Effects of Binding between Ca in Hard Water and Phosphorus in Amylopectin on the Qualities of Boiled Rice and Rice Noodle Prepared by Soaking and Boiling in Hard Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurement of the Moisture Content of Rice Flour
2.3. Preparation of Milled Rice Flour
2.4. Preparation of Starch Granules
2.5. Iodine Absorption Spectrum
2.6. Pasting Properties
2.7. Measurements of Textural Properties of Boiled Rice Grains
2.8. Xylanase Activity
2.9. Measurement of Color Difference of Gelatinized Paste and Boiled Rice Soaked and Boiled in 2 Types of Hard Water or Weakly Acid Hard Water Using Koshihikari as Polished Rice
2.10. Preparation of Rice Noodles
2.11. Preparation of Rice Crackers
2.12. Analysis of Calcium, Magnesium and Phosphorus Contents
2.13. Sensory Evaluation of Boiled Rice or Rice Noodles after Soaking in Hard Water or Weakly Acidic Hard Water
2.14. Statistical Analyses
3. Results and Discussion
3.1. Phosphorus Contents of 32 Unpolished Rice Samples
3.2. Iodine Absorption Spectrum for the Survey of Starch Microstructure
3.3. Pasting Properties of Rice Starch Using 7 Kinds of Rice Cultivars
3.4. Calcium and Magnesium Contents of Polished Rice, Boiled Rice, Rice Crackers, and Rice Noodles Prepared Using Contrex or Purified Water from 7 Various Kinds of Rice Samples
3.5. Textural Properties of Boiled Rice Grains Soaked and Boiled in Contrex (pH 7.2), Weakly Acid Contrex (pH 4.6) and Purified Water Using 7 Various Kinds of Polished Rice Samples
3.6. Pasting Properties with Maintenance Temperature 93 °C Program of RVA for Various Kinds of Polished Rice Using Hard Water, Weakly Acid Hard Water and Purified Water
3.7. Correlation among the Physico-Chemical and Biological Properties
3.8. Improvement of the Color of Boiled Rice by Using Weakly Acidic Hard Water, Contrex (pH 4.6)
3.9. Sensory Evaluation of Boiled Rice or Rice Noodles Soaked and Boiled in 2 Kinds of Hard Water, or Weakly Acidic Hard Water, or Purified Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wei, X.; Huang, X. Chapter 1: Origin, taxonomy, and phylogenetics of rice. In RICE: Chemistry and Technology; AACC International: St. Paul, MN, USA, 2019; pp. 1–29. [Google Scholar]
- Kitano, T. Basic and epidemiological studies on calcium nutrition for Japanese people. J. Nutr. Sci. Vitaminol. 2005, 63, 253–259. [Google Scholar]
- Kubota, M. Optimization of calcium intake for the prevention of osteoporosis and osteoporotic fracture: A Review of the evidence. Jpn. J. Hyg. 2003, 58, 317–327. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Coughlan, T.; Dockery, F. Osteoporosis and fracture risk in older people. Clin. Med. 2014, 14, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Iseri, L.T.; French, J.H. Magnesium: Nature’s physiologic calcium blocker. Am. Heart J. 1984, 108, 188–193. [Google Scholar] [CrossRef]
- Prevention and management of osteoporosis. World Health Organ. Tech. Rep. Ser. 2003, 921, 1–164.
- Intergovernmental Panel on Climate Change. Climate Change 2022: The Physical Science Basis (Summary for Policymakers); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Horie, T. Global warming and rice production in Asia: Modeling, impact prediction and adaptation. Proc. Jpn. Acad. Ser. 2019, 95, 211–245. [Google Scholar] [CrossRef] [PubMed]
- Saud, S.; Wang, D.; Fahad, S.; Alharby, H.F.; Bamagoos, A.A.; Mjrashi, A.; Alabdallah, N.M.; Alzahrani, S.S.; Abdelgawad, H.; Adnan, M.; et al. Comprehensive impacts of climate change on rice production and adaptive strategies in China. Front. Microbiol. 2022, 13, 926059. [Google Scholar] [CrossRef]
- Cappelli, G.A.; Bregaglio, S. Model-based evaluation of climate change impacts on rice grain quality in the main European rice district. Food Energy Secur. 2021, 10, e307. [Google Scholar] [CrossRef]
- Morita, S.; Shiratsuch, I.H.; Takahashi, J.; Fujita, K. Effect of temperature on grain ripening in rice plants. Jpn. Crop Sci. 2004, 73, 77–83. [Google Scholar] [CrossRef]
- Yang, T.; Xiong, R.; Wang, H.; Tan, X.; Huang, S.; Zhang, J.; Zhang, B.; Zeng, Y. Experimental warming under under field conditions alters starch multi-structure and flour and starch functionality of late-season indica-japonica hybrid rice in southern China. Front. Sustain. Food Syst. 2023, 7, 1203172. [Google Scholar] [CrossRef]
- Mitsui, T.; Shiraya, T.; Kaneko, K.; Wada, K. Proteomics of rice grain under high temperature stress. Plant Prod. Sci. 2013, 4, 36. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Satoh, A.; Aizawa, M.; Ohtsubo, K. Characteristics of physicochemical properties of chalky grains of Japonica rice generated by high temperature during ripening. Foods 2022, 11, 97. [Google Scholar] [CrossRef]
- Nakamura, S.; Hasegawa, M.; Kobayashi, Y.; Komata, C.; Katsura, J.; Maruyama, Y.; Ohtsubo, K. Palatability and bio-functionality of chalky grains generated by high-temperature ripening and development of formulae for estimating the degree of damage using a rapid visco analyzer of Japonica unpolished rice. Foods 2022, 11, 3422. [Google Scholar] [CrossRef]
- Nakamura, S.; Ohtsubo, K. Effects of hard water boiling on chalky rice in term of texture improvement and Ca fortification. Foods 2023, 12, 2510. [Google Scholar] [CrossRef]
- Champagne, E.T.; Wood, D.F.; Juliano, B.O.; Bechtel, D.B. The rice grain and its gross composition. In Rice-Chemistry and Technology, 3rd ed.; Champagne, E.T., Ed.; American Association Cereal Chemistry Int.: St. Paul, MN, USA, 2004; pp. 88–96. [Google Scholar]
- Taniguchi, H.; Hashimoto, H.; Hosoda, A.; Kometani, T. Functionality of compounds contained in rice bran and their improvement. Nippon Shokuhin Kagaku Kogaku Kaishi 2012, 59, 301–318. [Google Scholar] [CrossRef]
- Kubo, S.; Saio, K. Classification of the Japanese lowland rice by the mineral contents of husked grain. Part 2. Correlation of phosphorus content of husked rice with ripening period and temperature. Rep. Food Res. Inst. 1961, 15, 22–27. [Google Scholar]
- Yoshida, T.; Tanaka, K.; Kasai, Z. Phytase activity associated with isolated aleurone particles of rice grains. Agric. Biol. Chem. 1975, 39, 289–290. [Google Scholar]
- Ogawa, M.; Tanaka, K.; Kasai, Z. Phytic acid formation in dissected ripening rice grains. Agric. Biol. Chem. 1979, 43, 2211–2213. [Google Scholar]
- Tabata, S.; Hizukuri, S. Phosphorus in starch. J. Jpn. Soc. Starch Sci. 1975, 22, 27–39. [Google Scholar] [CrossRef]
- Wariyah, C.; Anwar, C.; Astuti, M.S. Calcium fixation on fortified rice made with various rice varieties. Food Res. 2021, 5, 285–290. [Google Scholar] [CrossRef]
- Noda, T.; Takigawa, S.; Matsuura-Endo, C.; Iahiguro, K.; Nagasawa, K.; Jinno, M. Preparation of calcium-and magnesium-fortified potato starches with altered pasting properties. Molecules 2014, 19, 14556–14566. [Google Scholar] [CrossRef] [PubMed]
- Noda, T.; Takigawa, S.; Matsuura-Endo, C.; Ishiguro, K.; Nagasawa, K.; Jinno, M. Properties of Calcium-fortified potato starch prepared by immersion in natural mineral water and its food application. J. Appl. Glycosci. 2015, 62, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, N.; Iwasaki, T. Polysaccharides and glycoproteins in the rice endosperm cell wall. Agric. Biol. Chem. 1978, 42, 2259–2266. [Google Scholar]
- Shibuya, N.; Misaki, A. Structure of hemicellulose isolated from rice endosperm cell wall: Mode of linkages and sequences in xyloglucan, β-glucan and arabinoxylan. Agric. Biol. Chem. 1978, 42, 2267–2274. [Google Scholar]
- Nakamura, S.; Machida, K.; Ohtsubo, K. Search for cell-wall-degrading enzymes of world-wide rice grains by PCR and their effects on the pammlatability of rice. Biosci. Biotechnol. Biochem. 2012, 76, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Tsujii, Y.; Kiyose, N.; Tatsuda, N.; Yaguchi, Y.; Uchino, M.; Takano, K. Change in the endospermous cell wall of cooked rice and its effects on the palatability of cooked rice. Food Preserv. Sci. 2009, 35, 127–134. [Google Scholar] [CrossRef]
- Miwa, K. Dynamics of mineral nutrients in apoplast and their roles in cell wall function. JSCRP Reguation Plant Growth Dev. 2015, 50, 64–69. [Google Scholar]
- Nakamura, S.; Satoh, H.; Ohtsubo, K. Characteristics of pregelatinized ae mutant rice flours prepared by boiling after preroasting. J. Agric. Food Chem. 2011, 59, 10665–10676. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Satoh, H.; Ohtsubo, K. Palatable and bio-functional wheat/rice products developed from pre-germinated brown rice of super-hard cultivar EM10. Biosci. Biotechnol. Biochem. 2010, 74, 1164–1172. [Google Scholar] [CrossRef]
- Nakamura, S.; Satoh, H.; Ohtsubo, K. Development of formulae for estimating amylose content, amylopectin chain length distribution, and resistant starch content based on the iodine absorption curve of rice starch. Biosci. Biotechnol. Biochem. 2015, 79, 443–455. [Google Scholar] [CrossRef]
- The Food Agency, Japan. Standard Method for the Measurement of Moisture Content; The Food Agency: Tokyo, Japan, 1989; p. 29.
- Yamamoto, K.; Sawada, S.; Onogaki, I. Effects of quality and quantity of alkali solution on the properties of rice starch. Denpun Kagaku 1981, 28, 241–244. [Google Scholar]
- Juliano, B.O. A simplified assay for milled-rice amylose. Cereal Sci. Today 1971, 12, 334–360. [Google Scholar]
- Nakamura, S.; Katsura, J.; Maruyama, Y.; Ohtsubo, K. Evaluation of hardness and retrogradation of cooked rice based on its pasting properties using a novel RVA testing. Foods 2021, 10, 987. [Google Scholar] [CrossRef] [PubMed]
- Toyoshima, H.; Okadome, H.; Ohtsubo, K.; Suto, M.; Horisue, N.; Inatsu, O.; Narizuka, A.; Aizaki, M.; Inouchi, N.; Fuwa, H. Cooperative test on the small-scale rapid method for the gelatinization properties test of rice flours with a rapid visco analyser. Nippon Shokuhin Kogakukaishi 1997, 44, 579–584. [Google Scholar] [CrossRef]
- Nakamura, S.; Katsura, J.; Kato, K.; Ohtsubo, K. Development of formulae for estimating amylose content and resistant starch content based on the pasting properties measured by RVA of Japonica polished rice and starch. Biosci. Biotechnol. Biochem. 2016, 2, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Okadome, H.; Toyoshima, H.; Sudo, M.; Ando, I.; Numaguchi, K.; Ohtsubo, K. Palatability evaluation for Japonica rice grains based on multiple physical measurements of individual cooked rice grain. J. Jpn. Soc. Food Sci. Technol. 1998, 45, 398–407. (In Japanese) [Google Scholar] [CrossRef]
- Chikubu, S.; Iwasaki, T.; Tani, T. Studies on cooking and eating qualities of white rice (part 1). J. Jpn. Soc. Food Nutr. 1960, 13, 137–140. [Google Scholar]
- Li, Y.; Suzuki, K.; Kohyama, K.; Hu, Y.; Ohtsubo, K.; Intabon, K.; Satake, T. Quality evaluation of rice noodles made from different rice varieties. Nippon Shokuhin Kagaku Kogaku Kaishi 2007, 8, 147–154. [Google Scholar] [CrossRef]
- Nakamura, S.; Suzuki, D.; Kitadume, R.; Ohtsubo, K. Quality evaluation of rice crackers based on physicochemical measurements. Biosci. Biotechnol. Biochem. 2012, 4, 794–804. [Google Scholar] [CrossRef][Green Version]
- Borkowska-Burnecka, J.; Le’sniewicz, A.; Zyrnicki, W. Comparison of pneumatic and ultrasonic nebulizations in inductively coupled plasma atomic emission spectrometry–matrix effects and plasma parameters. Spectrochim. Acta B 2006, 61, 579–587. [Google Scholar] [CrossRef]
- Pulliainen, T.K.; Wallin, H.C. Determination of total phosphorus in foods by colorimetric measurement of phosphorus as molybdenum blue after dry-ashing: NMKL interlaboratory study. J. AOAC Int. 1994, 77, 1557–1561. [Google Scholar] [CrossRef]
- Taik Lim, S.; Kasemsuwan, T.; Lin Jane, J. Characterization of phosphorus in starch by 31P-Nuclear Magnetic Resonance Spectroscopy. Cereal Chem. 1994, 71, 488–493. [Google Scholar]
- Sposito. The Chemistry of Soils; Oxford Univ. Press: New York, NY, USA, 1989; 277p. [Google Scholar]
- Suzuki, M.; Kimura, T.; Yamagishi, K.; Shinmoto, H.; Yamaki, K. Comparison of mineral in 8 cultivars of pigmented brown rice. Nippon Shokuhin Kagaku Kogaku Kaishi 2004, 51, 424–427. [Google Scholar] [CrossRef]
- Suzuki, M.; Kataoka, T.; Ohtsubo, K. Variation in the mineral content of 8 cultivars of pigmented brown rice. Nippon Shokuhin Kagaku Kogaku Kaishi 2014, 61, 427–432. [Google Scholar] [CrossRef][Green Version]
- Zeng, Y.W.; Liu, J.F.; Wang, L.X.; Shen, S.Q.; Li, Z.; Wang, X.; Wen, G.; Yang, Z. Analysis on mineral element contents in associated with varietal type in core collection of Yunnan rice. Rice Sci. 2004, 12, 106–112. [Google Scholar]
- Zeng, Y.W.; Shen, S.Q.; Wang, L.X.; Liu, J.F.; Pu, X.Y.; Du, J.; Qiu, M. Correlation of plant morphological and grain quality traits with mineral element contents in Yunnan rice. Rice Sci. 2005, 12, 101–106. [Google Scholar]
- Yamakawa, H.; Hakata, M. Atlas of rice grain filling-related metabolism under high temperature: Joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol. 2010, 51, 795–809. [Google Scholar]
- Pontis, H.G. Case Study: Sugar Phosphates. Methods for Analysis of Carbohydrate Metabolism in Photosynthetic Organisms. Plants, Green Algae and Cyanobacteria; Academic Press: Cambridge, MA, USA, 2017; pp. 191–203. [Google Scholar]
- The Statistical Yearbook of MAFF in 2022. Available online: https://www.jfa.maff.go.jp/j/kikaku/wpaper/R1/attach/pdf/index-2.pdf (accessed on 10 May 2024).
- Yamaji, N.; Takemoto, Y.; Miyaji, T.; Mitani-Ueno, N.; Yoshida, K.T.; Ma, J.F. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature 2017, 541, 92–95. [Google Scholar] [CrossRef]
- Nishi, A.; Nakamura, Y.; Tanaka, N.; Satoh, H. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol. 2001, 127, 459–472. [Google Scholar] [CrossRef]
- Takata, H.; Kojima, I.; Taji, N.; Suzuki, U.; Yamamoto, M. Industrial production of branching enzyme and its application to production of highly branching cyclic dextrin. Seibutu Kogaku Kaishi 2006, 84, 61–66. [Google Scholar]
- Jideani, I.A.; Takeda, Y.; Hizukuri, S. Structures and physicochemical properties of starches from Acha (Digitaria exilis), Iburu (D. iburua), and Tamba (Eleusine coracana). J. Cereal Chem. 1996, 6, 677–685. [Google Scholar]
- Yano, M.; Okuno, K.; Satoh, H.; Omura, T. Chromosomal location of genes conditioning low amylose content of endosperm starches in rice, Oryza sativa L. Theor. Appl. Genet. 1988, 76, 183–189. [Google Scholar] [CrossRef]
- Tateyama, M.; Sakai, M.; Suto, M. Varietal differences in the response of the amylose content of the endosperm of low- amylose rice (Oryza sativa L.) Lines to temperature during the ripening period. Breed. Res. 2005, 7, 1–7. [Google Scholar]
- Igarashi, T.; Yanagihara, T.; Kanda, H.; Kawamoto, K.; Masaki, K. Development of new eating quality evaluation method based on iodine adsorption multispectral analysis of rice flour. J. Crop Sci. 2009, 78, 66–73. [Google Scholar]
- Takeda, Y.; Hizukuri, S.; Juliano, B.O. Structures of rice amylopectins with low and high affinities for iodine. Carbohydr. Res. 1987, 168, 79–88. [Google Scholar] [CrossRef]
- Juliano, B.O.; Onate, L.M.; Mundo, A.M. A simplified assay for milled rice amylose. Food Technol. 1965, 19, 1006–1011. [Google Scholar]
- Asaoka, M.; Okuno, K.; Sugimoto, Y.; Kawakami, J.; Fuwa, H. Effect of environmental temperature during development of rice plants on some properties of endosperm starch. Starch-Stärke 1984, 31, 189–193. [Google Scholar] [CrossRef]
- Kobayashi, A.; Machida, Y.; Watanabe, S.; Morozumi, Y.; Nakaoka, F.; Hayashi, T.; Tomita, K. Effects of temperature during ripening on amylopectin chain-length distribution of ‘Koshihikari’ and ‘Ichihomare’. Plant Prod. Sci. 2022, 25, 250–259. [Google Scholar] [CrossRef]
- Ishimaru, T.; Nakayama, Y.; Aoki, N.; Ohsumi, A.; Suzuki, K.; Umemoto, T.; Yoshinaga, S.; Kondo, M. High temperature and low solar radiation during ripening differentially affect the composition of milky-white grains in rice (Oryza sativa L.). Plant Prod. Sci. 2018, 21, 370–379. [Google Scholar] [CrossRef]
- Hizukuri, S.; Takeda, Y.; Matsubayashi, T. The effect of phosphorus in starch granules on raw starch digestion by bacterial alpha-amylase. J. Jpn. Soc. Starch Sci. 1979, 26, 112–116. [Google Scholar] [CrossRef]
- Pelpolage, S.; Murayama, D.; Tani, M.; Palta, J.; Yamaguchi, H.; Koaze, H. Effects of calcium fertilizer application on the physicochemical properties of starch isolated from the processing type potato cv. Toyoshiro. Food Sci. Technol. Res. 2018, 24, 559–565. [Google Scholar] [CrossRef]
- Kainuma, K.; Yamamoto, K.; Suzuki, S.; Takaya, K.; Fuwa, H. Studies on structure and physico-chemical properties of starch. Part IV. Structural, chemical and rheological properties of air classified small-and large granule potato starch. J. Jpn. Soc. Starch Sci. 1978, 25, 3–11. [Google Scholar] [CrossRef]
- Schwall, G.P.; Safford, R.; Westcott, R.J.; Jeffcoat, R.; Tayal, A.; Shi, Y.C.; Gidley, M.J.; Jobling, S.A. Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat. Biotechnol. 2000, 18, 551–554. [Google Scholar] [CrossRef]
- Maeda, K.; Iimura, K.; Kuramochi, H.; Fukui, K. Solubility of phosphoric salts in aqueous solutions and its applications. Bull. Soc. Sea Water Sci. Jpn. 2021, 314–318. [Google Scholar] [CrossRef]
- Ogawa, N.; Inagaki, A.; Yamanaka, N.; Shimomura, M. Effects of the calcium and sodium in rice cooking water on the properties of cooked rice (Part 1). JSHE 2006, 57, 669–675. [Google Scholar]
- Ogawa, N.; Kobayashi, Y.; Yamanaka, N.; Tanaka, Y. Effects of calcium and sodium in rice cooking water on the properties of cooked rice (Part 2). JSHE 2013, 64, 225–231. [Google Scholar]
- Shibuya, N.; Nakane, R.; Yasui, A.; Tanaka, K.; Iwasaki, T. Comparative studies on cell wall preparations from rice bran, germ, and endosperm. Cereal Chem. 1985, 62, 252–258. [Google Scholar]
- Takeda, T.; Hizukuri, S. Location of phosphate groups in potato amylopectin. Carbohydr. Rese. 1982, 102, 321–327. [Google Scholar] [CrossRef]
- Wren, J.J.; Merryfield, D.S. Firmly-bound’ lysolecithin of wheat starch. J. Sci. Food Agric. 1970, 21, 254. [Google Scholar] [CrossRef]
- Fujino, Y. Complex Lipid in Food. Food Hyg. Saf. Sci. 1972, 13, 257–271. [Google Scholar] [CrossRef]
- Kim, H.O.; Hill, R.D. Physical characteristics of wheat starch granule gelatinization in the presence of cyclohepta-amylose. Cereal Chem. 1984, 61, 432–435. [Google Scholar]
- Lin Jane, J. Current understanding on starch granule structures. J. Appl. Glycosci. 2006, 53, 205–213. [Google Scholar] [CrossRef]
- Kaneko, K.; Ota, K.; Sumino, T.; Maeda, Y. Effect of anions on binding between calcium and pectic substance. J. Nutr. Sci. Vitaminol. 1989, 42, 391–395. [Google Scholar]
- Kainuma, K.; Miyamoto, S.; Yoshioka, S.; Suzuki, S. Studies on structure and physico-chemical properties of starch. J. Jpn. Soc. Starch Sci. 1976, 23, 59–66. [Google Scholar] [CrossRef]
Unpolished Rice | Polished Rice | ||
---|---|---|---|
Ordinary-Japonica Rice | High-Quality Premium Japonica Rice | Low-Amylose Japonica Rice | Various Kinds of Rice |
Haenuki (Yamagata) | Koshihikari (Saga) | Yumepirika (Hokkaidou a) | Koshihikari (Niigata) |
Sasanishiki (Miyagi) | Koshihikari (Ibaraki a) | Yumepirika (Hokkaidou b) | Niigata129gou (Niigata) |
Yuudai21 (Tochigi) | Koshihikari (Ibaraki b) | MilkyQueen (Yamagata) | Koganemochi (Niigata) |
Ginnoshizuku (Iwate) | Koshihikari (Shimane) | Milkyqueen (Kyoto) | Milkyqueen (Niigata) |
Kazesayaka (Nagano) | Koshihikari (Niigata a) | Hoshiyutaka (Niigata) | |
Tugaruroman (Aomori) | Koshihikari (Niigata b) | Kinuhikari (Hyogo) | |
Hatsushimo (Gifu) | Koshiibuki (Niigata c) | Koshinokaori (Niigata) | |
Aichinokaori (Aichi) | Koshihikari (Yamagata a) | Tennotsubu (Fukushims) | |
Gohyakukawa (Yamanashi) | Koshihikari (Yamagata b) | ||
Akitakomachi (Ibaraki) | Koshihikari (Ishikawa) | ||
Akitakomachi (Chiba) | Koshihkari (Yamanashi) | ||
Akitakomachi (Akita a) | |||
Akitakomachi (Akita b) | |||
Tsuyahime (Shimane) | |||
Tsuyahime (Yamagata a) | |||
Tsuyahime (Yamagata b) | |||
Tsuyahime (Miyagi) |
Phosphorus Contents (mg/100 g) | |
---|---|
Koshihikari | 89.1 ± 2.6 b |
Niigata129gou | 112.8 ± 1.5 a |
Koganemochi | 91.8 ± 3.2 b |
Milkyqueen | 89.1 ± 3.0 b |
Hoshiyutaka | 88.5 ± 2.1 b |
Kinuhikari | 90.3 ± 1.8 b |
Koshinokaori | 110.0 ± 2.7 a |
Cultivars | AAC (%) | λmax | Aλmax | λmax/ Aλmax | Fb3 (DP ≥ 37) (%) |
---|---|---|---|---|---|
Koshihikari | 15.9 ± 0.1 c | 580.5 ± 0.7 c | 0.310 ± 0.00 c | 1872.6 ± 2.6 c | 13.1 ± 0.0 d |
Niigata129gou | 39.2 ± 0.6 a | 592.0 ± 1.0 a | 0.620 ± 0.01 a | 958.2 ± 18.8 f | 26.1 ± 0.3 a |
Koganemochi | 4.0 ± 0.1 f | 523.0 ± 0.0 f | 0.250 ± 0.00 e | 2087.0 ± 10.7 b | 10.2 ± 0.1 e |
Milkyqueen | 10.1 ± 0.4 e | 533.5 ± 3.5 e | 0.196 ± 0.00 f | 2729.2 ± 31.3 a | 8.0 ± 0.2 f |
Hoshiyutaka | 25.2 ± 0.6 b | 595.8 ± 1.8 b | 0.405 ± 0.01 b | 1430.5 ± 24.5 d | 17.6 ± 0.3 c |
Kinuhikari | 13.9 ± 0.4 d | 573.0 ± 1.4 d | 0.271 ± 0.00 d | 2118.3 ± 0.3 b | 11.3 ± 0.0 e |
Koshinokaori | 25.8 ± 0.1 b | 596.0 ± 0.0 b | 0.446 ± 0.00 b | 1337.8 ± 2.1 e | 19.1 ± 0.0 b |
Cultivars/Water Types | Mini.vis (cP) | BD (cP) | SB (cP) | Pt (°C) | Cons (cP) | Set/Cons | Max/Min | Max/Fin | Peak.t (min) |
---|---|---|---|---|---|---|---|---|---|
Koshihikari (Purified water) | 484.0 ± 3.7 a | 4926.0 ± 9.7 a | −3574.0 ± 1.1 b | 75.1 ± 0.0 b | 1352.0 ± 5.5 a | −2.6 ± 0.0 a | 11.2 ± 0.1 a | 2.9 ± 0.0 b | 5.5 ± 0.0 b |
Koshihikari (Contrex) | 392.0 ± 2.1 b | 4052.0 ± 0.6 b | −3091 ± 2.2 a | 77.6 ± 0.1 a | 961.0 ± 1.9 b | −3.2 ± 0.0 b | 11.3 ± 0.0 a | 3.3 ± 0.0 a | 6.0 ± 0.1 a |
Niigata129gou (Purified water) | 1088.0 ± 0.4 a | 2561.0 ± 5.1 a | −978.0 ± 1.1 b | 85.1 ± 0.0 b | 3539.0 ± 1.8 a | −0.3 ± 0.0 a | 3.4 ± 0.0 a | 0.8 ± 0.0 a | 6.1 ± 0.0 a |
Niigata129gou (Contrex) | 934.0 ± 0.1 b | 2104.0 ± 0.6 b | −440.0 ± 1.7 a | 86.7 ± 0.0 a | 2544.0 ± 0.3 b | −0.2 ± 0.0 a | 3.3 ± 0.2 a | 0.9 ± 0.0 a | 6.3 ± 0.0 a |
Koganemochi (Purified water) | 849.0 ± 1.9 a | 3117.0 ± 0.6 b | −2238.0 ± 3.0 a | 75.2 ± 0.0 b | 879.0 ± 0.1 a | −2.5 ± 0.0 a | 4.7 ± 0.0 b | 2.3 ± 0.0 b | 3.9 ± 0.0 a |
Koganemochi (Contrex) | 807.0 ± 1.4 b | 3553.0 ± 1.8 a | −2738.0 ± 0.5 b | 76.6 ± 0.0 a | 815.0 ± 0.6 b | −3.4 ± 0.0 b | 5.4 ± 0.0 a | 2.7 ± 0.0 a | 4.1 ± 0.0 a |
Milkyqueen (purified water) | 690.0 ± 3.7 a | 6528.0 ± 9.7 a | −5401.0 ± 2.2 a | 74.4 ± 0.0 a | 1127.0 ± 5.5 a | −4.8 ± 0.0 a | 10.5 ± 0.1 b | 4.0 ± 0.0 b | 5.2 ± 0.0 a |
Milkyqueen (Contrex) | 523.0 ± 2.1 b | 6101.0 ± 0.6 b | −5220.0 ± 1.1 a | 74.8 ± 0.1 a | 881.0 ± 1.9 b | −5.9 ± 0.0 b | 12.7 ± 0.0 a | 4.7 ± 0.0 a | 5.5 ± 0.1 a |
Hoshiyutaka (Purified water) | 669.0 ± 2.1 a | 2395.0 ± 0.6 a | −533.0 ± 2.2 a | 66.2 ± 0.1 a | 1862.0 ± 1.9 a | −0.3 ± 0.0 a | 4.6 ± 0.0 a | 1.2 ± 0.0 a | 5.9 ± 0.1 a |
Hoshiyutaka (Contrex) | 639.0 ± 0.4 b | 2071.0 ± 5.1 b | −826.0 ± 1.1 b | 67.4 ± 0.0 a | 1245.0 ± 1.8 b | −0.7 ± 0.0 b | 4.2 ± 0.0 a | 1.4 ± 0.0 a | 6.1 ± 0.0 a |
Kinuhikari (Purified water) | 1086.0 ± 2.1 a | 6504.0 ± 0.6 a | −5715.0 ± 1.1 b | 70.2 ± 0.1 b | 789.0 ± 1.9 b | −7.2 ± 0.0 b | 7.0 ± 0.0 b | 4.0 ± 0.0 a | 5.4 ± 0.1 b |
Kinuhikari (Contrex) | 868.8 ± 0.4 b | 5203.2 ± 5.1 b | −4857.8 ± 1.7 a | 71.8 ± 0.0 a | 560.2 ± 1.8 a | −8.8 ± 0.0 a | 7.0 ± 0.0 a | 4.6 ± 0.0 b | 5.9 ± 0.0 a |
Koshinokaori (Purified water) | 539.0 ± 1.9 a | 2945.0 ± 0.6 a | −1626.0 ± 3.0 a | 78.6 ± 0.0 a | 1319.0 ± 5.5 a | −1.2 ± 0.0 a | 6.5 ± 0.1 a | 1.9 ± 0.0 a | 5.5 ± 0.0 a |
Koshinokaori (Contrex water) | 503.0 ± 1.4 a | 2755.0 ± 1.8 b | −1747.0 ± 0.5 b | 80.0 ± 0.1 a | 1008.0 ± 1.9 b | −1.7 ± 0.0 b | 6.5 ± 0.0 a | 2.2 ± 0.0 a | 5.8 ± 0.1 a |
Max | Mini | BD | Fin | Pt | Cons | Max/ Min | Max/ Fin | Peak.T | Phosph orus | AAC | λmax | Aλmax | λmax/ Aλmax | Fb3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max.vis | 1.00 | ||||||||||||||
Mini.vis | 0.14 | 1.00 | |||||||||||||
BD | 0.99 ** | 0.00 | 1.00 | ||||||||||||
Fin.vis | −0.39 | 0.59 * | −0.45 | 1.00 | |||||||||||
Pt | −0.27 | 0.16 | −0.28 | 0.52 | 1.00 | ||||||||||
Cons | −0.47 | 0.39 | −0.51 | 0.97 ** | 0.55 * | 1.00 | |||||||||
Max/Mini | 0.64 * | −0.61 * | 0.75 ** | −0.58 * | −0.15 | −0.49 | 1.00 | ||||||||
Max/Fin | 0.90 ** | −0.16 | 0.92 ** | −0.68 ** | −0.33 | −0.73 ** | 0.76 ** | 1.00 | |||||||
Peak. T | −0.19 | −0.10 | −0.20 | 0.38 | 0.13 | 0.46 | −0.03 | −0.24 | 1.00 | ||||||
Phosphorus | −0.50 | 0.23 | −0.53 | 0.61 * | 0.81 ** | 0.63 * | −0.48 | −0.59 * | 0.31 | 1.00 | |||||
AAC | −0.59 | 0.19 | −0.62 * | 0.77 ** | 0.47 | 0.82 ** | −0.51 | −0.73 ** | 0.77 ** | 0.75 ** | 1.00 | ||||
λmax | −0.49 | −0.10 | −0.49 | 0.36 | 0.08 | 0.44 | −0.31 | −0.53 | 0.82 ** | 0.45 | 0.81 ** | 1.00 | |||
Aλmax | −072 ** | 0.26 | −0.76 ** | 0.80 ** | 0.56 * | 0.84 ** | −0.66 * | −0.85 ** | 0.59 * | 0.81 ** | 0.96 ** | 0.73 ** | 1.00 | ||
λmax/Aλmax | 0.81 ** | −0.17 | 0.85 ** | −0.66 ** | −0.43 | −0.71 ** | 0.71 ** | 0.89 ** | −0.51 | −0.73 ** | −0.88 ** | −0.79 ** | −0.96 ** | 1.00 | |
Fb3 | −0.73 ** | 0.24 | −0.77 ** | 0.78 ** | 0.54 * | 0.83 ** | −0.66 * | −0.85 ** | 0.60 * | 0.81 ** | 0.96 ** | 0.75 ** | 1.00 ** | −0.96 ** | 1.00 |
Cultivar | Calcium | Magnesium | |
---|---|---|---|
(mg/100 g) | (mg/100 g) | ||
Polished rice | Koshihikari | 5.0 ± 0.2 b | 25.0 ± 0.3 b |
Niigata129go | 4.0 ± 0.3 c | 26.0 ± 0.2 b | |
Koganemochi | 6.0 ± 0.2 a | 31.0 ± 0.1 a | |
Milkyqueen | 5.0 ± 0.3 b | 22.0 ± 0.2 c | |
Hoshiyutaka | 5.0 ± 0.2 b | 19.0 ± 0.1 c | |
Kinuhikar | 4.0 ± 0.2 c | 24.0 ± 0.2 b | |
Koshinokaori | 4.0 ± 0.1 c | 22.0 ± 0.3 b | |
Purified water (boiled rice) | Koshihikari | 7.0 ± 0.4 c | 20.0 ± 0.4 b |
Niigata129go | 8.0 ± 0.5 c | 20.0 ± 0.4 b | |
Koganemochi | 10.0 ± 0.6 b | 23.0 ± 0.4 a | |
Milkyqueen | 17.0 ± 1.1 a | 14.0 ± 0.3 c | |
Hoshiyutaka | 10.0 ± 0.6 b | 14.0 ± 0.3 c | |
Kinuhikar | 7.0 ± 0.4 c | 19.0 ± 0.4 b | |
Koshinokaori | 8.0 ± 0.5 c | 18.0 ± 0.3 b | |
Contrex (boiled rice) | Koshihikari | 199.0 ± 12.9 c | 41.0 ± 1.6 b |
Niigata129go | 222.0 ± 14.4 b | 42.0 ± 1.5 b | |
Koganemochi | 208.0 ± 13.5 c | 44.0 ± 1.6 a | |
Milkyqueen | 176.0 ± 11.4 d | 32.0 ± 1.4 c | |
Hoshiyutaka | 261.0 ± 17.0 a | 45.0 ± 1.3 a | |
Kinuhikari | 215.0 ± 14.0 b | 44.0 ± 1.6 a | |
Koshinokaori | 178.0 ± 11.6 d | 35.0 ± 1.5 c |
Calcium | Magnesium | |
---|---|---|
(mg/100 g) | (mg/100 g) | |
Rice crackers (Purified water) | 6.1 ± 0.0 b | 27.5 ± 0.0 b |
Rice crackers (Contrex) (pH 7.2) | 52.2 ± 0.0 a | 34.3 ± 0.0 a |
Rice crackers (Contrex) (pH 4.6) | 50.5 ± 0.0 a | 35.3 ± 0.0 a |
Noodle (Purified water) | 6.3 ± 0.4 b | 26.7 ± 0.5 b |
Noodle (Contrex) (pH 7.2) | 37.5 ± 3.5 a | 30.0 ± 2.8 a |
Noodle (Contrex) (pH 4.6) | 35.4 ± 2.3 a | 31.4 ± 1.9 a |
Hardness | Toughness | Adhesion | Stickiness | |
---|---|---|---|---|
×105 (N/cm2) | ×105 (N/cm2) | ×105 (N/cm2) | ×105 (N/cm2) | |
Koshihikari ⋅ purified water | 0.00 ±0.00 a | 1.90 ± 0.07 b | 40.60 ± 0.06 b | 28.71 ± 0.79 a |
Koshihikari ⋅ contrex | 0.01 ± 0.01 a | 2.66 ± 0.05 a | 28.17 ± 1.28 c | 25.46 ± 1.78 b |
Koshihikari ⋅ contrex (pH 4.6) | 0.00 ± 0.00 a | 1.03 ± 0.04 b | 50.34 ± 1.42 a | 11.69 ± 1.28 c |
Niigata129gou ⋅ purified water | 0.71 ± 0.00 b | 7.78 ± 2.08 b | 55.61 ± 0.51 b | 41.00 ± 0.19 b |
Niigata129gou ⋅ contrex | 0.82 ± 0.00 a | 8.77 ± 0.94 b | 57.80 ± 0.34 b | 50.26 ± 0.62 a |
Niigata129gou ⋅ contrex (pH 4.6) | 0.48 ± 0.00 c | 11.80 ± 0.94 a | 69.57 ± 0.25 a | 51.06 ± 0.22 a |
Koganemochi ⋅ purified water | 0.00 ± 0.02 a | 1.29 ± 0.22 a | 40.83 ± 0.15 c | 19.14 ± 1.08 a |
Koganemochi ⋅ contrex | 0.00 ± 0.01 a | 1.21 ± 0.12 a | 79.71 ± 0.00 b | 13.19 ± 2.21 b |
Koganemochi ⋅ contrex(pH 4.6) | 0.02 ± 0.01 a | 1.09 ± 0.02 b | 128.52 ± 0.32 a | 10.34 ± 2.21 b |
Milkyqueen ⋅ purified water | 0.00 ± 0.01 a | 2.37 ± 0.33 a | 30.99 ± 1.28 a | 26.18 ± 3.81 a |
Milkyqueen ⋅ contrex | 0.00 ± 0.00 a | 2.19 ± 0.25 a | 25.23 ± 1.03 c | 21.40 ± 2.01 b |
Milkyqueen ⋅ contrex (pH 4.6) | 0.00 ± 0.00 a | 1.46 ± 0.15 b | 27.02 ± 1.03 b | 16.71 ± 1.01 c |
Hoshiyutaka ⋅ purified water | 0.03 ± 0.00 a | 4.44 ± 0.37 a | 47.28 ± 1.27 b | 54.08 ± 1.54 b |
Hoshiyutaka ⋅ contrex | 0.02 ± 0.00 a | 4.15 ± 0.22 a | 51.20 ± 1.42 a | 65.73 ± 3.40 a |
Hoshiyutaka ⋅ contrex (pH 4.6) | 0.00 ± 0.00 a | 1.92 ± 0.22 b | 47.39 ± 0.32 b | 35.31 ± 1.40 c |
Kinuhikari ⋅ purified water | 0.00 ± 0.01 a | 1.81 ± 0.06 a | 39.08 ± 0.47 b | 21.34 ± 0.35 a |
Kinuhikari ⋅ contrex | 0.00 ± 0.00 a | 1.77 ± 0.08 a | 43.35 ± 0.57 a | 21.03 ± 0.36 a |
Kinuhikari ⋅ contrex (pH 4.6) | 0.00 ± 0.00 a | 1.68 ± 0.18 a | 44.97 ± 0.57 a | 19.29 ± 0.26 a |
Koshinokaori ⋅ purified water | 0.06 ± 0.00 b | 7.88 ± 2.12 b | 43.56 ± 14.27 a | 34.06 ± 1.88 b |
Koshinokaori ⋅ contrex | 0.09 ± 0.00 a | 9.87 ± 2.05 a | 41.38 ± 16.98 a | 48.64 ± 1.90 a |
Koshinokaori ⋅ contrex (pH 4.6) | 0.05 ± 0.00 b | 8.38 ± 1.03 a | 43.82 ± 16.98 a | 43.77 ± 1.90 a |
Max | Mini | BD | Fin | Pt | Cons | Set/ Cons | Max/ Min | Max/ Fin | |||
Hardness | −0.48 | 0.66 ** | −0.64 * | 0.40 | 0.84 ** | 0.19 | 0.96 ** | −0.65 * | −0.53 * | ||
Toughness | −0.04 | 0.44 | −0.16 | 0.34 | 0.65 * | 0.22 | 0.95 ** | −0.21 | −0.25 | ||
Adhesion | −0.57 * | 0.15 | −0.57 * | 0.10 | 0.03 | 0.05 | 0.90 ** | −0.57 * | −0.51 | ||
Stickiness | −0.14 | 0.24 | −0.20 | 0.59 * | 0.43 | 0.64 * | 0.86 ** | −0.22 | −0.46 | ||
xylanase | 0.50 | 0.51 | 0.31 | 0.12 | 0.72 ** | −0.10 | 0.98 ** | 0.13 | 0.23 | ||
Phosphorus | −0.52 | 0.56 * | −0.65 * | 0.51 | 0.55 * | 0.38 | 0.98 ** | −0.69 ** | −0.68 ** | ||
AAC | −0.32 | 0.69 ** | −0.51 | 0.83 ** | 0.78 ** | 0.73 ** | 0.98 ** | −0.59 * | −0.73 ** | ||
λmax | 0.06 | 0.52 | −0.10 | 0.85 ** | 0.54 * | 0.83 ** | −0.98 ** | −0.30 | −0.58 * | ||
Aλmax | −0.53 | 0.68 ** | −0.70 ** | 0.79 ** | 0.69 ** | 0.68 ** | 0.98 ** | −0.77 ** | −0.86 ** | ||
λmax/Aλmax | 0.54 * | −0.60 * | 0.68 ** | −0.80 ** | −0.51 | −0.73 ** | −0.98 ** | 0.80 ** | 0.93** | ||
Fb3 | −0.52 | 0.67 ** | −0.69 ** | 0.80 ** | 0.67 ** | 0.69 ** | 0.98 ** | −0.77 ** | −0.87 ** | ||
Hardness | Toughness | Adhesion | Stickiness | Xylanase | Phosphorus | AAC | λmax | Aλmax | λmax/ Aλmax | Fb3 | |
Hardness | 1.00 | ||||||||||
Toughness | 0.65 * | 1.00 | |||||||||
Adhesion | 0.37 | 0.18 | 1.00 | ||||||||
Stickiness | 0.38 | 0.66 * | 0.15 | 1.00 | |||||||
xylanase | 0.38 | 0.24 | −0.15 | −0.02 | 1.00 | ||||||
Phosphorus | 0.67 ** | 0.23 | 0.12 | 0.07 | 0.09 | 1.00 | |||||
AAC | 0.76 ** | 0.57 * | 0.14 | 0.65 * | 0.26 | 0.75 ** | 1.00 | ||||
λmax | 0.32 | 0.49 | −0.03 | 0.67 ** | 0.24 | 0.45 | 0.81 ** | 1.00 | |||
Aλmax | 0.79 ** | 0.54 * | 0.31 | 0.58 * | 0.12 | 0.81 ** | 0.96 ** | 0.73 ** | 1.00 | ||
λmax/Aλmax | −0.63 * | −0.49 | −0.38 | −0.59 * | 0.02 | −0.73 ** | −0.88** | −0.79 ** | −0.96 ** | 1.00 | |
Fb3 | 0.77 ** | 0.54 * | 0.30 | 0.59 * | 0.11 | 0.81 ** | 0.96 ** | 0.75 ** | 1.00 ** | −0.96 ** | 1.00 |
Cultivar/Water Types | a* | b* | ΔE (ab) | |
Gelatinizied paste | Koshihikari ⋅ purified water | −2.94 ± 0.04 a | −0.13 ± 0.30 c | 3.51 ± 0.06 b |
Koshihikari ⋅ Evian (pH 7.2) | −2.88 ± 0.05 b | 0.59 ± 0.12 b | 3.47 ± 0.10 b | |
Koshihikari ⋅ Evian (pH 4.6) | −2.87 ± 0.02 b | −0.22 ± 0.01 c | 3.39 ± 0.03 c | |
Koshihikari ⋅ Contrex (pH 7.2) | −2.94 ± 0.00 a | 1.05 ± 0.32 a | 3.74 ± 0.12 a | |
Koshihikari ⋅ Contrex (pH 4.6) | −2.77 ± 0.01 c | −0.47 ± 0.16 d | 3.35 ± 0.01 c | |
Cultivar/Water Types | a* | b* | ΔE (ab) | |
Boiled rice | Koshihikari ⋅ purified water | −3.30 ± 0.04 a | 0.67 ± 0.01 c | 35.0 ± 0.72 b |
Koshihikari ⋅ Evian (pH 7.2) | −3.43 ± 0.05 b | 1.58 ± 0.16 a | 36.79 ± 1.15 a | |
Koshihikari ⋅ Evian (pH 4.6) | −3.41 ± 0.07 b | 0.93 ± 0.01 b | 35.08 ± 0.47 b | |
Koshihikari ⋅ Contrex (pH 7.2) | −3.38 ± 0.03 a | 0.96 ± 0.13 b | 34.39 ± 0.22 c | |
Koshihikari ⋅ Contrex (pH 4.6) | −3.37 ± 0.04 a | 0.41 ± 0.16 d | 33.78 ± 0.16 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, S.; Katsura, J.; Suda, A.; Maruyama, Y.; Ohtsubo, K. Effects of Binding between Ca in Hard Water and Phosphorus in Amylopectin on the Qualities of Boiled Rice and Rice Noodle Prepared by Soaking and Boiling in Hard Water. Foods 2024, 13, 2094. https://doi.org/10.3390/foods13132094
Nakamura S, Katsura J, Suda A, Maruyama Y, Ohtsubo K. Effects of Binding between Ca in Hard Water and Phosphorus in Amylopectin on the Qualities of Boiled Rice and Rice Noodle Prepared by Soaking and Boiling in Hard Water. Foods. 2024; 13(13):2094. https://doi.org/10.3390/foods13132094
Chicago/Turabian StyleNakamura, Sumiko, Junji Katsura, Akira Suda, Yasuhiro Maruyama, and Ken’ichi Ohtsubo. 2024. "Effects of Binding between Ca in Hard Water and Phosphorus in Amylopectin on the Qualities of Boiled Rice and Rice Noodle Prepared by Soaking and Boiling in Hard Water" Foods 13, no. 13: 2094. https://doi.org/10.3390/foods13132094
APA StyleNakamura, S., Katsura, J., Suda, A., Maruyama, Y., & Ohtsubo, K. (2024). Effects of Binding between Ca in Hard Water and Phosphorus in Amylopectin on the Qualities of Boiled Rice and Rice Noodle Prepared by Soaking and Boiling in Hard Water. Foods, 13(13), 2094. https://doi.org/10.3390/foods13132094