Optimization of Fermentation Process of Zanthoxylum bungeanum Seeds and Evaluation of Acute Toxicity of Protein Extract in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Animals
2.3. Activation and Expansion of Strains
2.4. Solid State Fermentation
2.5. Single Factor Experiment
2.6. Response Surface Optimization Experiment
2.7. Protein Extraction from Fermented ZBS and ZBS
2.8. Structure Analysis
2.8.1. Particle Size Analysis
2.8.2. Scanning Electron Microscope
2.9. Physicochemical Properties
2.9.1. Solubility
2.9.2. Water Holding Capacity
2.9.3. Oil Holding Capacity
2.9.4. Emulsion Activity and Emulsion Stability
2.10. Antioxidant Properties
2.11. Assessment of Acute Toxicity
3. Statistical Analysis
4. Result and Analysis
4.1. Optimization of Fermentation Conditions
4.1.1. Single-Factor Analysis
4.1.2. Box–Behnken Design Results
4.2. The Structural Characteristics of ZBSP and FZBSP
4.2.1. Particle Size Distribution
4.2.2. Scanning Electron Microscopy
4.3. The Physicochemical Properties of ZBSP and FZBSP
4.4. Antioxidant Activity
4.5. Acute Toxicity Test
4.5.1. Effect on General Condition
4.5.2. Effect on Body Weight
4.5.3. Routine Blood Tests
4.5.4. Serum Biochemical Tests
4.5.5. Pathological Section
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, X.; Li, S.; Luo, Q.; Shen, G.; Wu, H.; Li, M.; Liu, X.; Chen, A.; Ye, M.; Zhang, Z. Discovery and Identification of Antimicrobial Peptides in Sichuan Pepper (Zanthoxylum bungeanum Maxim) Seeds by Peptidomics and Bioinformatics. Appl. Microbiol. Biotechnol. 2019, 103, 2217–2228. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Sun, X. Optimization of preparation technology and composition analysis of seed protein of Zanthoxylum liyingqiu. China Condiments 2024, 49, 101–108. [Google Scholar]
- Tang, W.; Xie, Q.; Guan, J.; Jin, S.; Zhao, Y. Phytochemical Profiles and Biological Activity Evaluation of Zanthoxylum bungeanum Maxim Seed against Asthma in Murine Models. J. Ethnopharmacol. 2014, 152, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, J.; Pan, X. Analysis of volatile components of Li Yanmei Yuqing Zanthoxylum essential oil and its effect on differentiation and apoptosis of HEL cells in erythroleukemia. J. Food Saf. Qual. Insp. 2024, 15, 317–326. [Google Scholar]
- Liu, Y.; Li, J.; Wang, G. Comparative analysis of flavor and comprehensive quality of seed oil of Sun Guohao and Zanthoxylum zanthoxylum oil. Food Sci. 2021, 42, 195–201. [Google Scholar]
- Yang, X.; Zhang, X.; Xu, H.; Wang, X.; Liu, Y.; Xie, N.; Guo, X. Research progress on nutrients, extraction technology and application of Zanthoxylum hanxiao seed. Chin. Oils Fats 2024, 1–12. [Google Scholar] [CrossRef]
- Wang, W.; Pang, W.; Yan, S.; Zheng, X.; Han, Q.; Yao, Y.; Jin, L.; Zhang, C. Zanthoxylum bungeanum Seed Oil Inhibits Tumorigenesis of Human Melanoma A375 by Regulating CDC25A/CyclinB1/CDK1 Signaling Pathways in Vitro and in Vivo. Front. Pharmacol. 2023, 14, 1165584. [Google Scholar] [CrossRef]
- Li, D.; Yang, H.; Li, Q.; Ma, K.; Wang, H.; Wang, C.; Li, T.; Ma, Y. Prickly Ash Seeds Improve Immunity of Hu Sheep by Changing the Diversity and Structure of Gut Microbiota. Front. Microbiol. 2023, 14, 1273714. [Google Scholar] [CrossRef]
- Hou, J.; Wang, J.; Meng, J.; Zhang, X.; Niu, Y.; Gao, J.; Bai, Y.; Zhou, J. Zanthoxylum bungeanum Seed Oil Attenuates LPS-Induced BEAS-2B Cell Activation and Inflammation by Inhibiting the TLR4/MyD88/NF-kB Signaling Pathway. Evid. Based Complement. Altern. Med. 2021, 2021, 2073296. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Zheng, A.; Wang, Z.; Wei, X.; Li, S.; Purba, A.; Chen, Z.; Liu, G. Dietary Replacement of Soybean Meal with Zanthoxylum bungeanum Seed Meal on Growth Performance, Blood Parameters, and Nutrient Utilization in Broiler Chickens. Animals 2024, 14, 1420. [Google Scholar] [CrossRef]
- Duan, Y. Development and utilization of Zanthoxylum seed oil in. West. Leather 2020, 42, 84. [Google Scholar]
- Zhang, J.; Jiang, L. Acid-Catalyzed Esterification of Zanthoxylum bungeanum Seed Oil with High Free Fatty Acids for Biodiesel Production. Bioresour. Technol. 2008, 99, 8995–8998. [Google Scholar] [CrossRef] [PubMed]
- Song, C.H.; Oh, S.M.; Lee, S.; Choi, Y.; Kim, J.D.; Jang, A.; Kim, J. The Ratio of Dietary N-3 Polyunsaturated Fatty Acids Influences the Fat Composition and Lipogenic Enzyme Activity in Adipose Tissue of Growing Pigs. Food Sci. Anim. Resour. 2020, 40, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, Z.; Wu, G.; Xu, F.; Zhang, J.; Luo, X.; Ma, Y.; Pang, H.; Duan, Y.; Chen, J.; et al. Effects of Probiotic-Fermented Feed on the Growth Profile, Immune Functions, and Intestinal Microbiota of Bamei Piglets. Animals 2024, 14, 647. [Google Scholar] [CrossRef]
- Zhu, X.; Tao, L.; Liu, H.; Yang, G. Effects of Fermented Feed on Growth Performance, Immune Organ Indices, Serum Biochemical Parameters, Cecal Odorous Compound Production, and the Microbiota Community in Broilers. Poult. Sci. 2023, 102, 102629. [Google Scholar] [CrossRef]
- Xu, B.; Zhu, L.; Fu, J.; Li, Z.; Wang, Y.; Jin, M. Overall Assessment of Fermented Feed for Pigs: A Series of Meta-Analyses. J. Anim. Sci. 2019, 97, 4810–4821. [Google Scholar] [CrossRef]
- Yang, A.; Zuo, L.; Cheng, Y.; Wu, Z.; Li, X.; Tong, P.; Chen, H. Degradation of Major Allergens and Allergenicity Reduction of Soybean Meal through Solid-State Fermentation with Microorganisms. Food Funct. 2018, 9, 1899–1909. [Google Scholar] [CrossRef]
- Huang, J.; Dai, Y.; Zhang, Y.; Liu, G.; Peng, F.; Xie, M.; Xiong, T. Dynamics of Bacterial Community, Metabolites Profile and Physicochemical Characteristics during Solid-State Fermentation of Soybean Meal and Corn Mixed Substrates Inoculated with Bacillus Pumilus and Limosilactobacillus Fermentum. J. Sci. Food Agric. 2023, 103, 5588–5599. [Google Scholar] [CrossRef]
- Huang, B.; Jia, H.; Han, X.; Gou, J.; Huang, C.; Wang, J.; Wei, J.; Wang, J.; Zhang, C. Effects of Biocontrol Bacillus and Fermentation Bacteria Additions on the Microbial Community, Functions and Antibiotic Resistance Genes of Prickly Ash Seed Oil Meal-Biochar Compost. Bioresour. Technol. 2021, 340, 125668. [Google Scholar] [CrossRef]
- Mukherjee, R.; Chakraborty, R.; Dutta, A. Role of Fermentation in Improving Nutritional Quality of Soybean Meal—A Review. Asian-Australas. J. Anim. Sci. 2016, 29, 1523–1529. [Google Scholar] [CrossRef]
- Dai, C.; Hou, Y.; Xu, H.; Huang, L.; Dabbour, M.; Mintah, B.K.; He, R.; Ma, H. Effect of Solid-State Fermentation by Three Different Bacillus Species on Composition and Protein Structure of Soybean Meal. J. Sci. Food Agric. 2022, 102, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Yasar, S.; Tosun, R.; Sonmez, Z. Fungal Fermentation Inducing Improved Nutritional Qualities Associated with Altered Secondary Protein Structure of Soybean Meal Determined by FTIR Spectroscopy. Measurement 2020, 161, 107895. [Google Scholar] [CrossRef]
- Sungatullina, A.; Petrova, T.; Nikitina, E. Investigation on Fermented Milk Quality after the Addition of Flaxseed Mucilage and the Use of Lactobacillus delbrueckii subsp. bulgaricus and Lactiplantibacillus plantarum AG9. Front. Biosci. Elite 2024, 16, 11. [Google Scholar] [CrossRef]
- Prakash, T.J.; Kharnaior, P.; Pariyar, P. Whole Genome Sequencing of the Poly-γ-Glutamic Acid-Producing Novel Bacillus Subtilis Tamang Strain, Isolated from Spontaneously Fermented Kinema. Food Res. Int. 2024, 190, 114655. [Google Scholar] [CrossRef]
- Miao, X.; Niu, H.; Sun, M.; Li, D.; Hua, M.; Wang, J.; Su, Y. Structural Characterization and Properties of Modified Soybean Meal Protein via Solid-State Fermentation by Bacillus subtilis. Molecules 2023, 28, 8015. [Google Scholar] [CrossRef]
- Karabulut, G.; Nemzer, B.V.; Feng, H. γ-Aminobutyric Acid (GABA)-Enriched Hemp Milk by Solid-State Co-Fermentation and Germination Bioprocesses. Plant Foods Hum. Nutr. 2024, 79, 322–329. [Google Scholar] [CrossRef]
- Chen, J.; Mou, L.; Wang, L.; Wu, G.; Dai, X.; Chen, Q.; Zhang, J.; Luo, X.; Xu, F.; Zhang, M.; et al. Mixed Bacillus subtilis and Lactiplantibacillus plantarum-Fermented Feed Improves Gut Microbiota and Immunity of Bamei Piglet. Front. Microbiol. 2024, 15, 1442373. [Google Scholar] [CrossRef]
- Li, C.; Kong, Q.; Mou, H.; Jiang, Y.; Du, Y.; Zhang, F. Biotransformation of Alkylamides and Alkaloids by Lactic Acid Bacteria Strains Isolated from Zanthoxylum Bungeanum Meal. Bioresour. Technol. 2021, 330, 124944. [Google Scholar] [CrossRef]
- Diao, W.R.; Hu, Q.P.; Feng, S.S.; Li, W.Q.; Xu, J.G. Chemical Composition and Antibacterial Activity of the Essential Oil from Green Huajiao (Zanthoxylum schinifolium) against Selected Foodborne Pathogens. J. Agric. Food Chem. 2013, 61, 6044–6049. [Google Scholar] [CrossRef]
- Chruma, J.J.; Cullen, D.J.; Bowman, L.; Toy, P.H. Polyunsaturated Fatty Acid Amides from the Zanthoxylum Genus-from Culinary Curiosities to Probes for Chemical Biology. Nat. Prod. Rep. 2018, 35, 54–74. [Google Scholar] [CrossRef]
- Li, W.; Wang, T. Effect of Solid-State Fermentation with Bacillus Subtilis Lwo on the Proteolysis and the Antioxidative Properties of Chickpeas. Int. J. Food Microbiol. 2021, 338, 108988. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zheng, H.; Lu, J.; Li, S.; Anchen, W.; Huang, M.; Fu, Y.; Zhuang, L. Extraction, Identification, Mechanism of Action, and Application of Hu Zhang (Polygonum cuspidatum) Extracts against Non-O1/O139 Vibrio cholerae in Prawn Storage. LWT Food Sci. Technol. 2023, 185, 115135. [Google Scholar] [CrossRef]
- Jiang, X.; Gao, F.; Ma, Y.; Huo, N.; Guo, Y.; Yu, Y. Protein from Tiger Nut Meal Extracted by Deep Eutectic Solvent and Alkali-Soluble Acid Precipitation: A Comparative Study on Structure, Function, and Nutrition. Food Chem. 2024, 452, 139608. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, G. Effect of pH-Shifting Method on Solubility and Emulsifying Properties of Soy Protein Concentrate. Harran Tarim. Ve Gida Bilim. Derg. Harran J. Agric. Food Sci. 2019, 23, 159–166. [Google Scholar] [CrossRef]
- Dou, Z.; Chen, C.; Fu, X. The Effect of Ultrasound Irradiation on the Physicochemical Properties and α-Glucosidase Inhibitory Effect of Blackberry Fruit Polysaccharide. Food Hydrocoll. 2019, 96, 568–576. [Google Scholar] [CrossRef]
- Mir, N.A.; Riar, C.S.; Singh, S. Effect of pH and Holding Time on the Characteristics of Protein Isolates from Chenopodium Seeds and Study of Their Amino Acid Profile and Scoring. Food Chem. 2019, 272, 165–173. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Sun, X.; Chen, F.; Wu, Q. Effects of AOT Reverse Micelle Extraction on Structure and Emulsifying Properties of Soybean Protein. J. Am. Oil Chem. Soc. 2021, 98, 923–932. [Google Scholar] [CrossRef]
- Liu, X.; Suo, K.; Wang, P.; Li, X.; Hao, L.; Zhu, J.; Yi, J.; Kang, Q.; Huang, J.; Lu, J. Modification of Wheat Bran Insoluble and Soluble Dietary Fibers with Snail Enzyme. Food Sci. Hum. Wellness 2021, 10, 356–361. [Google Scholar] [CrossRef]
- Chen, W.; Wang, W.; Ma, X.; Lv, R.; Balaso, W.R.; Ding, T.; Ye, X.; Liu, D. Effect of pH-Shifting Treatment on Structural and Functional Properties of Whey Protein Isolate and Its Interaction with (-)-Epigallocatechin-3-Gallate. Food Chem. 2019, 274, 234–241. [Google Scholar] [CrossRef]
- Roytrakul, S.; Charoenlappanit, S.; Kittisenachai, S.; Siangpro, N.; Sichaem, J.; Chuakrut, S.; Sarin, S.; Jutakanoke, R. Antimicrobial and Antioxidant Activities of Peptide Derived from Turmeric Plant (Curcuma loznga L.). PLoS ONE 2024, 19, e0314482. [Google Scholar] [CrossRef]
- Oksana, R.; Anatoly, K.; Anastasia, E.; Lyudmila, B.; Yana, P.; Natalia, S.; Irina, B.; Elena, R.; Ludmila, K. Evaluation of Safety and Biomedical Potential of Water-Soluble Oat Lignin Avena sativa L. Int. J. Biol. Macromol. 2024, 283, 137609. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.B.; Baiseitova, A.; Zahoor, M.; Ahmad, I.; Ikram, M.; Bakhsh, A.; Shah, M.A.; Ali, I.; Idress, M.; Ullah, R.; et al. Probiotic Significance of Lactobacillus Strains: A Comprehensive Review on Health Impacts, Research Gaps, and Future Prospects. Gut Microbes 2024, 16, 2431643. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Jiang, Z.; Wang, C.; Zhang, Y.; Gong, T.; Wang, F.; Jin, M.; Wang, Y.; Lu, Z. Co-Fermented Defatted Rice Bran Alters Gut Microbiota and Improves Growth Performance, Antioxidant Capacity, Immune Status and Intestinal Permeability of Finishing Pigs. Anim. Nutr. 2022, 11, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Jiang, Z.; Wang, C.; Xu, B.; Lu, Z.; Wang, F.; Zong, X.; Jin, M.; Wang, Y. Dynamics of Defatted Rice Bran in Physicochemical Characteristics, Microbiota and Metabolic Functions during Two-Stage Co-Fermentation. Int. J. Food Microbiol. 2022, 362, 109489. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, E.R.; Wong, E.A.; Webb, K.J. Board-Invited Review: Peptide Absorption and Utilization: Implications for Animal Nutrition and Health. J. Anim. Sci. 2008, 86, 2135–2155. [Google Scholar] [CrossRef]
- Effect of Bacillus Subtilis and Lactobacillus plantarum on Solid-State Fermentation of Soybean Meal—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/37140367/ (accessed on 27 November 2024).
- Park, M.-J.; General, T.; Lee, S.-P. Physicochemical Properties of Roasted Soybean Flour Bioconverted by Solid-State Fermentation Using Bacillus subtilis and Lactobacillus plantarum. Prev. Nutr. Food Sci. 2012, 17, 36–45. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Z.; Yu, W.; Zheng, L.; Li, L.; Gu, W.; Xu, H.; Wei, B.; Yan, X. Nutritional Quality Improvement of Soybean Meal by Bacillus velezensis and Lactobacillus plantarum during Two-Stage Solid-State Fermentation. AMB Express 2021, 11, 23. [Google Scholar] [CrossRef]
- Li, M.; Yang, R.; Feng, X.; Fan, X.; Liu, Y.; Xu, X.; Zhou, G.; Zhu, B.; Ullah, N.; Chen, L. Effects of Low-Frequency and High-Intensity Ultrasonic Treatment Combined with Curdlan Gels on the Thermal Gelling Properties and Structural Properties of Soy Protein Isolate. Food Hydrocoll. 2022, 127, 107506. [Google Scholar] [CrossRef]
- Gouvea, L.D.P.; Caldeira, R.; Azevedo, T.D.L.; Galdeano, M.C.; Felberg, I.; Lima, J.R.; Mellinger, C.G. Physical and Techno-Functional Properties of a Common Bean Protein Concentrate Compared to Commercial Legume Ingredients for the Plant-Based Market. Food Hydrocoll. 2023, 137, 108351. [Google Scholar] [CrossRef]
- Arzeni, C.; Martinez, K.; Zema, P.; Arias, A.; Perez, O.E.; Pilosof, A.M.R. Comparative Study of High Intensity Ultrasound Effects on Food Proteins Functionality. J. Food Eng. 2012, 108, 463–472. [Google Scholar] [CrossRef]
- Boye, J.; Zare, F.; Pletch, A. Pulse Proteins: Processing, Characterization, Functional Properties and Applications in Food and Feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Tarahi, M.; Abdolalizadeh, L.; Hedayati, S. Mung Bean Protein Isolate: Extraction, Structure, Physicochemical Properties, Modifications, and Food Applications. Food Chem. 2024, 444, 138626. [Google Scholar] [CrossRef] [PubMed]
- Brishti, F.H.; Chay, S.Y.; Muhammad, K.; Ismail-Fitry, M.R.; Zarei, M.; Karthikeyan, S.; Saari, N. Effects of Drying Techniques on the Physicochemical, Functional, Thermal, Structural and Rheological Properties of Mung Bean (Vigna radiata) Protein Isolate Powder. Food Res. Int. 2020, 138, 109783. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Li, X.; Zhang, Z.; Chen, A.; Li, S.; Shen, G.; Li, M.; Liu, X.; Yin, X.; Cheng, L.; et al. Extraction of Zanthoxylum Seed Protein and Identification of Its Simulated Digestion Products. LWT Food Sci. Technol. 2022, 161. [Google Scholar] [CrossRef]
- Ali, S.S.; Ahsan, H.; Zia, M.K.; Siddiqui, T.; Khan, F.H. Understanding Oxidants and Antioxidants: Classical Team with New Players. J. Food Biochem. 2020, 44, e13145. [Google Scholar] [CrossRef]
- Cömert, E.D.; Gökmen, V. Antioxidants Bound to an Insoluble Food Matrix: Their Analysis, Regeneration Behavior, and Physiological Importance. Compr. Rev. Food Sci. Food Saf. 2017, 16, 382–399. [Google Scholar] [CrossRef]
- Liang, S.; Yu, S.; Qin, Y.; Yu, H.; Zhao, Z.; Xu, Y.; Zhang, G.; Li, C.; Liu, L.; Peng, D.; et al. Blue Honeysuckle Fermentation with Lacticaseibacillus rhamnosus L08 Improves Its Biological Activity, Sensory and Flavor Characteristics, and Storage Stability. Food Chem. X 2024, 23, 101659. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Tao, Y.; Li, D.; Han, Y.; Show, P.L.; Wen, G.; Zhou, J. Fermentation of Blueberry and Blackberry Juices Using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: Growth of Probiotics, Metabolism of Phenolics, Antioxidant Capacity in Vitro and Sensory Evaluation. Food Chem. 2021, 348, 129083. [Google Scholar] [CrossRef]
- Li, C.; Zhao, P.; Shao, Q.; Chen, W.; Huang, S.; Wang, X.; Zhang, C.; He, L. Effects of Dietary Glycyrrhiza polysaccharide on Growth Performance, Blood Parameters and Immunity in Weaned Piglets. J. Anim. Physiol. Anim. Nutr. 2023, 107, 136–146. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Zheng, N.; Guo, L.; Song, X.; Zhao, S.; Wang, J. Biological System Responses of Dairy Cows to Aflatoxin B1 Exposure Revealed with Metabolomic Changes in Multiple Biofluids. Toxins 2019, 11, 77. [Google Scholar] [CrossRef]
Single Factor | Fixed Factors |
---|---|
Inoculation Amount (6%, 8%, 10%, 12%, and 14%) | 1:1, 0.7:1 g/mL, 35 °C, 2 d |
Inoculation Proportion (1:1, 1:2, 2:1, 2:3, and 3:2) | 10%, 0.7:1 g/mL, 35 °C, 2 d |
Material–Liquid Ratio (0.6:1, 0.7:1, 0.8:1, 0.9:1, and 1:1 g/mL) | 10%, 1:1, 35 °C, 2 d |
Fermentation Temperature (30, 33, 35, 37, and 40 °C) | 10%, 1:1, 0.8:1 g/mL, 2 d |
Fermentation Time (d) (0, 2, 4, 6, and 8 d) | 10%, 1:1, 0.8:1 g/mL, 35 °C |
Factor | Symbol Code | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Inoculation Amount (%) | A | 8 | 10 | 12 |
Material–Liquid Ratio (g/mL) | B | 1:0.6 | 1:0.8 | 1:1 |
Temperature (°C) | C | 33 | 35 | 37 |
Time (d) | D | 2 | 4 | 6 |
Runs | Inoculation Amount (%) | Material–Liquid Ratio (g/mL) | Temperature (°C) | Time (Days) | Soluble Protein Contents (mg/g) |
---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 150.87 |
2 | 0 | 1 | 0 | −1 | 120.97 |
3 | −1 | −1 | 0 | 0 | 143.18 |
4 | 0 | 0 | −1 | −1 | 115.24 |
5 | 0 | −1 | −1 | 0 | 138.8 |
6 | 0 | 1 | 0 | 1 | 131.78 |
7 | 0 | 1 | −1 | 0 | 124.78 |
8 | 0 | −1 | 0 | −1 | 135.6 |
9 | −1 | 0 | 1 | 0 | 118.63 |
10 | −1 | 1 | 0 | 0 | 129.24 |
11 | 0 | −1 | 0 | 1 | 140.11 |
12 | 1 | 0 | 1 | 0 | 132.75 |
13 | −1 | 0 | −1 | 0 | 130.38 |
14 | 0 | −1 | 1 | 0 | 136.43 |
15 | −1 | 0 | 0 | 1 | 130.38 |
16 | 0 | 1 | 1 | 0 | 128.45 |
17 | 0 | 0 | −1 | 1 | 131.08 |
18 | −1 | 0 | 0 | −1 | 128.08 |
19 | 0 | 0 | 0 | 0 | 150.87 |
20 | 1 | 0 | −1 | 0 | 120.56 |
21 | 0 | 0 | 0 | 0 | 155.96 |
22 | 0 | 0 | 0 | 0 | 151.16 |
23 | 1 | 1 | 0 | 0 | 134.33 |
24 | 1 | −1 | 0 | 0 | 125.42 |
25 | 1 | 0 | 0 | −1 | 117.78 |
26 | 0 | 0 | 1 | −1 | 128.6 |
27 | 1 | 0 | 0 | 1 | 124.77 |
28 | 0 | 0 | 0 | 0 | 150.87 |
29 | 0 | 0 | 1 | 1 | 115.7 |
Source | Sum of Squares | DF | Mean Square | F Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 3503.64 | 14 | 250.26 | 22.58 | <0.0001 | *** |
A—Inoculation Amount | 49.12 | 1 | 49.11 | 4.43 | 0.0538 | |
B—Liquid–Material Ratio | 208.22 | 1 | 208.22 | 18.79 | 0.0007 | ** |
C—Temperature | 0.0064 | 1 | 0.0064 | 0.0006 | 0.9812 | |
D—Time | 63.26 | 1 | 63.26 | 5.71 | 0.0315 | * |
AB | 130.54 | 1 | 130.54 | 11.78 | 0.004 | ** |
AC | 143.21 | 1 | 143.21 | 12.92 | 0.0029 | ** |
AD | 5.48 | 1 | 5.48 | 0.4947 | 0.4934 | |
BC | 9.1 | 1 | 9.1 | 0.8211 | 0.3802 | |
BD | 9.94 | 1 | 9.94 | 0.897 | 0.3597 | |
CD | 206.53 | 1 | 206.53 | 18.63 | 0.0007 | ** |
A2 | 1013.06 | 1 | 1013.06 | 91.41 | <0.0001 | *** |
B2 | 218.07 | 1 | 218.07 | 19.68 | 0.0006 | ** |
C2 | 1318.8 | 1 | 1318 | 118.99 | <0.0001 | *** |
D2 | 1349.22 | 1 | 1349.22 | 121.74 | <0.0001 | *** |
Residual | 155.17 | 14 | 11.08 | |||
Lack of Fit | 134.95 | 10 | 13.49 | 2.67 | 0.1783 | not significant |
Pure Error | 20.22 | 4 | 5.05 | |||
Cor Total | 3658.81 | 28 |
Items | ZBSP | FZBSP | p-Value |
---|---|---|---|
WHC (g/g) | 1.99 ± 0.10 b | 3.87 ± 0.11 a | <0.001 |
OHC (g/g) | 3.07 ± 0.01 b | 6.16 ± 0.19 a | <0.001 |
EAI (m2/g) | 15.26 ± 0.29 b | 16.22 ± 0.17 a | <0.05 |
ESI (min) | 46.82 ± 1.64 b | 54.61 ± 2.41 a | <0.05 |
Items | ZBSP | FZBSP | p-Value |
---|---|---|---|
DPPH RSC | 58.80 ± 0.02 b | 63.85 ± 0.01 a | <0.05 |
ABTS RSC | 89.34 ± 0.02 b | 95.42 ± 0.02 a | <0.05 |
HRSC | 53.38 ± 0.01 b | 65.39 ± 0.01 a | <0.001 |
Items | Heart | Liver | Spleen | Lungs | Kidney |
---|---|---|---|---|---|
CON | 5.04 ± 0.26 | 45.48 ± 4.11 | 3.46 ± 0.74 | 6.64 ± 1.15 | 10.97 ± 1.11 |
1.5 g/kg | 5.31 ± 0.34 | 46.31 ± 5.31 | 3.37 ± 0.72 | 6.66 ± 1.33 | 10.91 ± 1.05 |
3 g/kg | 5.25 ± 0.26 | 44.67 ± 3.91 | 3.44 ± 0.60 | 6.91 ± 0.57 | 9.96 ± 1.37 |
6 g/kg | 5.25 ± 0.69 | 44.16 ± 1.61 | 3.69 ± 0.47 | 6.85 ± 1.01 | 10.41 ± 1.19 |
12 g/kg | 5.68 ± 0.71 | 45.50 ± 2.88 | 3.75 ± 0.71 | 6.94 ± 1.20 | 10.60 ± 1.33 |
Groups | WBC (109/L) | LYM (%) | MON (%) | NEU (%) | RBC (1012/L) | HGB (g/dL) | MCV (fL) |
---|---|---|---|---|---|---|---|
CON | 4.05 ± 0.73 | 3.58 ± 0.65 | 0.23 ± 0.06 | 0.58 ± 0.13 | 10.07 ± 0.26 | 15.18 ± 0.47 | 48.33 ± 1.97 |
1.5 g/kg | 3.96 ± 0.29 | 3.11 ± 0.32 | 0.17 ± 0.06 | 0.68 ± 0.12 | 9.11 ± 0.79 | 13.60 ± 1.37 | 47.83 ± 2.71 |
3 g/kg | 4.04 ± 0.53 | 3.46 ± 0.75 | 0.18 ± 0.05 | 0.40 ± 0.26 | 9.41 ± 0.91 | 14.40 ± 0.77 | 48.17 ± 2.56 |
6 g/kg | 3.85 ± 0.35 | 3.07 ± 0.62 | 0.20 ± 0.07 | 0.58 ± 0.33 | 9.68 ± 1.10 | 13.55 ± 1.25 | 48.33 ± 2.66 |
12 g/kg | 3.44 ± 0.73 | 2.95 ± 0.70 | 0.14 ± 0.03 | 0.34 ± 0.13 | 9.40 ± 1.57 | 14.13 ± 2.28 | 48.17 ± 2.32 |
Groups | ALP U/L | ALT U/L | BUN mmol/L | GLU mmol/L | TP g/L |
---|---|---|---|---|---|
CON | 253.67 ± 5.89 | 39.83 ± 1.47 | 10.50 ± 0.34 | 3.62 ± 0.13 | 56.50 ± 2.88 |
1.5 g/kg | 251.33 ± 6.06 | 40.83 ± 1.33 | 10.40 ± 0.28 | 3.48 ± 0.21 | 55.00 ± 2.83 |
3 g/kg | 251.83 ± 8.23 | 39.33 ± 1.03 | 10.28 ± 0.49 | 3.25 ± 0.26 | 55.33 ± 1.37 |
6 g/kg | 253.83 ± 4.36 | 39.67 ± 1.75 | 10.67 ± 0.33 | 3.57 ± 0.23 | 55.50 ± 2.88 |
12 g/kg | 252.17 ± 4.17 | 39.17 ± 1.17 | 10.55 ± 0.44 | 3.08 ± 0.49 | 54.83 ± 2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, X.; Xu, G.; Liang, C.; Mektrirat, R.; Wang, L.; Zhang, K.; Meng, B.; Tang, X.; Wang, X.; Egide, H.; et al. Optimization of Fermentation Process of Zanthoxylum bungeanum Seeds and Evaluation of Acute Toxicity of Protein Extract in Mice. Foods 2024, 13, 4004. https://doi.org/10.3390/foods13244004
Gu X, Xu G, Liang C, Mektrirat R, Wang L, Zhang K, Meng B, Tang X, Wang X, Egide H, et al. Optimization of Fermentation Process of Zanthoxylum bungeanum Seeds and Evaluation of Acute Toxicity of Protein Extract in Mice. Foods. 2024; 13(24):4004. https://doi.org/10.3390/foods13244004
Chicago/Turabian StyleGu, Xueyan, Guowei Xu, Chunhua Liang, Raktham Mektrirat, Lei Wang, Kang Zhang, Bingbing Meng, Xi Tang, Xiaoya Wang, Hanyurwumutima Egide, and et al. 2024. "Optimization of Fermentation Process of Zanthoxylum bungeanum Seeds and Evaluation of Acute Toxicity of Protein Extract in Mice" Foods 13, no. 24: 4004. https://doi.org/10.3390/foods13244004
APA StyleGu, X., Xu, G., Liang, C., Mektrirat, R., Wang, L., Zhang, K., Meng, B., Tang, X., Wang, X., Egide, H., Liu, J., Chen, H., Zhang, M., Zhang, J., Wang, X., & Li, J. (2024). Optimization of Fermentation Process of Zanthoxylum bungeanum Seeds and Evaluation of Acute Toxicity of Protein Extract in Mice. Foods, 13(24), 4004. https://doi.org/10.3390/foods13244004