Virus-Host Protein Interactions

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Viral Immunology, Vaccines, and Antivirals".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 2312

Special Issue Editor


E-Mail Website
Guest Editor
1. Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
2. Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
Interests: protein–protein interactions; PAQosome; molecular chaperones; AlphaFold-pairs software; zoonotic respiratory viruses; protein-protein interactions; protein complex assembly; antivirals; proteomics; PAQosome cochaperone; RNA polymerase; phage display; AlphaFold modeling
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Protein–protein interactions play essential roles in viral infections. Some viral proteins join together to form protein complexes that exert key roles in the virus life cycle. The RNA polymerase complex is an example. Additionally, some viral proteins interact with host factors during the infection process, usurping the function of these factors in favor of viral functions. Together, these protein–protein interactions are central in the pathophysiology of viral infection. As a consequence, perturbation of these key interactions has the potential to impair virus replication and propagation. Over recent years, a number of molecules, including small chemicals, peptides and antibodies, have been reported to interfere with viral functions by perturbating protein–protein interactions. The molecules showing virus specificity can serve as antiviral agents en route to the discovery of new drugs. This Special Issue of the open access journal Viruses is dedicated to experimental studies or reviews dealing with the use of protein–protein interactions as targets for antiviral drug discovery. This Special Issue also represents a powerful tool in the combat against threatening human viruses.

You may choose our Joint Special Issue in Biomolecules.

Prof. Dr. Benoit Coulombe
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • protein–protein interactions
  • antiviral drug discovery
  • protein target inhibitors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 2000 KiB  
Article
HTLV-I Basic Leucine Zipper Factor (sHBZ) Actively Associates with Nucleophosmin (B23) in the Nucleolus
by Nahid Moghadam, Yong Xiao, Francois Dragon and Benoit Barbeau
Viruses 2025, 17(5), 727; https://doi.org/10.3390/v17050727 (registering DOI) - 19 May 2025
Abstract
Human T cell leukemia virus type 1 (HTLV 1) is an oncogenic retrovirus responsible for the development of adult T cell leukemia (ATL). The minus strand of HTLV-1 provirus encodes an oncoprotein named HTLV-1 bZIP factor (HBZ), which plays a pivotal role in [...] Read more.
Human T cell leukemia virus type 1 (HTLV 1) is an oncogenic retrovirus responsible for the development of adult T cell leukemia (ATL). The minus strand of HTLV-1 provirus encodes an oncoprotein named HTLV-1 bZIP factor (HBZ), which plays a pivotal role in viral replication and T cell proliferation. Of particular interest is the spliced HBZ isoform (sHBZ), which is predominantly expressed in ATL cells and localizes within the nucleolus, conferring immortalizing properties to T cells. Our previous study has shown that sHBZ colocalizes and associates with Nucleophosmin/B23, a nucleolar phosphoprotein with multiple functions. In this study, through an optimized nucleolar isolation method, we first confirmed sHBZ’s nucleolar localization via Western blotting in transfected HEK293T cells, chronically HTLV-1-infected T cell lines, and freshly infected HeLa cells. We further demonstrated that the sHBZ/B23 association predominantly occurs in the nucleolus by co-immunoprecipitation of cell fractions. Our study highlights the nucleolar localization of sHBZ and its possibly essential interaction with this nucleolar-residing protein, leading to cell immortalization. Full article
(This article belongs to the Special Issue Virus-Host Protein Interactions)
Show Figures

Figure 1

15 pages, 22720 KiB  
Communication
Conserved Nuclear Localization Signal in NS2 Protein of Bombyx Mori Bidensovirus: A Potential Invertebrate ssDNA Virus Trait
by Qian Yu, Jiaxin Yan, Ying Chen, Jinfeng Zhang, Qi Tang, Feifei Zhu, Lindan Sun, Shangshang Ma, Xiaoyong Liu, Keping Chen and Qin Yao
Viruses 2025, 17(1), 71; https://doi.org/10.3390/v17010071 - 6 Jan 2025
Viewed by 833
Abstract
Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, [...] Read more.
Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, remain unknown. This protein is hypothesized to play a role in viral replication and pathogenesis. To investigate its structure and function, we employed phylogenetic analysis, subcellular localization, mutational analysis, and a dual-luciferase reporter system to characterize the nuclear localization signal (NLS) within NS2 and its effect on viral promoter activity. Additionally, co-immunoprecipitation and mass spectrometry were utilized to identify host proteins interacting with NS2. We identified a functional bipartite NLS in NS2, validated the combination pattern of key amino acids, and demonstrated its role in regulating viral promoter activity. Furthermore, we identified potential NLSs in NS2 homologs in other invertebrate ssDNA viruses based on sequence analysis. We also revealed interactions between NS2 and host nuclear transport proteins, suggesting that it plays a role in nuclear transport and viral replication. This research underscores the importance of NS2’s NLS in BmBDV’s life cycle and its potential conservation across invertebrate ssDNA viruses, providing insights into virus–host interactions and avenues for antiviral strategy development. Full article
(This article belongs to the Special Issue Virus-Host Protein Interactions)
Show Figures

Figure 1

Review

Jump to: Research

30 pages, 2229 KiB  
Review
Viral Appropriation of Specificity Protein 1 (Sp1): The Role of Sp1 in Human Retro- and DNA Viruses in Promoter Activation and Beyond
by Kira Sviderskaia and Vanessa Meier-Stephenson
Viruses 2025, 17(3), 295; https://doi.org/10.3390/v17030295 - 20 Feb 2025
Viewed by 801
Abstract
Specificity protein 1 (Sp1) is a highly ubiquitous transcription factor and one employed by numerous viruses to complete their life cycles. In this review, we start by summarizing the relationships between Sp1 function, DNA binding, and structural motifs. We then describe the role [...] Read more.
Specificity protein 1 (Sp1) is a highly ubiquitous transcription factor and one employed by numerous viruses to complete their life cycles. In this review, we start by summarizing the relationships between Sp1 function, DNA binding, and structural motifs. We then describe the role Sp1 plays in transcriptional activation of seven viral families, composed of human retro- and DNA viruses, with a focus on key promoter regions. Additionally, we discuss pathways in common across multiple viruses, highlighting the importance of the cell regulatory role of Sp1. We also describe Sp1-related epigenetic and protein post-translational modifications during viral infection and how they relate to Sp1 binding. Finally, with these insights in mind, we comment on the potential for Sp1-targeting therapies, such as repurposing drugs currently in use in the anti-cancer realm, and what limitations such agents would have as antivirals. Full article
(This article belongs to the Special Issue Virus-Host Protein Interactions)
Show Figures

Figure 1

Back to TopTop