Molecular Basis in Rare Genetic Disorders

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Molecular Genetics and Genomics".

Deadline for manuscript submissions: 10 March 2026 | Viewed by 694

Special Issue Editor

1. Division of Genomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital, Los Angeles, CA, 90027, USA
2. Keck School of Medicine of USC, Los Angeles, CA 90089, USA
Interests: rare mendelian diseases; molecular genetics; clinical diagnosis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to explore the world of rare disease with the help of genetic and genomic research. Rare genetic disorders, while individually uncommon, affect millions of people around the world and can provide specific challenges in diagnosis, treatment, and research due to their complexity. Gene mutations, epigenetic modifications, and RNA mechanisms that interfere with normal biological processes will be explored. This area of research is quickly expanding, with significant implications for biomedical research and therapeutic development. Special focus will be placed upon novel diagnosis techniques like next-generation sequencing (NGS)-based disease-specific multi-gene panel, exome, and whole-genome sequencing, novel bioinformatics methodologies and tools to facilitate rare disease diagnosis, the functional elucidation of disease mechanisms, new disease–gene relationships, expanded disease phenotypes, and rare genetic disease treatments as well as outcomes.

In summary, all genomic facets of and novel discoveries related to rare genetic disorders will be covered in this Special Issue. Colleagues are encouraged to submit manuscripts with original articles or reviews on this topic.

Dr. Miao Sun
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nucleotide and mitochondrial DNA
  • RNA modification
  • epigenetics
  • gene expression
  • rare disease and inheritance
  • clinical pathology
  • disease mechanism
  • bioinformatics and tools
  • functional studies
  • treatment and therapy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 1128 KB  
Article
Barriers, Limitations, and Experiences with Clinical Trials—Treatment in Rare Diseases with Prader–Willi Syndrome as an Example
by Merlin G. Butler, Spencer Silvey and Harold J. P. van Bosse
Genes 2025, 16(12), 1436; https://doi.org/10.3390/genes16121436 - 1 Dec 2025
Viewed by 411
Abstract
Background/Objectives: Developing and implementing clinical trials for rare diseases is complicated by the incomplete understanding of the varied genotype and subsequent phenotypic differences of a condition, particularly when low numbers of subjects are enrolled in a study. Moreover, a small-scale clinical study [...] Read more.
Background/Objectives: Developing and implementing clinical trials for rare diseases is complicated by the incomplete understanding of the varied genotype and subsequent phenotypic differences of a condition, particularly when low numbers of subjects are enrolled in a study. Moreover, a small-scale clinical study may indicate a positive outcome but have too small of a sampling population to adequately evaluate unwanted outcomes. Prader–Willi syndrome (PWS) is one such genetic disorder with varied subtypes and heterogeneity, where little progress has been made in treatment discoveries. Recently, the FDA approved diazoxide choline for treating key features of hyperphagia and obesity associated with PWS based on clinical trial experience. Diazoxide choline activates the ATP-sensitive potassium channel (KATP) of pancreatic beta cells, inhibiting the release of insulin. One of the subunits of KATP is the protein Kir6.2, the gene product of KCNJ11. Methods: Web-based programs and datasets were used to study the gene and protein functional enrichments of Kir6.2 and KCNJ11, including shared gene and/or protein–protein interactions, and biological processes and functions. Results: Four essential domains of related functions were identified: (1) apoptosis, protein degradation, and inflammation; (2) the coupling of G proteins needed for KATP channel activation; (3) glucose metabolism and control; and (4) the maintenance of intracellular ionic homeostasis. Conclusions: Cellular metabolism in the pancreas is linked to membrane excitability by KATP, which regulates insulin production, energy production and storage, appetite regulation, and fatty acid synthesis. As such, diazoxide choline may influence several biological systems beyond pancreatic and metabolic functions. Full article
(This article belongs to the Special Issue Molecular Basis in Rare Genetic Disorders)
Show Figures

Figure 1

Back to TopTop