Exposure to Low Doses of Biocides Increases Resistance to Other Biocides and to Antibiotics in Strains of Listeria monocytogenes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Biocides
2.3. Calculation of Minimum Inhibitory Concentration (MIC)
2.4. Calculation of the Minimum Bactericidal Concentration (MBC)
2.5. Adaptation of L. monocytogenes Strains to Biocides
2.6. Calculation of the MIC of Biocides for Strains Adopted to Them
2.7. Calculation of the MIC of the Biocides for Strains Adapted to Them
2.8. Antibiotic Susceptibility Testing
2.9. Statistical Analysis
3. Results
3.1. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Values of Each Biocide for L. monocytogenes Strains
3.2. Antibiotic Resistance
4. Discussion
4.1. Determination of MIC and MBC Values for Biocides Before and After Adaptation of L. monocytogenes
4.2. Antibiotic Resistance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryser, E.T.; Marth, E.H. Listeria, Listeriosis and Food Safety, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Grigore-Gurgu, L.; Bucur, F.I.; Mihalache, O.A.; Nicolau, A.I. Comprehensive review on the biocontrol of Listeria monocytogenes in food products. Foods 2024, 13, 734. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, A.; Zeinali, T. Significance and characteristics of Listeria monocytogenes in poultry products. Int. J. Food Sci. 2019, 2019, 7835253. [Google Scholar] [CrossRef] [PubMed]
- Orsi, R.H.; Borowsky, M.L.; Lauer, P.; Young, S.K.; Nusbaum, C.; Galagan, J.E.; Nusbaum, C.; Galagan, J.E.; Birren, B.W.; Ivy, R.A.; et al. Short-term genome evolution of Listeria monocytogenes in a non-controlled environment. BMC Genom. 2008, 9, 539. [Google Scholar] [CrossRef]
- Mazaheri, T.; Ripollés-Ávila, C.; Hascoët, A.S.; Rodríguez-Jeréz, J.J. Effect of an enzymatic treatment on the removal of mature Listeria monocytogenes biofilms: A quantitative and qualitative study. Food Control 2020, 114, 107266. [Google Scholar] [CrossRef]
- EFSA—European Food Safety Authority; ECDC—European Centre for Disease Prevention and Control. The European Union One Health 2023 zoonoses Report. EFSA J. 2024, 22, e9106. [Google Scholar] [CrossRef]
- Koopmans, M.M.; Brouwer, M.C.; Vázquez-Boland, J.A. Human listeriosis. Clin. Microbiol. Rev. 2023, 36, e00060-19. [Google Scholar] [CrossRef]
- Sadekuzzaman, M.; Yang, S.; Mizan, M.d.F.R.; Kim, H.-S.; Ha, S.-D. Effectiveness of a phage cocktail as a biocontrol agent against L. monocytogenes biofilms. Food Control 2017, 78, 256–263. [Google Scholar] [CrossRef]
- Ripollés-Ávila, C.; García-Hernández, N.; Cervantes-Huaman, B.H.; Mazaheri, T.; Rodríguez-Jerez, J.J. Quantitative and compositional study of monospecies biofilms of spoilage microorganisms in the meat industry and their interaction in the development of multispecies biofilms. Microorganisms 2019, 7, 655. [Google Scholar] [CrossRef]
- Rodríguez-López, P.; Rodríguez-Herrera, J.J.; Vázquez-Sánchez, D.; López-Cabo, M. Current knowledge on Listeria monocytogenes biofilms in food-related environments: Incidence, resistance to biocides, ecology and biocontrol. Foods 2018, 7, 85. [Google Scholar] [CrossRef]
- González-Rivas, F.; Ripollés-Ávila, C.; Fontecha-Umaña, F.; Ríos-Castillo, A.G.; Rodríguez-Jerez, J.J. Biofilms in the spotlight: Detection, quantification, and removal methods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1261–1276. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Shree, P.; Singh, C.K.; Sodhi, K.K.; Surya, J.N.; Singh, D.K. Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. Med. Microecol. 2023, 16, 100084. [Google Scholar] [CrossRef]
- Waghmare, R.B.; Annapure, U.S. Integrated effect of sodium hypochlorite and modified atmosphere packaging on quality and shelf life of fresh-cut cilantro. Food Packag. Shelf. 2015, 3, 62–69. [Google Scholar] [CrossRef]
- Lee, S.H.I.; Cappato, L.P.; Corassin, C.H.; Cruz, A.G.; Oliveira, C.A.F. Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants. J. Dairy Sci. 2015, 99, 2384–2390. [Google Scholar] [CrossRef]
- Gadea, R.; Fernández Fuentes, M.A.; Pérez Pulido, R.; Gálvez, A.; Ortega, E. Effects of exposure to quaternary-ammonium-based biocides on antimicrobial susceptibility and tolerance to physical stresses in bacteria from organic foods. Food Microbiol. 2017, 63, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Capita, R.; Vicente-Velasco, M.; Rodríguez-Melcón, C.; García-Fernández, C.; Carballo, J.; Alonso-Calleja, C. Effect of low doses of biocides on the antimicrobial resistance and the biofilms of Cronobacter sakazakii and Yersinia enterocolitica. Sci. Rep. 2019, 9, 15905. [Google Scholar] [CrossRef]
- Condell, O.; Iversen, C.; Cooney, S.; Power, K.A.; Walsh, C.; Burgess, C.; Fanning, S. Efficacy of biocides used in the modern food industry to control Salmonella enterica, and links between biocide tolerance and resistance to clinically relevant antimicrobial compounds. Appl. Environ. Microbiol. 2012, 78, 3087–3097. [Google Scholar] [CrossRef]
- Buzón-Durán, L.; Alonso-Calleja, C.; Riesco-Peláez, F.; Capita, R. Effect of sub-inhibitory concentrations of biocides on the architecture and viability of MRSA biofilms. Food Microbiol. 2017, 65, 294–301. [Google Scholar] [CrossRef]
- Capita, R.; Alonso-Calleja, C. Antibiotic-resistant bacteria: A challenge for the food industry. Crit. Rev. Food Sci. Nutr. 2013, 53, 11–48. [Google Scholar] [CrossRef]
- Skowron, K.; Wiktorczyk, N.; Grudlewska, K.; Kwiecińska-Piróg, J.; Wałecka-Zacharska, E.; Paluszak, Z.; Gospodarek-Komkowska, E. Drug-susceptibility, biofilm-forming ability and biofilm survival on stainless steel of Listeria spp. strains isolated from cheese. Int. J. Food Microbiol. 2019, 296, 75–82. [Google Scholar] [CrossRef]
- SCENIHR—Scientific Committee on Emerging and Newly Identified Health Risks. Assessment of the Antibiotic Resistance Effects of Biocides. 2009. Available online: https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_021.pdf (accessed on 19 April 2025).
- CLSI—Clinical and Laboratory Standards Institute. CLSI M100: Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019; Available online: https://clsi.org/media/2663/m100ed29_sample.pdf (accessed on 19 April 2025).
- Zeng, W.; Xu, W.; Xu, Y.; Liao, W.; Zhao, Y.; Zheng, X.; Xu, C.; Zhou, T.; Cao, J. The prevalence and mechanism of triclosan resistance in Escherichia coli isolated from urine samples in Wenzhou, China. Antimicrob. Resist. Infect. Control 2020, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- EUCAST—European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 9.0. 2019. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables.pdf (accessed on 19 April 2025).
- Molina-González, D.; Alonso-Calleja, C.; Alonso-Hernando, A.; Capita, R. Effect of sub-lethal concentrations of biocides on the susceptibility to antibiotics of multi-drug resistant Salmonella enterica strains. Food Control 2014, 40, 329–334. [Google Scholar] [CrossRef]
- CLSI—Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals, Approved Standard—Third Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017; Volume 28, p. M31-A3. Available online: https://www.dbt.univr.it/documenti/OccorrenzaIns/matdid/matdid485539.pdf (accessed on 19 April 2025).
- Rodríguez-Melcón, C.; Alonso-Hernando, A.; Riesco-Peláez, F.; García-Fernández, C.; Alonso-Calleja, C.; Capita, R. Biovolume and spatial distribution of foodborne Gram-negative and Gram-positive pathogenic bacteria in mono- and dual-species biofilms. Food Microbiol. 2021, 94, 103616. [Google Scholar] [CrossRef]
- Rodríguez-Melcón, C.; Alonso-Calleja, C.; García-Fernández, C.; Carballo, J.; Capita, R. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biology 2022, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Piovesan Pereira, B.M.; Tagkopoulos, I. Benzalkonium chloride uses, regulatory status, and microbial resistance. Appl. Environ. Micorbiol. 2019, 85, e00377-19. [Google Scholar] [CrossRef]
- Gilbert, P.; McBain, A.J. Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin. Microbiol. Rev. 2003, 16, 189–208. [Google Scholar] [CrossRef]
- Gerba, C.P. Quaternary ammonium biocides: Efficacy in application. Appl. Environ. Micorbiol. 2014, 81, 464–469. [Google Scholar] [CrossRef]
- Kimitsu, N.A.; Hamamoto, H.; Inoune, R.; Shoji, M.; Akamine, A.; Takemori, K.; Hamasaki, N.; Sekimizu, K. Increase in resistance of methicillin-resistant Staphylococcus aureus to beta-lactams caused by mutations conferring resistance to benzalkonium chloride, a disinfectant widely used in hospitals. Antimicrob. Agents Chemother. 1999, 43, 3042–3043. [Google Scholar] [CrossRef]
- Alonso-Calleja, C.; Guerrero-Ramos, E.; Alonso-Hernando, A.; Capita, R. Adaptation and cross-adaptation of Escherichia coli ATCC 12806 to several food-grade biocides. Food Control 2015, 65, 86–94. [Google Scholar] [CrossRef]
- Langsrud, S.; Sundheum, G. Factors contributing to the survival of poultry associated Pseudomonas spp. exposed to a quaternary ammonium compound. J. Appl. Microbiol. 1997, 82, 705–712. [Google Scholar] [CrossRef]
- To, M.S.; Favrin, S.; Romanova, N.; Griffiths, W. Postadaptational resistance to benzalkonium chloride and subsequent physicochemical modifications of Listeria monocytogenes. Appl. Environ. Microbiol. 2002, 68, 5258–5264. [Google Scholar] [CrossRef]
- Alonso-Hernando, A.; Capita, R.; Prieto, M.; Alonso-Calleja, C. Adaptation and cross-adaptation of Listeria monocytogenes and Salmonella enterica to poultry decontaminants. J. Microbiol. 2009, 47, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.T.; Monach, P.; Chou, J.H.; Josephy, P.D.; Demple, B. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 1990, 87, 6181–6185. [Google Scholar] [CrossRef]
- Sasatsu, M.; Shimizu, K.; Noguchi, N.; Kono, M. Triclosan-resistant Staphylococcus aureus. Lancet 1993, 341, 756. [Google Scholar] [CrossRef] [PubMed]
- Dukan, S.; Touati, D. Hypochlorous acid stress in Escherichia coli: Resistance, DNA damage, and comparison with hydrogen peroxide stress. J. Bacteriol. 1996, 178, 6145–6150. [Google Scholar] [CrossRef]
- Heath, R.J.; Yu, Y.T.; Shapiro, M.A.; Olson, E.; Rock, C.O. Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J. Biol. Chem. 1998, 273, 30316–30320. [Google Scholar] [CrossRef]
- Manzoor, S.E.; Lambert, P.A.; Griffiths, P.A.; Gill, M.J.; Fraise, A.P. Reduced glutaraldehyde susceptibility in Mycobacterium chelonae associated with altered cell wall polysaccharides. J. Antimicrob. Chemother. 1999, 43, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Winder, C.L.; Al-Adham, I.S.; Abdel Malek, S.M.; Buultjens, T.E.; Horrocks, A.J.; Collier, P.J. Outer membrane protein shifts in biocide-resistant Pseudomonas aeruginosa PAO1. J. Appl. Microbiol. 2000, 89, 289–295. [Google Scholar] [CrossRef]
- Russell, A.D. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. J. Appl. Microbiol. 2002, 92, 121S–135S. [Google Scholar] [CrossRef]
- Chapman, J.S. Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int. Biodeter. Biodegr. 2003, 51, 271–276. [Google Scholar] [CrossRef]
- O’Rourke, E.; Runyan, D.; O’Leary, J.; Stern, J. Contaminated iodophor in the operating room. Am. J. Infect. Control 2003, 31, 255–256. [Google Scholar] [CrossRef]
- Walsh, S.E.; Maillard, J.Y.; Russell, A.D.; Catrenich, C.E.; Charbonneau, D.L.; Bartolo, R.G. Development of bacterial resistance to several biocides and effects on antibiotic susceptibility. J. Hosp. Infect. 2003, 55, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.J.; Denyer, S.P.; McDonnell, G.; Maillard, J.Y. Resistance and cross-resistance to oxidising agents of bacterial isolates from endoscope washer disinfectors. J. Hosp. Infect. 2008, 69, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Maillard, J.Y. Resistance of bacteria to biocides. Microbiol. Spectr. 2018, 6, 10.1128. [Google Scholar] [CrossRef] [PubMed]
- Curiao, T.; Marchi, E.; Viti, C.; Oggioni, M.R.; Baquero, F.; Martinez, J.L.; Coque, T.M. Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae clinical strains obtained after exposure to biocides and antibiotics. Antimicrob. Agents Chemother. 2015, 59, 3413–3423. [Google Scholar] [CrossRef]
- He, G.-X.; Landry, M.; Chen, H.; Thorpe, C.; Walsh, D.; Varela, M.F.; Pan, H. Detection of benzalkonium chloride resistance in community environmental isolates of staphylococci. J. Med. Microbiol. 2014, 63, 735–741. [Google Scholar] [CrossRef]
- Kampf, G. Adaptive microbial response to low-level benzalkonium chloride exposure. J. Hosp. Infect. 2018, 100, e1–e22. [Google Scholar] [CrossRef]
- Luo, L.-W.; Wu, Y.-H.; Yu, T.; Wang, Y.-H.; Chen, G.-Q.; Tong, X.; Bai, Y.; Xu, C.; Wang, H.-B.; Ikuno, N.; et al. Evaluating method and potential risks of chlorine-resistant bacteria (CRB): A review. Water Res. 2021, 188, 116474. [Google Scholar] [CrossRef]
- Sun, W.; Liu, W.; Cui, L.; Zhang, M.; Wang, B. Characterization and identification of a chlorine-resistant bacterium, Sphingomonas TS001, from a model drinking water distribution system. Sci. Total Environ. 2013, 458–460, 169–175. [Google Scholar] [CrossRef]
- Pidot, S.J.; Gao, W.; Buultjens, A.H.; Monk, I.R.; Guerillot, R.; Carter, G.P.; Lee, J.Y.H.; Lam, M.M.C.; Grayson, M.L.; Ballard, S.A.; et al. Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Sci. Transl. Med. 2018, 10, 452. [Google Scholar] [CrossRef]
- Davin-Regli, A.; Pagès, J.M. Cross-resistance between biocides and antimicrobials: An emerging question. Rev. Sci. Tech. 2012, 31, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Granier, S.A.; Moubareck, C.; Colaneri, C.; Lemire, A.; Roussel, S.; Dao, T.-T.; Courvalin, P.; Brisabois, A. Antimicrobial resistance of Listeria monocytogenes isolates from food and the environment in France over a 10-year period. Appl. Environm. Microbiol. 2011, 77, 2788–2790. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Qiu, Y.; Hua, X.; Ye, B.; Luo, H.; Liu, D.; Qu, P.; Qiu, Z. Novel opportunity to reverse antibiotic resistance: To explore traditional chinese medicine with potential activity against antibiotics-resistance bacteria. Front. Microbiol. 2020, 11, 610070. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Hernando, A.; Prieto, M.; García-Fernández, C.; Alonso-Calleja, C.; Capita, R. Increase over time in the prevalence of multiple antibiotic resistance among isolates of Listeria monocytogenes from poultry in Spain. Food Control 2012, 23, 37–41. [Google Scholar] [CrossRef]
- Capita, R.; Felices-Mercado, A.; García-Fernández, C.; Alonso-Calleja, C. Characterization of Listeria monocytogenes originating from the Spanish meat-processing chain. Foods 2019, 8, 542. [Google Scholar] [CrossRef]
- Drevets, D.A.; Bronze, M.S. Listeria monocytogenes: Epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunol. Med. Microbiol. 2008, 53, 151–165. [Google Scholar] [CrossRef]
- SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks). Opinion on the Effects of the Active Substances in Biocidal Products on Antibiotic Resistance. Version of 4 November 2008 for Public Consultation. Available online: https://www.semanticscholar.org/paper/Scientific-Committee-on-Emerging-and-Newly-Health-4-Auvinen-Bridges/f8468661d550a59e9f8572ae597f3c44dbf10026 (accessed on 19 April 2025).
- Lavilla Lerma, L.; Benomar, N.; Sánchez Valenzuela, A.; Casado Muñoz, M.C.; Gálvez, A.; Abriouel, H. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol. 2014, 44, 249–257. [Google Scholar] [CrossRef]
- Adkin, P.; Hitchcock, A.; Smith, L.J.; Walsh, S.E. Priming with biocides: A pathway to antibiotic resistance? J. App. Microbiol. 2022, 133, 830–841. [Google Scholar] [CrossRef]
- Romanova, N.A.; Wolffs, P.F.G.; Brovko, L.Y.; Griffiths, M.W. Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. App. Environm. Microbiol. 2006, 72, 3498–3503. [Google Scholar] [CrossRef]
- Coombs, K.; Rodríguez-Quijada, C.; Clevenger, J.O.; Sauer-Budge, A.F. Current understanding of potential linkages between biocide tolerance and antibiotic cross-resistance. Microorganisms 2023, 11, 2000. [Google Scholar] [CrossRef]
- Ng, S.Y.; Ong, K.X.; Surendran, S.T.; Sinha, A.; Lai, J.J.H.; Chen, J.; Liang, J.; Tay, L.K.S.; Cul, L.; Loo, H.L.; et al. Hydrogen sulfide sensitizes Acinetobacter baumannii to killing by antibiotics. Front. Microbiol. 2020, 11, 1875. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.C.; Engelstädter, J.; Bonhoeffer, S.; McDonald, B.; Hall, A.R. Reversing resistance: Different routes and common themes across pathogens. Proc. Biol. Sci. 2017, 284, 20171619. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P.; Hernando-Amado, S.; Reales-Calderon, J.A.; Corona, F.; Lira, F.; Alcalde-Rico, M.; Bernardini, A.; Sánchez, M.B.; Martínez, J.L. Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms 2016, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lu, H.; Li, X.; Zhu, Y.; Ji, Y.; Lu, W.; Wang, G.; Dong, W.; Liu, M.; Wang, X.; et al. Identification of an anti-virulence drug that reverses antibiotic resistance in multidrug resistant bacteria. Biomed. Pharmacother. 2022, 153, 113334. [Google Scholar] [CrossRef]
Disinfectant | Strain | |||||
---|---|---|---|---|---|---|
ATCC 19114 | ATCC 13932 | CECT 936 | ATCC 15313 | NCTC 11994 | ||
SHY | MIC | 3533.3 ± 28.9 aa | 3533.3 ± 28.9 aa | 3783.3 ± 28.9 ba | 3533.3 ± 28.9 aa | 3533.3 ± 28.9 aa |
MBC | 3883.3 ± 57.7 bb | 3683.3 ± 57.7 ab | 3883.3 ± 57.7 bb | 3683.3 ± 57.7 ab | 3983.3 ± 28.9 bb | |
Adaptation | 6890.7 ± 1705.0 bc | 2770.3 ± 1100.2 aab | 4594.3 ± 1136.8 bb | 4594.3 ± 1136.8 bc | 4594.3 ± 1136.8 bb | |
PAA | MIC | 1000.0 ± 25.0 aa | 1000.0 ± 25.0 aa | 1000.0 ± 25.0 aa | 1000.0 ± 25.0 aa | 1050.0 ± 25.0 aa |
MBC | 1050.0 ± 25.0 aa | 1150.0 ± 25.0 bb | 1100.0 ± 25.0 abb | 1250.0 ± 25.0 cb | 1050.0 ± 25.0 aa | |
Adaptation | 1312.7 ± 325.0 ab | 1312.7 ± 325.0 ab | 1312.7 ± 325.0 ab | 875.0 ± 216.5 aa | 1312.7 ± 325.0 ab | |
BZK | MIC | 2.3 ± 0.6 aa | 4.3 ± 0.6 ba | 2.3 ± 0.6 aa | 1.3 ± 0.6 aa | 2.3 ± 0.6 aa |
MBC | 1.7 ± 1.2 aa | 3.7 ± 1.2 aa | 3.7 ± 1.2 aab | 4.7 ± 1.2 bb | 2.7 ± 1.2 aa | |
Adaptation | 2.0 ± 0.5 aa | 9.9 ± 2.5 cb | 4.4 ± 1.1 bb | 6.7 ± 1.6 bcb | 9.9 ± 2.5 cb |
Adaptation | Strain | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ATCC 19114 | ATCC 13932 | CECT 936 | ATCC 15313 | NCTC 11994 | ||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
SHY-SHY | 4666.7 ± 57.7 cb | 4666.7 ± 115.5 abb | 4166.7 ± 57.7 aa | 4566.7 ± 115.5 aba | 4466.7 ± 57.7 bc | 4466.7 ± 115.5 ab | 4466.7 ± 57.7 bb | 4666.7 ± 115.5 abb | 4666.7 ± 57.7 cb | 4766.7 ± 115.5 bc |
PAA-SHY | 4366.7 ± 57.7 ca | 4566.7 ± 57.7 bab | 4066.7 ± 57.7 ba | 4566.7 ± 57.7 ba | 4066.7 ± 57.7 bb | 4466.7 ± 57.7 bb | 4266.7 ± 57.7 ca | 4566.7 ± 57.7 bb | 3766.7 ± 57.7 aa | 4266.7 ± 57.7 ab |
BZK-SHY | 4366.7 ± 115.5 ca | 4466.7 ± 57.7 ca | 4066.7 ± 115.5 ba | 4566.7 ± 57.7 ca | 3466.7 ± 115.5 aa | 3866.7 ± 57.7 aa | 4066.7 ± 115.5 ba | 4466.7 ± 57.7 ca | 3666.7 ± 115.5 aa | 4066.7 ± 57.7 ba |
Adaptation | Strain | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ATCC 19114 | ATCC 13932 | CECT 936 | ATCC 15313 | NCTC 11994 | ||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
SHY–PAA | 1183.3 ± 28.9 ab | 1233.3 ± 57.7 aba | 1183.3 ± 28.9 aa | 1333.3 ± 57.7 bb | 1133.3 ± 28.9 ab | 1233.3 ± 57.7 abb | 1183.3 ± 28.9 ab | 1283.3 ± 57.7 abb | 1083.3 ± 28.9 aa | 1183.3 ± 57.7 ab |
PAA–PAA | 1083.3 ± 28.9 aa | 1183.3 ± 28.9 aab | 1133.3 ± 28.9 aa | 1233.3 ± 28.9 aa | 1083.3 ± 28.9 aab | 1233.3 ± 28.9 ab | 1033.3 ± 28.9 aa | 1233.3 ± 28.9 ab | 1083.3 ± 28.9 aa | 1183.3 ± 28.9 ab |
BZK–PAA | 1083.3 ± 57.7 aab | 1133.3 ± 28.9 ab | 1083.3 ± 57.7 aa | 1183.3 ± 28.9 aa | 983.3 ± 57.7 aa | 1083.3 ± 28.9 aa | 1033.3 ± 57.7 aa | 1133.3 ± 28.9 aa | 1033.3 ± 57.7 aa | 1083.3 ± 28.9 aa |
Adaptation | Strain | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ATCC 19114 | ATCC 13932 | CECT 936 | ATCC 15313 | NCTC 11994 | ||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
SHY–BZK | 2.7 ± 0.6 ab | 3.7 ± 1.2 aa | 3.7 ± 0.6 aa | 4.7 ± 1.2 aa | 2.7 ± 0.6 aa | 5.7 ± 1.2 aa | 3.7 ± 0.6 ab | 6.7 ± 1.2 bab | 4.7 ± 0.6 ba | 4.7 ± 1.2 aa |
PAA–BZK | 1.7 ± 0.6 aa | 5.7 ± 0.6 aa | 3.7 ± 0.6 ba | 7.7 ± 0.6 bb | 1.7 ± 0.6 aa | 6.7 ± 0.6 aba | 1.7 ± 0.6 aa | 6.7 ± 0.6 a ba | 6.7 ± 0.6 cb | 8.7 ± 0.6 cb |
BZK–BZK | 6.7 ± 1.2 bc | 8.7 ± 0.6 bb | 5.7 ± 1.2 bb | 9.7 ± 0.6 bc | 2.7 ± 1.2 aa | 6.7 ± 0.6 aa | 6.7 ± 1.2 bc | 8.7 ± 0.6 bb | 7.7 ± 1.2 bb | 9.7 ± 0.6 bb |
L. monocytogenes Strains | Antibiotics | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | CN | AK | K | VA | AMP | P | OX | AML | SAM | ENR | CIP | MXF | NA | TE | DA | E | CLR | IMP | MEM | KF | FOX | CTX | CRO | FEP | SXT | C | RD | F | ATM | |
4a 1 non exposed | I | S | S | I | I | S | S | R | I | R | R | R | S | R | S | R | R | I | S | I | S | R | R | R | R | S | S | R | R | R |
4a exposed to SHY | R | S | I | R | R | S | S | R | R | R | R | R | R | R | S | R | S | R | S | I | S | R | R | R | R | R | R | R | R | R |
4a exposed to PAA | I | S | S | I | I | S | S | R | I | R | R | R | R | R | S | R | S | I | S | I | S | R | R | R | R | R | S | R | R | R |
4a exposed to BZK | I | S | S | I | I | S | S | R | I | I | R | S | S | R | S | R | S | I | S | I | S | R | R | R | R | S | S | R | R | R |
4b1 2 non exposed | I | S | S | I | I | S | S | R | R | R | R | R | R | R | S | R | S | I | S | I | S | R | R | R | R | S | S | R | R | R |
4b1 exposed to SHY | I | S | S | I | I | R | S | R | R | R | R | R | S | R | S | R | S | I | R | S | S | R | R | R | R | S | S | R | S | R |
4b1 exposed to PAA | I | S | S | I | I | S | S | R | I | I | R | R | S | R | S | R | S | I | S | I | S | R | R | R | R | R | S | R | R | R |
4b1 exposed to BZK | I | S | S | I | I | S | S | R | I | R | R | S | S | R | S | R | S | I | S | S | S | R | R | R | R | S | S | R | R | R |
1/2b 3 non exposed | I | S | S | R | I | S | S | R | R | R | R | S | S | R | S | R | S | S | S | S | S | R | R | R | R | R | S | I | S | R |
1/2b exposed to SHY | I | S | S | I | I | S | S | R | I | R | R | R | S | R | S | R | S | I | S | S | S | R | R | R | R | S | S | R | R | R |
1/2b exposed to PAA | I | S | S | I | S | S | S | R | I | I | R | R | S | R | S | R | S | I | S | S | S | R | R | R | R | R | S | I | R | R |
1/2b exposed to BZK | I | S | S | I | I | S | S | R | I | R | R | R | S | R | S | R | S | I | S | S | S | R | R | R | R | S | S | R | I | R |
1/2a 4 non exposed | S | S | S | R | S | S | S | R | S | I | R | R | R | R | S | R | S | I | S | S | S | R | R | R | R | R | S | R | R | R |
1/2a exposed to SHY | I | S | S | I | I | S | S | R | I | R | R | R | R | R | S | R | S | I | S | I | S | R | R | R | R | S | S | R | R | R |
1/2a exposed to PAA | I | S | S | I | R | S | S | R | I | I | R | R | R | R | S | R | S | S | S | S | S | R | R | R | R | S | S | R | R | R |
1/2a exposed to SHY | S | S | S | S | S | S | S | R | I | I | R | R | S | R | S | R | S | I | S | I | S | R | R | R | R | R | S | R | R | R |
4b2 5 non exposed | I | S | S | I | R | S | S | R | I | R | R | R | R | R | S | R | R | R | S | I | S | R | R | R | R | R | S | R | R | I |
4b2 exposed to SHY | I | S | S | I | S | S | S | R | I | I | R | S | R | S | S | R | S | S | S | S | S | R | R | R | R | S | S | S | S | R |
4b2 exposed to PAA | R | S | S | I | I | S | S | R | I | I | R | R | R | R | S | R | R | S | S | I | S | R | R | R | R | R | S | R | R | R |
4b2 exposed to BZK | I | S | S | I | I | S | S | R | I | I | R | S | S | R | S | R | R | I | S | I | S | R | R | R | R | S | S | R | R | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Melcón, C.; Capita, R.; Alonso-Calleja, C. Exposure to Low Doses of Biocides Increases Resistance to Other Biocides and to Antibiotics in Strains of Listeria monocytogenes. Biology 2025, 14, 495. https://doi.org/10.3390/biology14050495
Rodríguez-Melcón C, Capita R, Alonso-Calleja C. Exposure to Low Doses of Biocides Increases Resistance to Other Biocides and to Antibiotics in Strains of Listeria monocytogenes. Biology. 2025; 14(5):495. https://doi.org/10.3390/biology14050495
Chicago/Turabian StyleRodríguez-Melcón, Cristina, Rosa Capita, and Carlos Alonso-Calleja. 2025. "Exposure to Low Doses of Biocides Increases Resistance to Other Biocides and to Antibiotics in Strains of Listeria monocytogenes" Biology 14, no. 5: 495. https://doi.org/10.3390/biology14050495
APA StyleRodríguez-Melcón, C., Capita, R., & Alonso-Calleja, C. (2025). Exposure to Low Doses of Biocides Increases Resistance to Other Biocides and to Antibiotics in Strains of Listeria monocytogenes. Biology, 14(5), 495. https://doi.org/10.3390/biology14050495