Anticoagulant Activity of the Polysaccharide Fromgonad of Abalone Haliotis discus hannai Ino: The Role of Conjugate Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Pretreatment
2.2. Quantification and Characterization
2.2.1. Protein and Polysaccharide Quantification
2.2.2. Amino Acid and Infrared Spectra Analysis
2.3. Abalone Gonad Polysaccharide Preparation and Processing
2.3.1. Abalone Gonad Polysaccharide (AGP) Preparation
2.3.2. Ultrafiltration
2.3.3. Proteolysis
2.3.4. Purification
2.4. Abalone Gonad Sulfated Polysaccharide (AGSP) Preparation
2.5. Anticoagulant and Clotting Factor Activity
2.6. Statistical Analysis
3. Results
3.1. Polysaccharide, Protein Content and Amino Acid Composition of Abalone Gonad
3.2. Effect of Extraction Temperature on Anticoagulant Activity
3.3. Molecular Weight Range of the Anticoagulant-Active Component
3.4. Effect of Proteolysis on Anticoagulant Activity
3.5. Anticoagulant Activity, Polysaccharide and Protein Content Before and After Ethanol Precipitation
3.6. Effect of Gonad Defatting on Anticoagulant Activity of AGP Extracts
3.7. Fractionation of Female 50 °C AGP Extract
3.8. Effect of AGP Extract on Activity of Clotting Fator VIII, IX, and XI
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuniko, Y.; Takahiko, A.; Manabu, K.; Chaohuang, T.; Toshiyoshi, A. Algal cell wall-degrading enzymes from viscera of marine animals. Nippon Suisan Gakkaishi 1989, 55, 105–110. [Google Scholar]
- Takami, H.; Kawamura, T.; Yamashita, Y. Development of polysaccharide degradation activity in postlarval abalone Haliotis discus hannai. J. Shellfish Res. 1998, 17, 723–727. [Google Scholar]
- Hernández-Benítez, L.J.; Ramírez-Rodríguez, M.A.; Hernández-Santoyo, A.; Rodríguez-Romero, A.A. Trimeric glycosylated GH45 cellulase from the red abalone (Haliotis rufescens) exhibits endo and exoactivity. PLoS ONE 2024, 19, e0301604. [Google Scholar] [CrossRef]
- Zhou, D.; Tong, L.; Zhu, B.; Wu, H.; Qin, L.; Tan, H.; Murata, Y. Extraction of lipid from abalone (Haliotis discus hannai ino) gonad by supercritical carbon dioxide and enzyme-assisted organic solvent methods. J. Food Process. Pres. 2012, 36, 126–132. [Google Scholar] [CrossRef]
- Xu, D.H.; Xu, S.B.; Wang, B.; Lin, Y.C.; Shao, Z.Y. Studies on the anti-tumor pharmacological effects of polysaccharides from Abalone cristata. J. Trop. Oceanogr. 1999, 4, 87–91. [Google Scholar]
- Wang, B.; Jiang, J.M.; Xu, D.H.; Xu, S.B.; Shao, Z.Y.; Lin, Y.C. Antitumor effect of an abalone polysaccharide on human nasopharyngeal cancer inoculated into nude mice. Zhong Cao Yao 2000, 31, 597–599. [Google Scholar]
- Guo, S.; Wang, J.; He, C.; Wei, H.; Ma, Y.; Xiong, H. Preparation and antioxidant activities of polysaccharides obtained from abalone viscera by combination of enzymolysis and multiple separation methods. Food Sci. 2020, 85, 4260–4270. [Google Scholar] [CrossRef]
- Lin, Z.T.; Pan, X.M.; Wu, Q.C.; Xue, Y.; Huang, J.F.; Pan, Y.T. Isolation, purification, structure characterization and antioxidant activity of alkali-extracted polysaccharide from abalone viscera. Sci. Technol. Food Ind. 2024, 45, 53–60. [Google Scholar]
- Wu, Q.C.; Lin, Z.C.; Pan, X.M.; Xue, Y.; Huang, J.F.; Pan, Y.T. Preparation process of alkali-extracted polysaccharides from abalone viscera and its repair activity against H2O2oxidative damage in L929 cells. Food Sci. Technol. 2024, 45, 204–211. [Google Scholar]
- Sun, L.M.; Zhu, B.W.; Li, D.M.; Wang, L.S.; Dong, X.P.; Murata, Y.; Xing, R.; Dong, Y. Purification and bioactivity of a sulphated polysaccharide conjugate from viscera of abalone Haliotis discus hannai Ino. Food Agric. Immunol. 2010, 21, 15–26. [Google Scholar] [CrossRef]
- Yang, J.F.; Li, Y.H.; Zhao, J. Isolation, structural characterization, and lymphopoiesis stimulant activity of a polysaccharide from the abalone gonad. Food Sci. Biotechnol. 2015, 24, 23–30. [Google Scholar] [CrossRef]
- Suleria, H.; Masci, P.P.; Addepalli, R.; Chen, W.; Gobe, G.C.; Osborne, S. In vitro anti-thrombotic and anti-coagulant properties of blacklip abalone (Haliotis rubra) viscera hydrolysate. Anal. Bioanal. Chem. 2017, 409, 4195–4205. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Masci, P.P.; Zhao, K.N.; Addepalli, R.; Chen, W.; Osborne, S.A.; Gobe, G.C. Anti-coagulant and anti-thrombotic properties of blacklip abalone (haliotis rubra): In vitro and animal studies. Mar. Drugs 2017, 15, 240. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Hines, B.M.; Addepalli, R.; Chen, W.; Masci, P.; Gobe, G.; Osborne, S.A. In vitro anti-thrombotic activity of extracts from blacklip abalone (haliotis rubra) processing waste. Mar. Drugs 2016, 15, 8. [Google Scholar] [CrossRef]
- Hag-Lyeol, K.; Seon-Jae, K.; Du-Woon, K.; Seung-Jin, M.; Gao, T.C.; Li, H.; Tae-Hoon, L.; In-Cheol, K.; Kyung-Sik, H.; Seong-Gook, K. The abanones, Haliotis discus hannai, exhibit potential anticoagulant activity in normal sprague dawley rats. Korean J. Food Preserv. 2007, 14, 431–437. [Google Scholar]
- Zhu, B.W.; Li, D.M.; Zhou, D.Y.; Han, S.; Yang, J.F.; Li, T.; Ye, W.X.; Greeley, G.H. Structural analysis and cck-releasing activity of a sulphated polysaccharide from abalone (Haliotis discus hannai Ino) viscera. Food Chem. 2010, 125, 1273–1278. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, D.Y.; Yang, J.F.; Song, S.; Zhang, T.; Zhu, C.; Song, Y.Q.; Yu, C.X.; Zhu, B.W. Effects of abalone (Haliotis discus hannai Ino) gonad polysaccharides on cholecystokinin release in STC-1 cells and its signaling mechanism. Carbohydr. Polym. 2016, 151, 268–273. [Google Scholar] [CrossRef]
- Ye, D.R.; Huang, Y.E.; Chen, J.Q.; Fang, T. Impact of crude polysaccharides from abalone viscera on the physiological function of diabetic mice. Mod. Food Sci. Technol. 2014, 30, 26–33. [Google Scholar]
- Song, S.; Zhang, B.; Wu, S.F.; Huang, L.; Ai, C.Q.; Pan, J.F.; Su, Y.C.; Wang, Z.F.; Wen, C.R. Structural characterization and osteogenic bioactivity of a sulfated polysaccharide from pacific abalone (Haliotis discus hannai Ino). Carbohydr. Polym. 2018, 182, 207–214. [Google Scholar] [CrossRef]
- Liu, B.X.; Jia, Z.; Li, C.C.; Chen, J.Q.; Fang, T. Hypolipidemic and anti-atherogenic activities of crude polysaccharides from abalone viscera. Food Sci. Nutr. 2020, 8, 2524–2534. [Google Scholar] [CrossRef]
- Sung-Kun, Y.; Kian, K.; In-Hee, K.; Sang-Ho, C.; Tae-Hwan, O.; Jin-Ung, K.; Jung-Won, K.; Woo-Huk, J.; Ho-Sang, M.; Bo-Sung, K.; et al. Inhibition of SARS-CoV-2 Virus Entry by the Crude Polysaccharides of Seaweeds and Abalone Viscera In Vitro. Mar. Drugs 2021, 19, 219. [Google Scholar] [CrossRef]
- Sang-Min, K.; Dongseob, T.; Byeong-Min, S.; Gun-Hee, L.; Ju-Hee, Y.; Hee-Jeong, H.; Sung-Kun, Y. Evaluation of antiviral effect against Sars-Cov-2 propagation by crude polysaccharides from seaweed and abalone viscera in vitro. Mar. Drugs 2022, 20, 296. [Google Scholar]
- Zhao, J.; Yang, J.F.; Song, S.; Zhou, D.Y.; Qiao, W.Z.; Zhu, C.; Liu, S.Y.; Zhu, B.W. Anticoagulant activity and structural characterization of polysaccharide from abalone (Haliotis discus hannai Ino) gonad. Molecules 2016, 21, 697. [Google Scholar] [CrossRef]
- Qu, H.; Wu, Y.; Luo, Z.; Dong, Q.Y.; Yang, H.L.; Dai, C.Y. An efficient approach for extraction of polysaccharide from abalone (Haliotis discus hannai Ino) viscera by natural deep eutectic solvent. Int. J. Biol. Macromol. 2023, 244, 125336. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, J.; Ma, J.; Lin, Z.; Lu, X.; Xiong, Q.; Qian, Y.; Yuan, J.; Ding, S.; Huang, S.; et al. An effective, green and mild depro-teinization method for polysaccharides of Ruditapes philippinarum by attapulgite-based silk fibroin composite aerogel. Int. J. Biol. Macromol. 2021, 182, 343–353. [Google Scholar] [CrossRef]
- Cheng, S.Z.; Tu, M.L.; Liu, H.X.; An, Y.; Du, M.; Zhu, B.W. A novel heptapeptide derived from Crassostrea gigas shows anticoagulant activity by targeting for thrombin active domain. Food Chem. 2020, 334, 127507. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Farndale, R.W.; Buttle, D.J.; Barrett, A.J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1986, 883, 173–177. [Google Scholar] [CrossRef]
- Guo, Y.M.; Cong, S.; Zhao, J.; Dong, Y.Y.; Li, T.T.; Zhu, B.W.; Song, S.; Wen, C.R. The combination between cations and sulfated polysaccharide from abalone gonad (Haliotis discus hannai Ino). Carbohydr. Polym. 2018, 188, 54–59. [Google Scholar] [CrossRef]
- Sikka, P.; Bindra, V.K. Newer antithrombotic drugs. Indian J. Crit. Care Med. 2010, 14, 188. [Google Scholar] [CrossRef]
- Dong, X.D.; Pan, R.J.; Deng, X.Y.; Chen, Y.T.; Zhao, G.M.; Wang, C.H. Separation, purification, anticoagulantactivity and preliminary structural characterization of two sulfated polysaccharides from seacucumberAcaudina molpadioidea and Holothuria nobilis. Process Biochem. 2014, 49, 1352–1361. [Google Scholar] [CrossRef]
- Kiho, T.; Sakushima, M.; Wang, S.R.; Nagai, K.; Ukai, S. Polysaccharides in fungi. XXVI. Two branched (1.RAR.3)-.BETA.-D-glucans from hot water extract of Yu er. Chem. Pharm. Bull. 1991, 39, 798–800. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.P.; Xie, M.Y.; Fu, Z.H.; Wan, Y.Q.; Yan, A.P. Study on thepurification and chemical compositions of tea glycoprotein. Carbohydr. Polym. 2008, 71, 626–633. [Google Scholar] [CrossRef]
- Tao, Y.Z.; Zhang, Y.Y.; Zhang, L.N. Chemical modification and antitumor activities of two polysaccharide-protein complexes from Pleurotus tuber-regium. Int. J. Biol. Macromol. 2009, 45, 109–115. [Google Scholar] [CrossRef]
- Cai, W.R.; Xie, L.L.; Chen, Y.; Zhang, H. Purification, characterization and anticoagulant activity of thepolysaccharides from green tea. Carbohydr. Polym. 2013, 92, 1086–1090. [Google Scholar] [CrossRef]
- Raposo, M.F.; de Morais, R.M.; Bernardo de Morais, A.M. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar. Drugs 2013, 11, 233–252. [Google Scholar] [CrossRef]
- Yang, J.H.; Du, Y.M.; Huang, R.H.; Wan, Y.Y.; Li, T. Chemical modification, characterization and structure-anticoagulant activity relationships of Chinese lacquer polysaccharides. Int. J. Biol. Macromol. 2002, 31, 55–62. [Google Scholar] [CrossRef]
- Yang, J.H.; Du, Y.M.; Huang, R.H.; Wan, Y.Y.; Wen, Y. The structure-anticoagulant activity relationships of sulfated lacquer polysaccharide: Effect of carboxyl group and position of sulfation. Int. J. Biol. Macromol. 2005, 36, 9–15. [Google Scholar] [CrossRef]
- David, J.M. Non-covalent interactions between proteins and polysaccharides. Biotechnol. Adv. 2006, 24, 621–625. [Google Scholar]
- Matsunaga, K.; Hosokawa, A.; Oohara, M.; Sugita, N.; Harada, M.; Nomoto, K. Direct action of a protein-bound polysaccharide, PSK, on transforming growth factor-beta. Immunopharmacology 1998, 40, 219–230. [Google Scholar] [CrossRef]
- Chan, S.L.; Yeung, J.H.K. Polysaccharide peptides from COV-1 strain of Coriolus versicolor induce hyperalgesia via inflammatory mediator release in the mouse. Life Sci. 2006, 78, 2463–2470. [Google Scholar] [CrossRef]
- Mizuno, T.; Inagaki, R.; Kanao, T.; Hagiwara, T.; Nakamura, T.; Ito, H.; Shimura, K.; Sumiya, T.; Asakura, A. Antitumor activity and some properties of water-insoluble hetero-glycans from Himematsutake, the fruiting body of Agaricus blazei murill. Agric. Biol. Chem. 1990, 54, 2897–2905. [Google Scholar]
- Liu, F.; Ooi, V.E.; Chang, S.T. Anti-tumour components of the culture filtrates from Tricholoma sp. World J. Microbiol. Biotechnol. 1995, 11, 486–490. [Google Scholar] [CrossRef]
- Kawagishi, H.; Kanao, T.; Inagaki, R.; Mizuno, T.; Shimura, K.; Ito, H.; Hagiwara, T.; Nakamura, T. Formolysis of a potent antitumor (1→6)-b-D-glucan-protein complex from Agaricus blazei fruiting bodies and antitumor activity of the resulting products. Carbohydr. Polym. 1990, 12, 393–403. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, L.N.; Cheung, P.C.K.; Ooi, V.E.C. Molecular weight and anti-tumor activity of the water-soluble polysaccharides isolated by hot water and ultrasonic treatment from the sclerotia and mycelia of Pleurotus tuber-regium. Carbohydr. Polym. 2004, 56, 123–128. [Google Scholar] [CrossRef]
- Peng, Y.F.; Zhang, L.N.; Zeng, F.B.; Kennedy, J.F. Structure and antitumor activities of the water-soluble polysaccharides from Ganoderma tsugae mycelium. Carbohydr. Polym. 2005, 59, 385–392. [Google Scholar] [CrossRef]
- Surenjav, U.; Zhang, L.; Xu, X.J.; Zhang, X.F.; Zeng, F.B. Effects of molecular structure on antitumor activities of (1→3)-β-d-glucans from different Lentinus Edodes. Carbohydr. Polym. 2006, 63, 97–104. [Google Scholar] [CrossRef]
- No, H.K.; Lee, S.H.; Park, N.Y.; Meyers, S.P. Comparison of physicochemical, binding, and antibacterial properties of chitosans prepared without and with deproteinization process. J. Agric. Food Chem. 2003, 51, 7659–7663. [Google Scholar] [CrossRef]
- Song, Z.Y.; Huang, G.L.; Huang, H.L. The ultrasonic-assisted enzymatic extraction, characteristics and antioxidant activities of lychee nuclear polysaccharide. Ultrason. Sonochem. 2024, 110, 107038. [Google Scholar] [CrossRef]
- Uryu, T.; Ikushima, N.; Katsuraya, K.; Shoji, T.; Takahashi, N.; Yoshida, T.; Kanno, K.; Murakami, T.; Nakashima, H.; Yamamoto, N. Sulfated alkyl oligosaccharides with potent inhibitory effects on human immunodeficiency virus infection. Biochem. Pharmacol. 1992, 43, 2385–2392. [Google Scholar] [CrossRef]
- Marshall, J.J.; Rabinowitz, M.L. Preparation and characterization of a dextran-trypsin conjugate. J. Biol. Chem. 1976, 251, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.W.; Sahara, S.; Nakamura, S.; Kato, A. Effects of the Length of Polysaccharide Chains on the Functional Properties of the Maillard-Type Lysozyme−Polysaccharide Conjugate. J. Agric. Food Chem. 1996, 44, 2544–2548. [Google Scholar] [CrossRef]
Amino Acid | Male (%) | Female (%) |
---|---|---|
Asp # | 9.47 ± 0.13 a | 10.10 ± 0.12 b |
Thr * | 5.60 ± 0.10 a | 6.30 ± 0.09 b |
Ser | 6.29 ± 0.06 b | 6.82 ± 0.11 a |
Glu # | 9.22 ± 0.15 a | 10.32 ± 0.08 b |
Gly # | 9.41 ± 0.2 a | 9.26 ± 0.14 a |
Ala # | 7.86 ± 0.09 a | 7.71 ± 0.12 a |
Val * | 5.33 ± 0.03 a | 5.73 ± 0.16 b |
Met * | 0.95 ± 0.01 a | 1.40 ± 0.09 b |
IIe * | 3.22 ± 0.12 b | 4.68 ± 0.10 a |
Leu * | 5.64 ± 0.07 a | 7.05 ± 0.11 b |
Tyr # | 2.00 ± 0.14 a | 2.23 ± 0.14 a |
Phe *# | 3.03 ± 0.11 a | 3.28 ± 0.12 b |
Lys * | 8.83 ± 0.07 a | 6.99 ± 0.08 b |
His | 2.80 ± 0.12 b | 1.99 ± 0.09 a |
Arg | 6.01 ± 0.09 b | 4.45 ± 0.16 a |
Pro | 0.81 ± 0.02 a | 0.99 ± 0.13 a |
Amino Acid | Amino Acid Percentage (%) | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
Asp | 6.91 ± 0.13 | 10.59 ± 0.21 | 6.06 ± 0.09 | 13.82 ± 0.12 | 30.23 ± 0.17 |
Thr | 6.10 ± 0.10 | 6.76 ± 0.12 | 11.10 ± 0.05 | 16.00 ± 0.11 | 22.96 ± 0.12 |
Ser | 3.40 ± 0.11 | 6.69 ± 0.07 | 8.66 ± 0.09 | 14.10 ± 0.07 | 19.53 ± 0.17 |
Glu | 11.81 ± 0.11 | 9.87 ± 0.10 | 10.72 ± 0.12 | 11.33 ± 0.09 | 26.94 ± 0.21 |
Gly | 14.97 ± 0.16 | 11.82 ± 0.12 | 8.65 ± 0.09 | 15.55 ± 0.21 | 0.03 ± 0.04 |
Ala | 9.86 ± 0.12 | 6.78 ± 0.08 | 7.27 ± 0.13 | 14.07 ± 0.17 | 0.05 ± 0.01 |
Val | 6.40 ± 0.09 | 4.97 ± 0.12 | 5.89 ± 0.06 | 12.43 ± 0.16 | 0.03 ± 0.01 |
Met | 1.14 ± 0.13 | 0.67 ± 0.11 | - | - | - |
IIe | 3.79 ± 0.07 | 2.14 ± 0.07 | 2.86 ± 0.12 | 0.01 ± 0.00 | 0.01 ± 0.00 |
Leu | 5.54 ± 0.09 | 4.56 ± 0.09 | 5.63 ± 0.11 | 0.02 ± 0.01 | 0.03 ± 0.01 |
Tyr | 0.69 ± 0.12 | 1.53 ± 0.12 | 2.34 ± 0.08 | - | 0.02 ± 0.01 |
Phe | 2.32 ± 0.11 | 5.36 ± 0.11 | 5.58 ± 0.09 | 0.02 ± 0 | 0.04 ± 0.01 |
Lys | 8.08 ± 0.09 | 7.62 ± 0.13 | 5.88 ± 0.13 | 0.02 ± 0.01 | - |
His | 10.90 ± 0.09 | 14.68 ± 0.15 | 12.73 ± 0.12 | 0.06 ± 0.02 | 0.09 ± 0.02 |
Arg | 1.81 ± 0.12 | 2.52 ± 0.16 | 2.28 ± 0.11 | - | 0.01 ± 0.00 |
Pro | 5.12 ± 0.14 | 2.37 ± 0.08 | 3.14 ± 0.09 | 0.01 ± 0.00 | 0.02 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Yao, S.; Ma, S.; Zhao, T.; Wang, Z.; Sun, L.; Du, M. Anticoagulant Activity of the Polysaccharide Fromgonad of Abalone Haliotis discus hannai Ino: The Role of Conjugate Protein. Foods 2024, 13, 4003. https://doi.org/10.3390/foods13244003
Liu Q, Yao S, Ma S, Zhao T, Wang Z, Sun L, Du M. Anticoagulant Activity of the Polysaccharide Fromgonad of Abalone Haliotis discus hannai Ino: The Role of Conjugate Protein. Foods. 2024; 13(24):4003. https://doi.org/10.3390/foods13244003
Chicago/Turabian StyleLiu, Qinhao, Siyu Yao, Siyuan Ma, Ting Zhao, Zhenyu Wang, Liming Sun, and Ming Du. 2024. "Anticoagulant Activity of the Polysaccharide Fromgonad of Abalone Haliotis discus hannai Ino: The Role of Conjugate Protein" Foods 13, no. 24: 4003. https://doi.org/10.3390/foods13244003
APA StyleLiu, Q., Yao, S., Ma, S., Zhao, T., Wang, Z., Sun, L., & Du, M. (2024). Anticoagulant Activity of the Polysaccharide Fromgonad of Abalone Haliotis discus hannai Ino: The Role of Conjugate Protein. Foods, 13(24), 4003. https://doi.org/10.3390/foods13244003