, N.J.; Silva, C.A.D.S.; Soares, N.D.F.F.; Da Silva, E.A.M. Bacterial Adherence to Different Inert Surfaces Evaluated by Epifluorescence Microscopy and Plate Count Method. Braz. Arch. Biol. Technol. 2004, 47, 77–83. [Google Scholar] [CrossRef]
- Laird, D.T.; Gambrel-Lenarz, S.A.; Scher, F.M.; Graham, T.E.; Reddy, R. Microbiological Count Methods. In Standard Methods for the Examination of Dairy Products; Wehr, H.M., Frank, J.F., Eds.; American Public Health Association: Washington, DC, USA, 2004; p. 570. [Google Scholar]
- Ferreira, D.F. Sisvar: A Computer Statistical Analysis System. Ciênc. Agrotecnol. 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Martins, M.L.; de Araújo, E.F.; Mantovani, H.C.; Moraes, C.A.; Vanetti, M.C.D. Detection of the Apr Gene in Proteolytic Psychrotrophic Bacteria Isolated from Refrigerated Raw Milk. Int. J. Food Microbiol. 2005, 102, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.L.d.O.; Martins, M.L.; Vanetti, M.C.D. Qualidade Microbiológica de Leite Cru Refrigerado e Isolamento de Bactérias Psicrotróficas Proteolíticas. Ciênc. Tecnol. Aliment. 2006, 26, 645–651. [Google Scholar] [CrossRef]
- Pinto, C.L.O.; Machado, S.G.; Cardoso, R.R.; Alves, R.M.; Vanetti, M.C.D. Proteolytic Potential of Pseudomonas fluorescens Isolated From Refrigerated Raw Milk. Rev. Bras. Agropecuária Sustentável 2014, 4, 16–25. [Google Scholar] [CrossRef]
- Martins, M.L.; Pinto, U.M.; Riedel, K.; Vanetti, M.C.D. Milk-Deteriorating Exoenzymes from Pseudomonas fluorescens 041 Isolated from Refrigerated Raw Milk. Braz. J. Microbiol. 2015, 46, 207–217. [Google Scholar] [CrossRef]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.-E.; He, L.; Heo, J.; Hwang, G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef]
- Puga, C.H.; Orgaz, B.; SanJose, C. Listeria monocytogenes Impact on Mature or Old Pseudomonas fluorescens Biofilms During Growth at 4 and 20 °C. Front. Microbiol. 2016, 7, 00134. [Google Scholar] [CrossRef]
- Sillankorva, S.; Neubauer, P.; Azeredo, J. Pseudomonas fluorescens Biofilms Subjected to Phage PhiIBB-PF7A. BMC Biotechnol. 2008, 8, 7–9. [Google Scholar] [CrossRef]
- Sillankorva, S.; Neubauer, P.; Azeredo, J. Phage Control of Dual Species Biofilms of Pseudomonas fluorescens and Staphylococcus lentus. Biofouling 2010, 26, 567–575. [Google Scholar] [CrossRef]
- Rossi, C.; Chaves-López, C.; Serio, A.; Goffredo, E.; Cenci Goga, B.T.; Paparella, A. Influence of Incubation Conditions on Biofilm Formation by Pseudomonas fluorescens Isolated from Dairy Products and Dairy Manufacturing Plants. Ital. J. Food Saf. 2016, 5, 5793. [Google Scholar] [CrossRef]
- Li, Q.; Liu, L.; Guo, A.; Zhang, X.; Liu, W.; Ruan, Y. Formation of Multispecies Biofilms and Their Resistance to Disinfectants in Food Processing Environments: A Review. J. Food Prot. 2021, 84, 2071–2083. [Google Scholar] [CrossRef] [PubMed]
- González-Gómez, J.P.; González-Torres, B.; Guerrero-Medina, P.J.; López-Cuevas, O.; Chaidez, C.; Avila-Novoa, M.G.; Gutiérrez-Lomelí, M. Efficacy of Novel Bacteriophages against Escherichia coli Biofilms on Stainless Steel. Antibiotics 2021, 10, 1150. [Google Scholar] [CrossRef] [PubMed]
- Milho, C.; Silva, M.D.; Sillankorva, S.; Harper, D.R. Biofilm Applications of Bacteriophages. In Bacteriophages; Harper, D., Abedon, S., Burrowes, B., McConville, M., Eds.; Springer: Cham, Switerland, 2019. [Google Scholar] [CrossRef]
- Abedon, S.T. Bacteriophage Exploitation of Bacterial Biofilms: Phage Preference for Less Mature Targets? FEMS Microbiol. Lett. 2016, 363, fnv246. [Google Scholar] [CrossRef] [PubMed]
- Soni, K.A.; Nannapaneni, R. Removal of Listeria monocytogenes Biofilms with Bacteriophage P100. J. Food Prot. 2010, 73, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Olszak, T.; Danis-Wlodarczyk, K.; Arabski, M.; Gula, G.; Maciejewska, B.; Wasik, S.; Lood, C.; Higgins, G.; Harvey, B.J.; Lavigne, R.; et al. Pseudomonas aeruginosa PA5oct Jumbo Phage Impacts Planktonic and Biofilm Population and Reduces Its Host Virulence. Viruses 2019, 11, 1089. [Google Scholar] [CrossRef]
- Ranveer, S.A.; Dasriya, V.; Ahmad, M.F.; Dhillon, H.S.; Samtiya, M.; Shama, E.; Anand, T.; Dhewa, T.; Chaudhary, V.; Chaudhary, P.; et al. Positive and Negative Aspects of Bacteriophages and Their Immense Role in the Food Chain. npj Sci. Food 2024, 8, 1. [Google Scholar] [CrossRef]
- Azeredo, J.; Sutherland, I. The Use of Phages for the Removal of Infectious Biofilms. Curr. Pharm. Biotechnol. 2008, 9, 261–266. [Google Scholar] [CrossRef]
- Chang, C.; Yu, X.; Guo, W.; Guo, C.; Guo, X.; Li, Q.; Zhu, Y. Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future. Front. Microbiol. 2022, 13, 825828. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, M.; Zhang, D. Potential of Phage Depolymerase for the Treatment of Bacterial Biofilms. Virulence 2023, 14, 2273567. [Google Scholar] [CrossRef]
- Topka-Bielecka, G.; Dydecka, A.; Necel, A.; Bloch, S.; Nejman-Faleńczyk, B.; Węgrzyn, G.; Węgrzyn, A. Bacteriophage-Derived Depolymerases against Bacterial Biofilm. Antibiot 2021, 10, 175. [Google Scholar] [CrossRef]
- Liu, S.; Lu, H.; Zhang, S.; Shi, Y.; Chen, Q. Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review. Pharmaceutics 2022, 14, 427. [Google Scholar] [CrossRef] [PubMed]
- Magin, V.; Garrec, N.; Andrés, Y. Selection of Bacteriophages to Control In Vitro 24 h Old Biofilm of Pseudomonas aeruginosa Isolated from Drinking and Thermal Water. Viruses 2019, 11, 749. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Mikš-Krajnik, M.; Zheng, Q.; Lee, S.-B.; Lee, S.-C.; Yuk, H.-G. Biofilm Formation of Salmonella enteritidis under Food-Related Environmental Stress Conditions and Its Subsequent Resistance to Chlorine Treatment. Food Microbiol. 2016, 54, 98–105. [Google Scholar] [CrossRef]
- Yuan, Y.; Qu, K.; Tan, D.; Li, X.; Wang, L.; Cong, C.; Xiu, Z.; Xu, Y. Isolation and Characterization of a Bacteriophage and Its Potential to Disrupt Multi-Drug Resistant Pseudomonas aeruginosa Biofilms. Microb. Pathog. 2019, 128, 329–336. [Google Scholar] [CrossRef]
- Wang, L.; Pang, X.; Zhao, J.; Jin, H.; Yang, X.; Fu, S.; Cheng, S.; Li, H.; Miao, C.; Man, C.; et al. Isolation and Characteristics of New Phage JK004 and Application to Control Cronobacter sakazakii on Material Surfaces and Powdered Infant Formula. LWT 2022, 153, 112571. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, H.H.; Ma, L.Z.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Inactivation of Mixed Escherichia coli O157:H7 Biofilms on Lettuce by Bacteriophage in Combination with Slightly Acidic Hypochlorous Water (SAHW) and Mild Heat Treatment. Food Microbiol. 2022, 104, 104010. [Google Scholar] [CrossRef]
- Duc, H.M.; Son, H.M.; Ngan, P.H.; Sato, J.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Isolation and Application of Bacteriophages Alone or in Combination with Nisin against Planktonic and Biofilm Cells of Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2020, 104, 5145–5158. [Google Scholar] [CrossRef]
- Stachler, E.; Kull, A.; Julian, T.R. Bacteriophage Treatment before Chemical Disinfection Can Enhance Removal of Plastic-Surface-Associated Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2021, 87, e00980-21. [Google Scholar] [CrossRef]
- Yüksel, F.N.; Buzrul, S.; Akçelik, M.; Akçelik, N. Inhibition and Eradication of Salmonella typhimurium Biofilm Using P22 Bacteriophage, EDTA and Nisin. Biofouling 2018, 34, 1046–1054. [Google Scholar] [CrossRef]
- Vera-Mansilla, J.; Silva-Valenzuela, C.A.; Sánchez, P.; Molina-Quiroz, R.C. Bacteriophages Potentiate the Effect of Antibiotics by Eradication of Persister Cells and Killing of Biofilm-Forming Cells. Res. Microbiol. 2023, 174, 104083. [Google Scholar] [CrossRef]
- Sharma, U.; Vipra, A.; Channabasappa, S. Phage-Derived Lysins as Potential Agents for Eradicating Biofilms and Persisters. Drug Discov. Today 2018, 23, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, H.H.; Duc, H.M.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Endolysin LysSTG2: Characterization and Application to Control Salmonella typhimurium Biofilm Alone and in Combination with Slightly Acidic Hypochlorous Water. Food Microbiol. 2021, 98, 103791. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, M.B.; Vidigal, P.M.P.; Soto Lopez, M.E.; Hungaro, H.M. Combined Effects of the Pijolavirus UFJF_PfSW6 Phage and Sodium Hypochlorite for Reducing Pseudomonas fluorescens Biofilm. Microorganisms 2024, 12, 2523. https://doi.org/10.3390/microorganisms12122523
Mendes MB, Vidigal PMP, Soto Lopez ME, Hungaro HM. Combined Effects of the Pijolavirus UFJF_PfSW6 Phage and Sodium Hypochlorite for Reducing Pseudomonas fluorescens Biofilm. Microorganisms. 2024; 12(12):2523. https://doi.org/10.3390/microorganisms12122523
Chicago/Turabian StyleMendes, Matheus B., Pedro M. P. Vidigal, Maryoris E. Soto Lopez, and Humberto M. Hungaro. 2024. "Combined Effects of the Pijolavirus UFJF_PfSW6 Phage and Sodium Hypochlorite for Reducing Pseudomonas fluorescens Biofilm" Microorganisms 12, no. 12: 2523. https://doi.org/10.3390/microorganisms12122523
APA StyleMendes, M. B., Vidigal, P. M. P., Soto Lopez, M. E., & Hungaro, H. M. (2024). Combined Effects of the Pijolavirus UFJF_PfSW6 Phage and Sodium Hypochlorite for Reducing Pseudomonas fluorescens Biofilm. Microorganisms, 12(12), 2523. https://doi.org/10.3390/microorganisms12122523