Nonlinear Waves and Applications
A special issue of Mathematics (ISSN 2227-7390). This special issue belongs to the section "C2: Dynamical Systems".
Deadline for manuscript submissions: closed (31 May 2020) | Viewed by 2548
Special Issue Editor
Interests: nonlinear waves; applied dynamical systems; nonlinear Schrödinger equation
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
This Special Issue, “Nonlinear Waves and Applications”, will be open for the publication of high-quality mathematical papers in the area of nonlinear waves (integrable and non-integrable systems, discrete and continuous equations). Nonlinear dispersive wave equations provide excellent examples of infinite dimensional dynamical systems which possess diverse and fascinating solutions, including solitary waves, pattern formation, singularity formation, localized time-periodic structures, dispersive turbulence, and spatiotemporal chaos. The evolution equations (discrete and continuous systems) can be used to illustrate many striking features of nonlinear waves, each of which has been understood by a combination of methods from scientific computations and from the theory of PDEs, applied analysis, and dynamical systems. These features include solitary waves and solitons, periodic waves and quasi-periodic wavetrains, long-time asymptotics, finite time blow-up, instabilities and unstable manifolds, and spatiotemporal chaos.
One of the more exciting areas in applied mathematics is the study of the dynamics associated with the propagation of information. Phenomena of interest include the transmission of impulses in nerve fibers, the transmission of light down an optical fiber, and phase transitions in materials. The nature of the system dictates that the relevant and important effects occur along one axial direction. The models formulated in these areas exhibit many other effects, but it is these nonlinear waves that are the raison-dŠetre of the models. The demands on the mathematician for techniques to analyze these models may best be served by developing methods tailored to determining the local behavior of solutions near these structures.
Papers involving all those abovementioned topics are welcome. Moreover, this Special Issue gives an opportunity to researchers and practitioners to communicate their ideas.
Prof. Dr. Vassilis M Rothos
Guest Editor
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue policies can be found here.