From Source to Sink: Sedimentary Archives and Its Palaeo-Environmental Implications During Quaternary

A special issue of Quaternary (ISSN 2571-550X).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 705

Special Issue Editor


E-Mail Website
Guest Editor
School of Ocean Sciences, China University of Geosciences, Beijing 100083, China
Interests: geo-environmental evolution; sedimentation; quaternary geology; geochronology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The source-to-sink (S2S) system is one of the most important sedimentary routes, which extends from the mountain, across the continental margins, and to the deep sea. In the S2S system, tremendous sediments have been eroded, transported and deposited in the sedimentary basin. These are regarded as ideal documents for better understanding the global-regional environmental and climatological changes.

We welcome you to submit a paper to this Special Issue “From Source to Sink: Sedimentary Archives and Its Palaeo-Environmental Implications During Quaternary”. This Special Issue seeks to investigate all aspects of the Quaternary clastic sedimentary process and the environmental significance in the source-to-sink systems in different regions and timescales. Studies in the coastal and deep-sea areas are especially welcome.

Dr. Yan Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Quaternary is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sedimentology
  • seismic and sequence stratigraphy
  • chronology
  • facies analysis
  • sedimentary record
  • catastrophic sedimentation
  • micropaleontology sedimentology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 5228 KiB  
Article
Allerød–Younger Dryas Boundary (12.9–12.8 ka) as a “New” Geochronological Marker in Late Glacial Sediments of the Eastern Baltic Region
by Olga Druzhinina, Ivan Skhodnov, Kasper van den Berghe and Ksenia Filippova
Quaternary 2025, 8(2), 28; https://doi.org/10.3390/quat8020028 - 6 Jun 2025
Viewed by 341
Abstract
This paper is a contribution to the ongoing debate on the nature and drivers of the abrupt environmental shift at the onset of the Younger Dryas. The goal of this study is to identify key parameters that characterize the Allerød–Younger Dryas boundary, 12.9–12.8 [...] Read more.
This paper is a contribution to the ongoing debate on the nature and drivers of the abrupt environmental shift at the onset of the Younger Dryas. The goal of this study is to identify key parameters that characterize the Allerød–Younger Dryas boundary, 12.9–12.8 ka in sedimentary sections, and are representative of broader paleobasin dynamics in the eastern Baltic region. Two new Late Glacial sediment archives, the Kulikovo and Sambian, provide data on this time interval. Geochronological and lithological (grain size and loss on ignition) analyses of the sequences indicate a change in sedimentation during 12.9–12.8 ka, which is manifested by a peak of terrigenous, coarser-grained material and an accompanying peak of organic matter in sediments. A review of the published data shows that this lithological situation is also characteristic of other paleobasins in the eastern Baltic region and beyond for layers dated to the onset of the Younger Dryas. This probably indicates an environmental event that caused a short-term increased input and deposition of organic matter, accompanied by a surge in erosional processes. The environmental shift triggered by the event is also recorded in a remarkable drop in pollen concentration and species diversity in the overlying layer. The sediment horizon in Late Glacial (Allerød–Younger Dryas) sequences corresponding to these parameters can be considered an important and reliable geochronological marker of the 12.9–12.8 ka interval. The organic-rich layer in the Kulikovo section, as well as other similar layers in the Baltic, can be considered a “black mat” phenomenon related to the onset of the Younger Dryas. Full article
Show Figures

Figure 1

Back to TopTop