Feature Reviews in Ophthalmology

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Molecular and Translational Medicine".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 1975

Special Issue Editor

Special Issue Information

Dear Colleagues,

Recent developments in medical technology, artificial intelligence, and molecular and gene therapy have brought about significant changes in ophthalmological practice. Many studies communicate encouraging results using AI-based algorithms for the early detection of glaucoma and retinal diseases, such as diabetic retinopathy or age-related macular degeneration. Moreover, machine learning models are being developed to predict surgical outcomes, complications, and patient-specific risks in procedures like cataract surgery and retinal surgery. Gene editing technologies like CRISPR-Cas9 and viral vector-based gene therapies bring hope to diseases previously considered untreatable, like retinitis pigmentosa and Leber's congenital amaurosis. Glaucoma and cataract surgery innovations have revolutionized surgical management, offering less invasive options with fewer complications.

Significant milestones have been reached in the management of the ocular surface pathology, with the discovery of the novel treatments, such as anti-inflammatory medications, neurostimulation therapies, and biologic agents.

Refractive error correction is moving beyond traditional glasses and contact lenses, with exciting options ranging from pharmacological treatments to advanced surgical techniques and wearable tech, with myopia control treatments, adaptative optics technology, developments in orthokeratology, and smart contact lenses providing only some examples.

This Special Issue welcomes up-to-date review articles addressing emerging technologies, clinical trends, new biomarkers, and significant research discoveries in the diagnosis and management of ophthalmological diseases.

Dr. Ana Maria Dascalu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • glaucoma
  • retinal diseases
  • diabetic retinopathy
  • age-related macular degeneration
  • retinitis pigmentosa
  • Leber's congenital amaurosis
  • ocular surface pathology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 4546 KB  
Article
An Integrated Multi-Omics Analysis Identifies Oxeiptosis-Related Biomarkers in Diabetic Retinopathy
by Jiaoyu Deng, Pengfei Ge, Ying Gao, Hong-Ying Li, Yifan Lin, Yangyang Lu, Haiyue Xie, Dianbo Xu, Ping Xie and Zizhong Hu
Biomedicines 2025, 13(11), 2789; https://doi.org/10.3390/biomedicines13112789 - 15 Nov 2025
Viewed by 762
Abstract
Background: Diabetic retinopathy (DR), a leading cause of blindness, lacks early biomarkers and mechanism-targeted therapies. While oxidative stress drives DR pathogenesis, the role of oxeiptosis—a reactive oxygen species-induced, caspase-independent cell death pathway—remains largely unexplored. Methods: We integrated transcriptomic profiling (GSE221521: 69 DR vs. [...] Read more.
Background: Diabetic retinopathy (DR), a leading cause of blindness, lacks early biomarkers and mechanism-targeted therapies. While oxidative stress drives DR pathogenesis, the role of oxeiptosis—a reactive oxygen species-induced, caspase-independent cell death pathway—remains largely unexplored. Methods: We integrated transcriptomic profiling (GSE221521: 69 DR vs. 50 controls), two-sample Mendelian randomization (MR) using blood cis-eQTLs (GTEx) as instruments and DR GWAS (FinnGen R12) as outcome, machine learning-based feature selection (SVM-RFE and Boruta algorithms), and single-cell RNA sequencing (scRNA-seq) analysis (GSE165784). Functional enrichment, immune deconvolution (CIBERSORT), and diagnostic nomogram construction were performed. We validated the key genes using human retinal microvascular endothelial cells (hRMECs) treated with high glucose (30 mM). Results: Oxeiptosis scores were elevated in DR blood samples (p < 0.001). MR analysis identified five putative causal genes: CASP2 (OR = 1.067), PLEC (OR = 1.035) and FBN2 (OR = 1.016) as risk factors, and CYP27A1 (OR = 0.960) and GPD2 (OR = 0.958) as protective factors. SVM-RFE and Boruta algorithms confirmed CASP2 and PLEC as hub genes. A nomogram incorporating both genes achieved robust DR prediction (AUC = 0.811). Functional analysis associated these genes with innate immune activation and extracellular matrix reorganization. Single-cell transcriptomics revealed PLEC was markedly overexpressed in disease-relevant cells (fibroblasts, endothelial cells), whereas CASP2 exhibited a distinct pattern, with notable enrichment in retinal CD8+ T cells. Both genes were associated with a pro-inflammatory shift in the immune landscape. Their upregulation was validated in independent datasets and high-glucose-stressed retinal cells. Conclusions: This study establishes an integrated multi-omics framework implicating oxeiptosis-related pathways in DR and nominates CASP2 and PLEC as putatively causal, biologically relevant candidate biomarkers and potential therapeutic targets. Full article
(This article belongs to the Special Issue Feature Reviews in Ophthalmology)
Show Figures

Figure 1

10 pages, 793 KB  
Article
The Pleiotropic Effect of ANRIL in Glaucoma and Cardiovascular Disease
by Luke O’Brien, Daire J. Hurley, Michael O’Leary, Liam Bourke and Colm O’Brien
Biomedicines 2025, 13(7), 1617; https://doi.org/10.3390/biomedicines13071617 - 1 Jul 2025
Viewed by 851
Abstract
Background/Objectives: The INK4 locus at chromosome 9p21.3, encoding CDKN2A, CDKN2B and the long non-coding RNA CDKN2B-AS1 (ANRIL), has been implicated in multiple diseases, including glaucoma and cardiovascular disease. ANRIL plays a critical role in gene regulation, inflammation and cell proliferation, contributing to [...] Read more.
Background/Objectives: The INK4 locus at chromosome 9p21.3, encoding CDKN2A, CDKN2B and the long non-coding RNA CDKN2B-AS1 (ANRIL), has been implicated in multiple diseases, including glaucoma and cardiovascular disease. ANRIL plays a critical role in gene regulation, inflammation and cell proliferation, contributing to disease susceptibility through shared molecular mechanisms. This study aims to identify SNPs within the INK4 locus associated with both glaucoma and CVD using the Open Targets Genetics platform and assess their pleiotropic effects. Methods: We utilised the Open Targets Genetics platform to identify SNPs at the INK4 locus associated with glaucoma and CVD. For each SNP, we recorded its genomic location, statistical significance and associated phenotypes. We further analysed the SNPs using the Genome Aggregation Database (gnomAD) to confirm their genomic position. Phenotypic associations were assessed using PheWAS data. Results: We identified 20 GWAS SNPs significantly associated with both glaucoma and CVD. All SNPs were located within intronic regions of the long non-coding RNA ANRIL. Certain SNPs such as rs4977756, rs1333037 and rs1063192 have known pleiotropic effects, influencing retinal ganglion cell survival in glaucoma and vascular smooth muscle cell proliferation in CVD. These SNPs influence shared biological pathways, including inflammation, oxidative stress and epigenetic regulation, and may exert either protective or pathogenic effects. Certain SNPs such as rs7853090 and rs1434537531 remain underexplored, emphasising the need for further research. Conclusions: This study highlights the pleiotropic role of ANRIL in glaucoma and CVD, driven by shared genetic and molecular pathways. While SNPs within ANRIL provide valuable insights into disease mechanisms, these conditions remain complex, influenced by multiple genetic and environmental factors. Targeting ANRIL therapeutically poses challenges due to its non-coding nature, but emerging RNA-based therapies, including antisense oligonucleotides and small-molecule modulators, hold promise. Further research into underexplored SNPs and ANRIL’s regulatory mechanisms is essential for advancing therapeutic development and understanding these multifactorial diseases. Full article
(This article belongs to the Special Issue Feature Reviews in Ophthalmology)
Show Figures

Figure 1

Back to TopTop