You are currently viewing a new version of our website. To view the old version click .

Algorithmic Information Dynamics: A Computational Approach to Causality from Cells to Networks

Special Issue Information

Dear Colleagues,

Classical probability theory and traditional statistics have long helped scientists to find meaningful signals amid the noise and thereby make sense of the world. However, classical approaches have proven a little threadbare in today’s landscape of large datasets and complex data, which are driving new insights in disciplines ranging from biology to ecology to economics. This is as true in biology, with the advent of new techniques of genome editing, as it is in astronomy, with telescope surveys charting the entire sky in the search for new Earth-like planets. The data have changed. Maybe it is time our data analysis tools did, too.

Algorithmic information dynamics (AID) is a new type of discrete calculus based on computer programming, employed to study complex systems by exploring the software space of models explaining a system subject to changes or perturbations. The objective is to look for computable mechanistic generating models and first principles, thereby ushering in the next generation of scientific discovery and model-driven machine learning. Following a popular online course sponsored by the Santa Fe Institute, and the publication in recent years of a number of papers (by original authors as well as independent groups) that utilize AID based on new tools such as the coding theorem and the block decomposition method (motivated by algorithmic probability) to discover new knowledge, AID is becoming a tool fully equal to the challenge of studying rich, complex systems. Whereas we had only been using weak (e.g., computable) measures to study complex systems, now it is possible to match data to models in degree of sophistication.

We encourage authors and researchers to continue exploring how AID can help us to understand new aspects of systems science by building rich causal computational models and submitting their results to this Topical Collection. They would thereby be contributing to progress in the methodological aspects of systems science, advancing it beyond its current reliance on simplistic data analysis and ad hoc measures.

Dr. Hector Zenil
Dr. Felipe S. Abrahão
Collection Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Entropy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Published Papers

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Entropy - ISSN 1099-4300Creative Common CC BY license