Piezoelectric Direct Discharge: Devices and Applications
Abstract
:1. Introduction
2. PDD Generation
2.1. PCPG Development
2.1.1. High Voltage RPTs
2.1.2. Powering Low Pressure Discharges
2.1.3. PDD in Noble Gas
2.1.4. PDD in Air
2.2. The PCPG Operation Principle
2.2.1. Piezoelectric Transformer Principle
2.2.2. PCPG as Resonator
- mechanical losses in the PZT material,
- friction of the holder system and the electric connections,
- electrostatic losses,
- capacitive coupling, and
- ohmic losses due to plasma.
2.2.3. Excitation Frequency Control
2.2.4. Plasma Ignition
2.2.5. Sustaining the PDD
2.2.6. Fixing and Packaging
3. PDD Evaluation Methods
3.1. Electrical Characterization
3.2. Ozone Concentration Measurement
3.3. Activation Area Evaluation
3.4. Thermal Characterization
3.5. OES
4. PCPG for Ozone Generation
4.1. Ozone Generation in Gas Flow
4.2. Ozone Concentration vs. Oxygen Percentage
4.3. Characterization of Ozone Production
4.4. Ozone Concentration vs. CDA Flow
4.5. Ozone Concentration vs. Oxygen Flow
4.6. Influence of Power on the Ozone Production Rate
- (i)
- Changes in the PCPG itself as already discussed in Section 3.4.
- (ii)
- the less efficient ozone production. An increase of specific energy input in the discharge, due to higher power, leads to an increase of concentrations of nitrogen oxides, which react with atomic oxygen—the main species needed for ozone synthesis. This effect is known as discharge poisoning and can completely stop the ozone generation [98].
- (iii)
- the enhanced decomposition of ozone. From 100 C upwards, the thermolysis based on reactions with radicals [99] is an increasingly important loss mechanism of ozone.
4.7. Ozone Destruction
- high humidity contributing to ozone destruction due to chemical reactions with OH and HO radicals [98],
- elevated temperature (see discussion in Section 4.6) causing the thermal decomposition [99],
- presence of carbon [102] and some organic substances,
- presence of catalytic materials such as metals and metallic oxides [103],
- UV illumination in the wavelength range causing photolysis [104], and
- high ozone concentration activating more efficient reaction channels for ozone destruction.
4.8. Possible Ozone Applications
5. PCPG Based APPJs
5.1. Activation Area
5.1.1. Dependence on the Treatment Time
5.1.2. Influence of the Substrate Distance
5.2. Application Examples
5.2.1. Treatment of Fruits
5.2.2. Apple
5.2.3. Lime
6. PDD for DBD Generation
6.1. DBD Application Potential
6.2. Configurations of PDD Driven DBD
6.2.1. PCPG as Electrode of Single DBD
6.2.2. PDD as DBD Electrode of Double DBD
- (1)
- from PCPG high voltage surface to the surface of the dielectric barrier by PDD,
- (2)
- capacitively coupled across the dielectric barrier, and
- (3)
- from the dielectric barrier to the substrate surface by DBD micro-discharges.
6.2.3. PDD Plasma Bridge
6.2.4. DBD Electrode Biased over the Plasma Bridge
6.2.5. Double DBD Driven over the Plasma Bridge
- (1)
- from the HV surface of the CeraPlas™F to the excitation electrode,
- (2)
- from the excitation electrode to the internal surface of the dielectric barrier,
- (3)
- across the dielectric barrier, and
- (4)
- from the outer surface of the dielectric barrier to the substrate surface.
6.2.6. SDB Driven by PDD
6.3. PDD Driven DBD Characterization
6.3.1. Discharge Focusing
6.3.2. DBD Current Pulses
6.4. Surface Activation Area
6.4.1. Influence of Power
6.4.2. Comparison of Different DBD Configurations
6.5. Example: Treatment of Titanium
6.6. Example: Soot Removal
7. PCPG Powered Needle Discharge
7.1. Operation Principle
7.1.1. Influence of the Distance
7.1.2. Influence of the Needle Tip Radius
7.2. Example: Treatment of Zirconia Dental Implants
7.2.1. Treatment of Y-TZP Plates
7.2.2. Plasma Needle Treatment of Y-TZP Implants
8. Multi-Gas Nozzle
8.1. Operation Principle
8.2. Activation Characteristics
8.3. piezobrush®PZ2 Contra piezobrush®PZ1
8.4. Potential for Medical Applications
8.4.1. Plasma Needle
8.4.2. The KINPen
9. Conclusions and Outlook
- Physics of the PDD plasma bridge, especially its temporal development, and electric parameter determining its power coupling capacity.
- Influence of humidity on the PDD properties, chemistry, and microbiocidal activity.
- Control of the PDD chemistry by shaping the excitation signal, for example by pulse width modulation.
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Becker, K.H.; Kogelschatz, U.; Schoenbach, K.H.; Barker, R.J. (Eds.) Non-Equilibrium Air Plasmas at Atmospheric Pressure; IoP—Institute of Physics Publishing: Bristol, UK; Philadelphia, PA, USA, 2005; Chapter 9; pp. 537–672. [Google Scholar]
- Meichsner, J.; Schmidt, M.; Schneider, R.; Wagner, H.E. Nonthermal Plasma Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Bruggeman, P.; Iza, F.; Brandenburg, R. Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci. Technol. 2017, 26, 123002. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.; Lu, X. Low Temperature Plasma Technology: Methods and Applications; CRS Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Wolf, R. Plastic Surface Modification: Surface Treatment and Adhesion; Hanser Publications: Cincinnati, OH, USA, 2010; pp. 23–32, ISBN-13 978-1-56990-447-3. [Google Scholar]
- Fridman, A. Plasma Medicine; Cambridge University Press: Chichester/West Sussex, UK, 2013. [Google Scholar]
- Sakudo, A.; Shintani, H. Sterilization and Disinfection by Plasma: Sterilization Mechanisms, Biological and Medical Applications; Nova Science Publishers, Inc.: New York, NY, USA, 2011. [Google Scholar]
- Puff, M. CeraPlas®: A New Kind of Piezo-Based Cold Plasma Generator. In Proceedings of the Technologies & Products Press Conference, Munich, Germany, 12 November 2014; Available online: https://www.texim-europe.com/getfile.ashx?id=114226 (accessed on 25 December 2020).
- Carazo, A.V. Piezoelectric Transformers: An Historical Review. Actuators 2016, 5, 1–22. [Google Scholar]
- Wikipedia. Piezoelectric Direct Discharge Plasma. 2016. Available online: https://en.wikipedia.org/wiki/Piezoelectric_direct_discharge_plasma (accessed on 17 October 2016).
- Korzec, D.; Hoppenthaler, F.; Burger, D.; Andres, T.; Nettesheim, S. Atmospheric pressure plasma jet powered by piezoelectric direct discharge. Plasma Process. Polym. 2020, 17, 2000053. [Google Scholar] [CrossRef]
- Nicolson, A.M. Piezo-Electric Crystal Transformer. U.S. Patent 1,829,234, 27 October 1931. [Google Scholar]
- Marrison, W. Piezo electric resonator. U.S. Patent 1,907,425, 9 May 1933. [Google Scholar]
- Rosen, C.A.; Fish, K.A.; Rothenberg, H.C. Electromechanical transducer. U.S. Patent 2,830,274, 8 April 1958. [Google Scholar]
- Rosen, C.A. Solid State Magnetic and Dielectric Devices. In 167. Philips Application Book.; Katz, H.W., Ed.; John Wiley & Sons, Inc.: London, UK, 1959; Chapter 5; pp. 170–197. [Google Scholar]
- Jaffe, B.; Roth, R.S.; Marzullo, S. Piezoelectric Properties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics. J. Appl. Phys. 1954, 25, 809–810. [Google Scholar] [CrossRef]
- Hooker, M.W. Properties of PZT-Based Piezoelectric Ceramics between −150 and 250 °C; Technical Report NASA/CR-1998-208708; National Aeronautics and Space Administration—NASA: Hampton, VA, USA, 1998.
- Bronstein, S. Piezoelectric Transformers in Power Electronics. Ph.D. Thesis, Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel, 2005. [Google Scholar]
- Hsu, Y.H.; Lee, C.K.; Hsiao, W.H. Optimizing piezoelectric transformer for maximum power transfer. Smart Mater. Struct. 2003, 12, 373. [Google Scholar] [CrossRef]
- Benwell, A.; Kovaleski, S.; Kemp, M. A resonantly driven piezoelectric transformer for high voltage generation. In Proceedings of the 2008 IEEE International Power Modulators and High-Voltage Conference, Las Vegas, NV, USA, 27–31 May 2008; Institute of Electrical and Electronics Engineers: Las Vegas, NV, USA, 2008; pp. 113–116. [Google Scholar]
- Rodgaard, M.S.; Andersen, T.; Meyer, K.S.; Andersen, M.A.E. Design of interleaved multilayer Rosen type piezoelectric transformer for high voltage DC/DC applications. In Proceedings of the IET Conference Publications Institution of Engineering and Technology, Bristol, UK, 27–29 March 2012; pp. 1–6. [Google Scholar]
- Johnson, M.; MacDonald, M.; Go, D.B. Low Voltage Ionic Wind Generation using Piezoelectric Transformers. In Proceedings of the ESA Annual Meeting on Electrostatics 2015, Pomona, CA, USA, 16–18 June 2015. [Google Scholar]
- Johnson, M.; Go, D.B. Impingement Cooling Using the Ionic Wind Generated by a Low-Voltage Piezoelectric Transformer. Front. Mech. Eng. 2016, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hwang, L.; Yoo, J.; Jang, E.; Oh, D.; Jeong, Y.; Ahn, I.; Cho, M. Fabrication and characteristics of PDA LCD backlight driving circuits using piezoelectric transformer. Sens. Actuators A Phys. 2004, 115, 73–78. [Google Scholar] [CrossRef]
- Lo, Y.K.; Lin, C.H.; Pai, K.J. Design and analysis of a piezoelectric transformer-based half-bridge resonant inverter for CCFL backlight modules. In Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE 2006, Montréal, QC, Canada, 9–13 July 2006; pp. 892–896. [Google Scholar]
- Lin, R.L. Piezoelectric Transformer Characterization and Application of Electronic Ballast. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2001. [Google Scholar]
- Smidt, P.J.M.; Duarte, J.L. Powering neon lamps through piezoelectric transformers. In Proceedings of the 27th Annual IEEE Power Electronics Specialists Conference—PESC’96. Institute of Electrical and Electronics Engineers, Baveno, Italy, 23–27 June 1996; pp. 310–315. [Google Scholar]
- Hutsel, B.T. Characterization of a Piezoelectric Transformer Plasma Source. Ph.D. Thesis, Faculty of the Graduate School, Jesse Hall, University of Missouri, Columbia, MO, USA, 2012. [Google Scholar]
- Itoh, H.; Teranishi, K.; Suzuki, S. Discharge plasmas generated by piezoelectric transformers and their applications. Plasma Sources Sci. Technol. 2006, 15, S51. [Google Scholar] [CrossRef]
- Teranishi, K.; Shimomura, N.; Suzuki, S.; Itoh, H. Development of dielectric barrier discharge-type ozone generator constructed with piezoelectric transformers: Effect of dielectric electrode materials on ozone generation. Plasma Sources Sci. Technol. 2009, 18, 045011. [Google Scholar] [CrossRef]
- Teschke, M. Piezoelektrisch betriebene Niederspannungs- Atmosphärenduck-Plasmaquellen. Ph.D. Thesis, Bergische Universität Wuppertal, Wuppertal, Germany, 2009. [Google Scholar]
- Hackam, R. Total secondary ionization coefficients and breakdown potentials of monatomic gases between mild steel coaxial cylinders. J. Phys. B At. Mol. Phys. 1969, 2, 201–215. [Google Scholar] [CrossRef]
- Hackam, R. Total secondary ionization coefficients and breakdown potentials of hydrogen, methane, ethylene, carbon monoxide, nitrogen, oxygen and carbon dioxide between mild steel coaxial cylinders. J. Phys. B At. Mol. Phys. 1969, 2, 216–233. [Google Scholar] [CrossRef]
- Martin, T.; Pigache, F.; Nadal, C.; Callegari, T. Experimental analysis of piezoelectric plasma discharge generator. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 1–5. [Google Scholar]
- Reinhausen Plasma GmbH. Piezobrush® PZ1: Cold.Active Atmospheric Pressure Plasma Hand-Held Device for Surface Activation; Product Overview IN 2236869/00 DE/EN–03/10–F0230900; Reinhausen Plasma GmbH: Regensburg, Germany, 2010. [Google Scholar]
- Neuhaus, S. Functionalization of Polymer Surfaces with Polyelectrolyte Brushes. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2011. [Google Scholar]
- Stawarczyk, B.; Thrun, H.; Eichberger, M.; Roos, M.; Edelhoff, D.; Schweiger, J.; Schmidlin, P.R. Effect of different surface pretreatments and adhesives on the load-bearing capacity of veneered 3-unit PEEK FDPs. J. Prosthet. Dent. 2015, 114, 666–673. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y.; Okawa, T.; Fujii, T.; Tanaka, M. Influence of plasma treatment on surface properties of zirconia. J. Osaka Dent. Univ. 2016, 50, 79–84. [Google Scholar]
- Ito, Y.; Okawa, T.; Fukumoto, T.; Tsurumi, A.; Tatsuta, M.; Fujii, T.; Tanaka, J.; Tanaka, M. Influence of atmospheric pressure low-temperature plasma treatment on the shear bond strength between zirconia and resin cement. J. Prosthodont. Res. 2016, 60, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Kemmerling, S.; Ziegler, J.; Schweighauser, G.; Arnold, S.A.; Giss, D.; Müller, S.A.; Ringler, P.; Goldie, K.N.; Goedecke, N.; Hierlemann, A.; et al. Connecting μ-fluidics to electron microscopy. J. Struct. Biol. 2012, 177, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Neuhaus, S.; Padeste, C.; Spencer, N.D. Functionalization of Fluropolymers and Polyolefins via Grafting of Polyelectrolyte Brushes From Atmospheric-Pressure Plasma Activated Surfaces. Plasma Process. Polym. 2011, 8, 512–522. [Google Scholar] [CrossRef]
- TDK Electronics AG. Piezoelectric Transformer Designed for Gas Ignition & Plasma Generation; CeraPlas™ Series; Data Sheet; Type CP7006K20T1000; TDK Electronics AG: Munich, Germany, 2019. [Google Scholar]
- EPCOS AG. Piezoelectric Based Plasma Generator; CeraPlas®HF Series; Data Sheet; EPCOS AG: Munich, Germany, 2018; Available online: https://www.mouser.de/datasheet/2/400/ceraplas-db-1487530.pdf (accessed on 26 November 2020).
- Fukunaga, H.; Kakehashi, H.; Ogasawara, H.; Ohta, Y. Effect of dimension on characteristics of Rosen-type piezoelectric transformer. In Proceedings of the Power Electronics Specialists Conference, 1998. PESC 98 Record. 29th Annual IEEE, Fukuoka, Japan, 17–22 May 1998; Volume 2, pp. 1504–1510. [Google Scholar]
- TDK Electronics. Cold Plasma from a Single Component. Applications & Cases. 2014. Available online: https://www.tdk-electronics.tdk.com/en/373562/tech-library/articles/applications—cases/applications—cases/cold-plasma-from-a-single-component/1109546 (accessed on 26 December 2020).
- Eliasson, B.; Hirth, M.; Kogelschatz, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D Appl. Phys. 1987, 20, 1421–1437. [Google Scholar] [CrossRef]
- Moulson, A.; Herbert, J. Electroceramics, 2nd ed.; John Wiley & Sons Ltd,: Chichester/West Sussex, UK, 2003; pp. 77–79. [Google Scholar]
- Wells, E. Comparing magnetic and piezoelectric transformer approaches in CCFL applications. Analog. Appl. J. 2002, 1Q2002, 12–18. [Google Scholar]
- Benenson, W.; Harris, J.W.; Stocker, H.; Lutz, H. Handbook of Physics; Springer Inc.: New York, NY, USA, 2002; Chapter 8.2; pp. 268–278. ISBN 0-387-95269-1. [Google Scholar]
- Lin, C.Y. Design and Analysis of Piezoelectric Transformer Converters. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1997. [Google Scholar]
- Korzec, D.; Hoppenthaler, F.; Burger, D.; Andres, T.; Werkmann, A.; Nettesheim, S.; Puff, M. Piezobrush®PZ3: Part I: Operation Principle and Characteristics. Whitepaper. 2020. Available online: https://www.relyon-plasma.com/wp-content/uploads/2020/10/201024_whitepaper_piezobrush_PZ3_1.pdf (accessed on 26 December 2020).
- Ben-Yaakov, S.; Lineykin, S. Maximum power tracking of piezoelectric transformer HV converters under load variations. IEEE Trans. Power Electron. 2006, 21, 73–78. [Google Scholar] [CrossRef]
- EPCOS AG. Evaluation Kit CeraPlas® HF Driver for CeraPlas® Series. Data sheet. 2018. Available online: https://www.mouser.de/datasheet/2/400/ceraplas-driving-circuit-user-guide-1487527.pdf (accessed on 26 December 2020).
- Day, M.; Lee, B.S. Understanding piezoelectric transformers in CCFL backlight applications. Analog. Appl. J. 2002, 4Q, 12–18. [Google Scholar]
- Doellgast, B.; Puff, M.; Kudela, P.; Weilguni, M. Piezoelectric Transformer. U.S. Patent 2017/0208675 A1, 20 July 2017. [Google Scholar]
- Korzec, D.; Finanţu-Dinu, E.G.; Teschke, M.; Engemann, J.; Miclea, M.; Kunze, K.; Franzke, J.; Niemax, K. Characterization of surface barrier discharge in helium. Plasma Sources Sci. Technol. 2006, 15, 345–359. [Google Scholar] [CrossRef]
- Masoud, N.; Martus, K.; Figus, M.; Becker, K. Rotational and Vibrational Temperature Measurements in a High-Pressure Cylindrical Dielectric Barrier Discharge (C-DBD). Contrib. Plasma Phys. 2005, 45, 32–39. [Google Scholar] [CrossRef]
- Laimer, J.; Haslinger, S.; Maissl, W.; Hell, J.; Störi, H. Investigation of an atmospheric pressure radio-frequency capacitive plasma jet. Vacuum 2005, 79, 209–214. [Google Scholar] [CrossRef]
- Reuter, S.; von Woedtke, T.; Weltmann, K.D. the kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J. Phys. Appl. Phys. 2018, 51, 233001. [Google Scholar] [CrossRef] [Green Version]
- Teschke, M.; Kȩdzierski, J.; Engemann, J. Time and spatially resolved studies of an kHz-excited atmospheric pressur jet for industial applications. In Proceedings of the 48th Annual Technical Conference Proceedings of Society of Vacuum Coaters, Denver, CO, USA, 23–28 April 2005; Volume 505/856-7188, pp. 1–7. [Google Scholar]
- Lu, X.; Laroussi, M.; Puech, V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci. Technol. 2012, 21, 034005. [Google Scholar] [CrossRef]
- Flynn, A.M.; Sanders, S.R. Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers. IEEE Trans. Power Electron. 2002, 17, 8–14. [Google Scholar] [CrossRef] [Green Version]
- VanGordon, J.A.; Kovaleski, S.D.; Norgard, P.; Gall, B.B.; Dale, G.E. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects. Rev. Sci. Instrum. 2014, 85, 023101. [Google Scholar] [CrossRef]
- Artemev, K.V.; Bogachev, N.N.; Guseinzade, N.G.; Dolmatov, T.V.; Kolik, L.V.; Konchekov, E.M.; Andreev, S.E. Study of Characteristics of the Cold Atmospheric Plasma Source Based on a Piezo Transformer. Russ. Phys. J. 2020, 62, 2073–2080. [Google Scholar] [CrossRef]
- Weilguni, M.; Nettesheim, S. Device for Producing a Non-Thermal Atmospheric-Pressure Plasma and Method for the Frequency Control of a Piezoelectric Transformer. U.S. Patent 10,772,182 B2, 8 September 2020. [Google Scholar]
- Begum, A.; Laroussi, M.; Pervez, M. Dielectric Probe: A New Electrical Diagnostic Tool for Atmospheric Pressure Non-Thermal Plasma Jet. Int. J. Eng. Technol. IJET-IJENS 2011, 11, 209–215. [Google Scholar]
- Martin, T.; Pigache, F.; Martin, S. Measurement of the electric potential distribution on piezoelectric ceramic surface. In Proceedings of the IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics, Toulouse, France, 24–26 June 2013; pp. 1–5. [Google Scholar]
- Korzec, D.; Nettesheim, S.; Neuwirth, D. Nutzung der elektrischen Wechselfelder zur Diagnostik der direkten piezoelektrischen Entladung (PDD). In Atmosphärische Plasmen: Anwendungen-Entwicklungen-Anlagen; Horn, K., Ed.; Anwenderkreis Atmosphärendruckplasma—ak-adp: Jena, Germany, 2019; pp. 90–99. [Google Scholar]
- Küchler, A. High Voltage Engineering: Fundamentals—Technology-Applications; Springer Vieweg: Berlin/Heidelberg, Germany, 2017; Chapter 3.2; p. 187. [Google Scholar]
- Korzec, D.; Finanţu-Dinu, E.G.; Dinu, G.L.; Engemann, J.; Štefečka, M.; Kando, M. Comparison of coplanar and surface barrier discharges operated in oxygen–nitrogen gas mixtures. Surf. Coat. Technol. 2003, 174-175, 503–508. [Google Scholar] [CrossRef]
- Dorai, R.; Kushner, M.J. A model for plasma modification of polypropylene using atmospheric pressure discharges. J. Phys. D Appl. Phys. 2003, 36, 666–685. [Google Scholar] [CrossRef]
- McClurkin, J.; Maier, D. Half-life time of ozone as a function of air conditions and movement. In Proceedings of the 10th International Working Conference on Stored Product Protection, Estoril, Portugal, 27 June–2 July 2010; Julius-Kühn-Archiv: Estoril, Portugal, 2010; pp. 381–385. [Google Scholar]
- Reuter, S.; Winter, J.; Iseni, S.; Peters, S.; Schmidt-Bleker, A.; Dünnbier, M.; Schäfer, J.; Foest, R.; Weltmann, K.D. Detection of ozone in a MHz argon plasma bullet jet. Plasma Sources Sci. Technol. 2012, 21, 034015. [Google Scholar] [CrossRef]
- Molina, L.T.; Molina, M.J. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J. Geophys. Res. 1986, 91, 14,501–14,508. [Google Scholar] [CrossRef]
- Daumont, D.; Brion, J.; Charbonnier, J.; Malicet, J. Ozone UV Spectroscopy I: Absorption cross-section at room temperautre. J. Atmos. Chem. 1992, 15, 145–155. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Kwok, D.; Neumann, A. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 1999, 81, 167–249. [Google Scholar] [CrossRef]
- Erbil, H.Y. Surface Chemistry of Solid and Liquid Interfaces; Blackwell Publishing: Oxford, UK, 2006; Chapter 9; pp. 308–337. [Google Scholar]
- Kartashev, I.; Vontz, T. Regimes of piezoelectric transformer operation II. Meas. Sci. Technol. 2009, 20, 055108. [Google Scholar] [CrossRef]
- Su, Y.H. Power Enhancement of Piezoelectric Technology based Power Devices by Using Heat Transfer Technology. Ph.D. Thesis, L’Ecole Normale Superieure de Cachan, Cachan Cedex, France, 2014. [Google Scholar]
- Kartashev, I.; Vontz, T.; Florian, H. Regimes of piezoelectric transformer operation. Meas. Sci. Technol. 2006, 17, 2150–2158. [Google Scholar] [CrossRef]
- Hanisch, T.; Kartashev, I.; Guldner, H.; Lehnert, K. Nonpermanent excitation of piezoelectric transformers. In Proceedings of the VIII IEEE International Power Electronics Congress, 2002. Technical Proceedings. CIEP 2002, Guadalajara, Mexico, 24 October 2002; pp. 239–244. [Google Scholar]
- Rajasekaran, P.; Bibinov, N.; Awakowicz, P. Atmospheric pressure piezo driven microplasma source for bio medical applications. In Proceedings of the 20th International Symposium on Plasma Chemistry (ISPC-20), Philadelphia, PA, USA, 24–29 July 2011; pp. 1–4. [Google Scholar]
- Timmermann, E.; Bansemer, R.; Gerling, T.; Hahn, V.; Weltmann, K.D.; Nettesheim, S.; Puff, M. Piezoelectric-driven plasma pen with multiple nozzles used as a medical device: Risk estimation and antimicrobial efficacy. J. Phys. D Appl. Phys. 2020, 54, 025201. [Google Scholar] [CrossRef]
- Helmke, A.; Wandke, D.; Mahmoodzada, M.; Weltmann, K.D.; Viöl, W. Impact of Electrode Design, Supply Voltage and Interelectrode Distance on Safety Aspects and Characteristics of a Medical DBD Plasma Source. Contrib. Plasma Phys. 2013, 53, 623–638. [Google Scholar] [CrossRef]
- Dohan, J.M.; Masschelein, W.J. The Photochemical Generation of Ozone: Present State–of–the–Art. Ozone: Sci. Eng. 1987, 9, 315–334. [Google Scholar] [CrossRef]
- Eliasson, B.; Kogelschatz, U. Ozone Generation with Narrow–Band UV Radiation. Ozone Sci. Eng. 1991, 13, 365–373. [Google Scholar] [CrossRef]
- Buntat, Z.; Smith, I.R.; Razali, N.A.M. Ozone Generation by Pulsed Streamer Discharge in Air. Appl. Phys. Res. 2009, 1, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Buntat, Z. Ozone Generation Using Electrical Discharges; VDM Verlag Dr. Müller: Saarbrücken, Germany, 2010; Chapter 1.7.1; p. 14. [Google Scholar]
- Kogelschatz, U.; Eliasson, B.; Hirth, M. Ozone generation from oxygen and air: Discharge physics and reaction mechanisms. Ozone Sci. Eng. 1988, 10, 367–378. [Google Scholar] [CrossRef]
- Masuda, S.; Akutsu, K.; Kuroda, M.; Awatsu, Y.; Shibuya, Y. A ceramic-based ozonizer using high-frequency discharge. IEEE Trans. Ind. Appl. 1988, 24, 223–231. [Google Scholar] [CrossRef]
- Shimizu, T.; Sakiyama, Y.; Graves, D.B.; Zimmermann, J.L.; Morfill, G.E. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure. New J. Phys. 2012, 14, 103028. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.S.; Lawless, P.A.; Yamamoto, T. Corona discharge processes. IEEE Trans. Plasma Sci. 1991, 19, 1152–1166. [Google Scholar] [CrossRef] [Green Version]
- Skalný, J.; Országh, J.; Matejčík, Š.; Mason, N. Ozone generation in positive and negative corona discharge fed by humid oxygen and carbon dioxide. Phys. Scr. 2008, T131, 014012–1–014012–3. [Google Scholar]
- Teranishi, K.; Suzuki, S.; Itoh, H. A Novel Generation Method of Dielectric Barrier Discharge and Ozone Production Using a Piezoelectric Transformer. Jpn. J. Appl. Phys. 2004, 43, 9733–9739. [Google Scholar] [CrossRef]
- Itoh, H. Discharge plasmas generated by piezoelectric transformer and their applications. In Proceedings of the 27th ICPIG, Eindhoven, The Netherlands, 17–22 July 2005; pp. 1–4. [Google Scholar]
- Kogelschatz, U.; Baessler, P. Determination of Nitrous Oxide and Dinitrogen Pentoxide Concentrations in the Output of Air-Fed Ozone Generators of High Power Density. Ozone Sci. Eng. 1987, 9, 195–206. [Google Scholar] [CrossRef]
- Fridman, A. Plasma Chemistry; Cambridge University Press: New York, NY, USA, 2008; pp. 387–390. [Google Scholar]
- Benson, S.W.; Axworthy, A.E. Mechanism of the Gas Phase, Thermal Decomposition of Ozone. J. Chem. Phys. 1957, 26, 1718–1726. [Google Scholar] [CrossRef]
- Gardoni, D.; Vailati, A.; Canziani, R. Decay of Ozone in Water: A Review. Ozone Sci. Eng. 2012, 34, 233–242. [Google Scholar] [CrossRef]
- Sotelo, J.; Bltrán, F.; Benítez, F.; Bltrán-Heredia, J. Ozone decomposition in water: Kinetic study. Ind. Eng. Chem. Rev. 1987, 26, 39–43. [Google Scholar] [CrossRef]
- Razumovsky, S.; Gorshenev, V.; Kovarskii, A.; Shchegolikhin, A. Dynamics and mechanism of the interaction of graphite powders with ozone. Russ. Chem. Bull. Int. Ed. 2008, 57, 1806–1810. [Google Scholar] [CrossRef]
- Batakliev, T.; Georgiev, V.; Anachkov, M.; Rakovsky, S.; Zaikov, G. Ozone decomposition. Interdiscip Toxicol. 2014, 7, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Matsumi, Y.; Kawasaki, M. Photolysis of Atmospheric Ozone in the Ultraviolet Region. Chem. Rev. 2003, 103, 4767–4782, PMID: 14664632. [Google Scholar] [CrossRef]
- Dhandapani, B.; Oyama, S. Gas phase ozone decomposition catalysts. Appl. Catal. Environ. 1997, 11, 129–166. [Google Scholar] [CrossRef]
- Radhakrishnan, R. Structure and Ozone Decomposition Reactivity of Supported Manganese Oxide Catalysts. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2001. [Google Scholar]
- Nettesheim, S.; Burger, D.; Szulc, M.; Falk, W.; Riess, G. Effect of Piezoelectric Direct Discharge Plasma on Microorganisms. 2014. Available online: https://www.relyon-plasma.com/wp-content/uploads/2017/03/141126_Application_note_PZ2_4_EN.pdf (accessed on 26 December 2020).
- Moore, G.; Griffith, C.; Peters, A. Bactericidal properties of Ozone and its potential applications as a terminal disinfectant. J. Food Prot. 2000, 63, 1100–1106. [Google Scholar] [CrossRef]
- Dufresne, S.; Hewitt, A.; Robitaille, S. Ozone Sterilization: Another Option for Healthcare in the 21st Century. Am. J. Infect. Control 2004, 32, E26–E27. [Google Scholar] [CrossRef]
- Hudson, J.B.; Sharma, M.; Vimalanathan, S. Development of a Practical Method for Using Ozone Gas as a Virus Decontaminating Agent. J. Int. Ozone Assoc. 2009, 31, 216–223. [Google Scholar] [CrossRef]
- Sung, S.J.; Huh, J.B.; Yun, M.J.; Chang, B.M.W.; Jeong, C.M.; Jeon, Y.C. Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments. J. Adv. Prosthodont. 2013, 5, 2–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalski, W.; Bahnfleth, W.; Whittam, T. Bactericidal Effects of High Airborne Ozone Concentrations on Escherichia coli and Staphylococcus aureus. Ozone Sci. Eng. 1998, 20, 205–221. [Google Scholar] [CrossRef]
- Al-Haddad, K.S.H.; Al-Qassemi, R.S.S.; Robinson, R.K. The use of gaseous ozone and gas packaging to control populations of Salmonella infantis and Pseudomonas aeruginosa on the skin of chicken portions. Food Control 2005, 16, 405–410. [Google Scholar] [CrossRef]
- Rodriguesz-Romo, L.A.; Yousef, A.E. Inactivation of Salmonella enterica serovar enteritidis on shell eggs by ozone and UV radiation. J. Food Prot. 2005, 68, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Jaksch, D.; Margesin, R.; Mikoviny, T.; Skalny, J.D.; Hartungen, E.; Schinner, F.; Mason, N.J.; Märk, T.D. The effect of ozone treatment on the microbial contamination of pork meat measured by detecting the emissions using PTR-MS and by enumeration of microorganisms. Int. J. Mass Spectrom. 2004, 239, 209–214. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Crisosto, C.; Mlikota, F. Postharvest use of ozone on fresh fruit. Perish. Handl. Q. 1999, 99, 10–14. [Google Scholar]
- Schwabedissen, A.; Laciński, P.; Chen, X.; Engemann, J. PlasmaLabel—A new nethod to disinfect goods inside a closed package using dielectric barrier discharges. Contrib. Plasma Phys. 2007, 47, 551–558. [Google Scholar] [CrossRef]
- Karaca, H. Effect of continuous 0.3 μL/L gaseous ozone exposure on fungicide residues on table grape berries. Postharvest Biol. Technol. 2012, 64, 154–159. [Google Scholar] [CrossRef]
- Chen, J.; Lin, Y.J.; Kuo, W.C. Pesticide residue removal from vegetables by ozonation. J. Food Eng. 2013, 114, 404–411. [Google Scholar] [CrossRef]
- Tamaki, M.; Ikeura, H. Removal of Residual Pesticides in Vegetables Using Ozone Microbubbles. In Pesticides—Recent Trends in Pesticide Residue Assay; Intech: London, UK, 2012; Chapter 6. [Google Scholar]
- Walse, S.S.; Karaca, H. Remediation of fungicide residues on fresh produce by use of gaseous ozone. Environ. Sci. Technol. 2011, 45, 6961–6969. [Google Scholar] [CrossRef]
- Finney, A. Using Ozone for Odor Control. 2013, pp. 32–33. Available online: www.rendermagazine.com (accessed on 26 December 2020).
- Kilham, L.B.; Dodd, R.M. The application of ozone for air treatment: Case study of a bingo hall HVAC system. In Proceedings of the International Ozone Association World Ozone Congress, Dearborn, MI, USA, 24 August 1999; pp. 1–8. [Google Scholar]
- Huang, H.L.; Lee, M.G.; Tai, J.H. Controlling indoor bioaerosols using a hybrid system of ozone and catalysts. Aerosol Air Qual. Res. 2012, 12, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Ogata, A.; Saito, K.; Kim, H.; Sugasawa, M.; Aritani, H.; Einaga, H. Performance of ozone decomposition catalyst in hybrid plasma reactors for VOC decomposition. In Proceedings of the 19th Interantional Symposium on Plasma Chemistry, Bochum, Germany, 26–31 July 2009. [Google Scholar]
- Hoigné, J.; Bader, H. Rate constants of reactions of ozone with organic and inorganic compounds in water—I: Non-dissociating organic compounds. Water Res. 1983, 17, 173–183. [Google Scholar] [CrossRef]
- Usharani, K.; Muthukumar, M.; Kadirvelu, K. Effect of pH on the Degradation of Aqueous Organophosphate (methylparathion) in Wastewater by Ozonation. Int. J. Environ. Res. 2012, 6, 557–564. [Google Scholar]
- Wu, J.; Luan, T.; Lan, C.; Lo, T.W.H.; Chan, G.Y.S. Removal of residual pesticides on vegetable using ozonated water. Food Control 2007, 18, 466–472. [Google Scholar] [CrossRef]
- Fanelli, F.; Fracassi, F. Atmospheric pressure non-equilibrium plasma jet technology: General features, specificities and applications in surface processing of materials. Surf. Coat. Technol. 2017, 322, 174–201. [Google Scholar] [CrossRef]
- Winter, J.; Brandenburg, R.; Weltmann, K.D. Atmospheric pressure plasma jets: An overview of devices and new directions. Plasma Sources Sci. Technol. 2015, 24, 064001. [Google Scholar] [CrossRef]
- Teschke, M. Piezoelectric Low Voltage Atmospheric Pressure Plasma Sources. Contrib. Plasma Phys. 2009, 49, 614–623. [Google Scholar] [CrossRef]
- Nettesheim, S.; Korzec, D.; Burger, D.; Kuegerl, G.; Puff, M.; Hoppenthaler, F. Apparatus for producing a plasma and hand-held device having the apparatus. U.S. Patent 9,788,404 B2, 24 December 2017. [Google Scholar]
- Ito, M.; Ohta, T.; Hori, M. Plasma agriculture. J. Korean Phys. Soc. 2012, 60, 937–943. [Google Scholar] [CrossRef]
- Zang, J.; Kwon, T.; Kim, S.; Jeong, D. Plasma farming: Non-thermal dielectric barrier discharge plasma technology for improving the growth of soybean sprouts and chickens. Plasma 2018, 1, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Iseki, S.; Ohta, T.; Aomatsu, A.; Ito, M.; Kano, H.; Higashijima, Y.; Hori, M. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 2010, 96, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Ambrico, P.F.; Šimek, M.; Rotolo, C.; Morano, M.; Minafra, A.; Ambrico, M.; Polastro, S.; Gerin, D.; Faretra, F.; Angelin, R.M.D.M. Surface Dielectric Barrier Discharge plasma: A suitable measure against fungal plant pathogens. Nature 2020, 10, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hojnik, N.; Modic, M.; Ni, Y.; Filipič, G.; Cvelbar, U.; Walsh, J. Effective Fungal Spore Inactivation with an Environmentally Friendly Approach Based on Atmospheric Pressure Air Plasma. Environ. Sci. Technol. 2019, 53, 1893–1904. [Google Scholar] [CrossRef] [PubMed]
- Ziuzina, D.; Misra, N.; Han, L.; Cullen, P.; Moiseev, T.; Mosnier, J.; Keener, K.; Gaston, E.; Vilaró, I.; Bourke, P. Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innov. Food Sci. Emerg. Technol. 2020, 59, 1–11. [Google Scholar] [CrossRef]
- Koga, K.; Thapanut, S.; Amano, T.; Seo, H.; Itagaki, N.; Hayashi, N.; Shiratani, M. Simple method of improving harvest by nonthermal air plasma irradiation of seeds of Arabidopsis thaliana (L.). Appl. Phys. Express 2016, 9, 016201. [Google Scholar] [CrossRef]
- Thirumdas, R.; Sarangapani, C.; Annapure, U.S. Cold Plasma: A novel Non-Thermal Technology for Food Processing. Food Biophys. 2014, 10, 1–11. [Google Scholar] [CrossRef]
- Siemens, W. Über die elektrostatische Induktion und die Verzögerung des Stroms in Flaschendrähten. Ann. Der Phys. Und Chemie Vierte Reihe 1957, 12, 66–122. [Google Scholar]
- Kogelschatz, U.; Baessler, P. Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chem. Plasma Process. 2003, 23, 1–45. [Google Scholar] [CrossRef]
- Brandenburg, R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 2017, 26, 053001. [Google Scholar] [CrossRef]
- Boeuf, J. Plasma display panels: Physics, recent developments and key issues. J. Phys. D Appl. Phys. 2003, 36, R53–R79. [Google Scholar] [CrossRef]
- Eliasson, B.; Kogelschatz, U. Nonequilibrium volume plasma chemical processing. IEEE Trans. Plasma Sci. 1991, 19, 1063–1077. [Google Scholar] [CrossRef]
- Francke, K.P.; Miessner, H.; Rudolph, R. Plasmacatalytic processes for environmental problems. Catal. Today 2000, 59, 411–416. [Google Scholar] [CrossRef]
- Durme, J.V.; Dewulf, J.; Leys, C.; Langenhove, H.V. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Appl. Catal. B Environ. 2008, 78, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Blin-Simiand, N.; Jorand, F.; Belhadj-Miled, Z.; Pasquiers, S.; Postel, C. Influence of Temperature on the Removal of Toluene by Dielectric Barrier Discharge. Int. J. Plasma Environ. Sci. Technol. 2007, 1, 64–70. [Google Scholar]
- Fan, H.Y.; Shi, C.; Li, X.S.; Zhao, D.Z.; Xu, Y.; Zhu, A.M. High-efficiency plasma catalytic removal of dilute benzene from air. J. Phys. D Appl. Phys. 2009, 42, 1–5. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, X.; Yu, X.; Feng, T.; Yao, S. Catalytic oxidation of benzene using DBD corona discharges. J. Hazard. Mater. 2006, 137, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, G.J. Peculiarities of Dielectric Barrier Discharges. Contrib. Plasma Phys. 2001, 41, 620–628. [Google Scholar] [CrossRef]
- Černák, M.; Kováčik, D.; Ráhel’, J.; St’ahel, P.; Zahoranová, A.; Kubincová, J.; Tóth, A.; Černáková, L. Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys. Control Fusion 2011, 53, 124031. [Google Scholar] [CrossRef]
- Borcia, G.; Anderson, C.A.; Brown, N.M.D. Dielectric barrier discharge for surface treatment: Application to selected polymers in film and fibre form. Plasma Sources Sci. Technol. 2003, 12, 335–344. [Google Scholar] [CrossRef]
- Ishikawa, S.; Yukimura, K.; Matsunaga, K.; Maruyama, T. Surface modification of Poly(tetrafluorethylene) film using dielectric barrier discharge of intermittent pulse voltage. Jpn. J. Appl. Phys. 2000, 39, 5223–5228. [Google Scholar] [CrossRef]
- Surface modification of aluminium alloys by atmospheric pressure plasma treatments for enhancement of their adhesion properties. Surf. Coat. Technol. 2017, 312, 32–36. [CrossRef]
- Bónová, L.; Zahoranová, A.; Kováčik, D.; Zahoran, M.; Mičušík, M.; Černák, M. Atmospheric pressure plasma treatment of flat aluminum surface. Appl. Surf. Sci. 2015, 331, 79–86. [Google Scholar] [CrossRef]
- Thyen, R.; Höpfner, K.; Kläke, N.; Klages, C.P. Cleaning of silicon and steel surfaces using dielectric barrier discharges. Plasmas Polym. 2000, 5, 91–102. [Google Scholar] [CrossRef]
- Korzec, D.; Nau, G.; Teschke, M.; Dinu, E.G.; Engemann, J. Atmospheric pressure plasma source for wire cleaning. In Proceedings of the Society of Vacuum Coaters, 47th Annual Technical Conference Proceedings, Dallas, TX, USA, 24–29 April 2004. [Google Scholar]
- Teschke, M.; Korzec, D.; Finanţu-Dinu, E.G.; Engemann, J. Plasma cleaning of “endless” substrates by use of a tandem dielectric barrier discharge. Surf. Coat. Technol. 2005, 200, 690–694. [Google Scholar] [CrossRef]
- Prégent, J.; Vandsburger, L.; Blanchard, V.; Blanchet, P.; Riedl, B.; Sarkissian, A.; Stafford, L. Determination of active species in the modification of hardwood samples in the flowing afterglow of N2 dielectric barrier discharges open to ambient air. Cellulose 2014, 22, 811–827. [Google Scholar] [CrossRef]
- Odraášková, M.; Ráhel’, J.; Zahoranová, A.; Tiňo, R.; Černák, M. Plasma Activation of Wood Surface by Diffuse Coplanar Surface Barrier Discharge. Plasma Chem. Plasma Process 2008, 28, 203–211. [Google Scholar] [CrossRef]
- Bhat, N.V.; Bharati, R.N.; Gore, A.V.; Patil, A.J. Effect of atmospheric pressure air plasma treatment on desizing and wettability of cotton fabrics. Indian J. Fibre Text. Res. 2011, 36, 42–46. [Google Scholar]
- Müller, S.; Zahn, R.J.; Koburger, T.; Weltmann, K.D. Smell reduction and disinfection of textile materials by dielectric barrier discharges. Nat. Sci. 2010, 2, 1044–1048. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, Y.; Yang, S.; Chen, W. Introduction of a new atmospheric pressure plasma device and application on tomato seeds. Agric. Sci. 2011, 2, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.H.; Choi, K.H.; Pengkit, A.; Im, J.S.; Kim, J.S.; Kim, Y.H.; Park, Y.; Hong, E.J.; kyung Jung, S.; Choi, E.H.; et al. Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach. Arch. Biochem. Biophys. 2016, 605, 117–128. [Google Scholar] [CrossRef]
- Kelly-Wintenberg, K.; Montie, T.C.; Brickman, C.; Roth, J.R.; Carr, A.K.; Sorge, K.; Wadsworth, L.D.; Tsai, P.P.Y. Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma. J. Ind. Microbiol. Biotechnol. 1998, 20, 69–74. [Google Scholar] [CrossRef]
- Roth, J.R.; Chen, Z.; Sherman, D.M.; Karakaya, F. Increasing the surface energy and sterilization of nonwoven fabrics by exposure to a one atmosphere uniform glow discharge plasma (OAUGDP. Int. Nonwovens J. 2001, 10, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Furuya, O.; Ikeda, K.; Nakatani, T. Generation and Transportation Mechanisms of Chemically Active Species by Dielectric Barrier Discharge in a Tube for Catheter Sterilization. Plasma Process. Polym. 2008, 5, 606–614. [Google Scholar] [CrossRef]
- Trompeter, J.; Neff, W.J.; Franken, O.; Heise, M.; Neier, M.; Liu, S.; Pietsch, G.J. Reduction of bacillus subtilis and aspergilius niger spores using nonthermal atmospheric gas discharges. IEEE Rr. Plasma Sci. 2002, 30, 1416–1423. [Google Scholar] [CrossRef]
- Yasuda, H.; Hashimoto, M.; Rahman, M.M.; Takashima, K.; Mizuno, A. States of Biological Components in Bacteria and Bacteriophages during Inactivation by Atmospheric Dielectric Barrier Discharges. Plasma Process. Polym. 2008, 5, 615–621. [Google Scholar] [CrossRef]
- Reitz, U.; Salge, J.G.H.; Schwarz, R. Pulsed barrier discharges for thin film production at atmospheric pressure. Surf. Coat. Technol. 1993, 59, 144–147. [Google Scholar] [CrossRef]
- Pochner, K.; Neff, W.; Lebert, R. Atmospheric pressure gas discharge for surface treatment. Surf. Coat. Technol. 1995, 74–75, 394–398. [Google Scholar] [CrossRef]
- Klages, C.P.; Höpfner, K.; Kläke, N.; Thyen, R. Surface functionalization at atmospheric pressure by DBD-based pulsed plasma polymerization. Plasmas Polym. 2000, 5, 79–89. [Google Scholar] [CrossRef]
- Sonnenfeld, A.; Tun, T.M.; Cková, L.Z.; Kozlov, K.V.; Wagner, H.E.; Behnke, J.F.; Hippler, R. Deposition process based on organosilicon precursors in dielectric barrier discharges at atmospheric pressure—A comparison. Plasma Polym. 2002, 6, 237–266. [Google Scholar] [CrossRef]
- Fanelli, F. Thin film deposition and surface modification with atmospheric pressure dielectric barrier discharges. Surf. Coat. Technol. 2010, 205, 1536–1543. [Google Scholar] [CrossRef]
- Hong, J. Atmospheric Pressure Plasma Chemical Deposition bu Using Dielectric Barrier Discharge System. Ph.D. Thesis, University of Illinois at Urbana Champaign, Urbana, IL, USA, 2013. [Google Scholar]
- Chen, Q.; Mertens, J.; Hubert, J.; Baneton, J.; Liu, Q.; Wallaert, G.; Delplancke, M.P.; Reniers, F. Synthesis of TiO2 porous films by atmospheric dielectric barrier discharge plasma at room temperature. In Proceedings of the 22nd International Symposium on Plasma Chemistry, Antwerp, Belgium, 5–10 July 2015; Number P-III-6-10. pp. 1–3. [Google Scholar]
- Yamamoto, H.; Shioji, S.; Masuda, S. Synthesis of ultrafine particles by surface discharge-induced plasma chemical process (SPCP) and its application. IEEE Trans. Ind. Appl. 1992, 28, 1189–1192. [Google Scholar] [CrossRef]
- Gibalov, V.I.; Pietsch, G.J. The development of dielectric barrier discharges in gas gaps and on surfaces. J. Phys. D Appl. Phys. 2000, 33, 2618–2636. [Google Scholar] [CrossRef]
- Xu, X. Dielectric barrier discharge—Properties and applications. Thin Solid Films 2001, 390, 237–242. [Google Scholar] [CrossRef]
- Itoh, H.; Teranishi, K.; Suzuki, S. Observation of light emissions around a piezoelectric transformer in various gases. IEEE Trans. Plasma Sci. 2002, 30, 124–125. [Google Scholar] [CrossRef]
- Itoh, H.; Inada, D.; Teranishi, K.; Shimomura, N.; Suzuki, S. Discharge Plasmas Generated by Piezoelectric Transformer and Their Applications; VUV emission from Xe and Ar Excimers. In Proceedings of the 28th ICPIG, Prague, Czech Republic, 15–20 July 2007; pp. 1274–1275. [Google Scholar]
- Ward, J.W.; King, H.J. Mercury hollow cathode plasma bridge neutralizers. J. Spacecr. 1968, 5, 1161–1164. [Google Scholar]
- Reader, P.; White, D.; Isaacson, G. Argon plasma bridge operation with a 10-cm-beam-diameter ion etching source. J. Vac. Sci. Technol. 1978, 15, 1093. [Google Scholar] [CrossRef]
- Relyon Plasma GmbH. Operating Instructions for Piezobrush®PZ2 Handheld Device. 2018. Available online: https://www.relyon-plasma.com/wp-content/uploads/2018/10/F0351301_BA_piezobrush_PZ2_ML.pdf (accessed on 26 December 2020).
- Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A.B.; Vasilets, V.N.; Fridman, A. Applied Plasma Medicine. Plasma Process Polym. 2008, 5, 503–533. [Google Scholar] [CrossRef]
- Dobrynin, D.; Fridman, G.; Friedman, G.; Fridman, A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 2009, 11, 1–26. [Google Scholar] [CrossRef]
- Dobrynin, D.; Wu, A.; Kalghatgi, S.; Park, S.; Shainsky, N.; Wasko, K.; Dumani, E.; Ownbey, R.; Joshi, S.; Sensenig, R.; et al. Live Pig Skin Tissue and Wound Toxicity of Cold Plasma Treatment. Plasma Med. 2011, 1, 93–108. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, C.; Berganza, C.; Zhang, J. Cold Atmospheric Plasma: Methods of production and application in dentistry and oncology. Med. Gas Res. 2013, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fridman, G.; Peddinghaus, M.; Ayan, H.; Fridman, A.; Balasubramanian, M.; Gutsol, A.; Brooks, A.; Friedman, G. Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air. Plasma Chem. Plasma Process 2006, 26, 425–442. [Google Scholar] [CrossRef]
- Dobrynin, D.; Wasko, K.; Friedman, G.; Fridman, A.; Fridman, G. Cold Plasma Sterilization of Open Wounds: Live Rat Model. Plasma Med. 2011, 1, 109–114. [Google Scholar] [CrossRef]
- Kunapareddy, N.; Dobrynin, D.; Friedman, G.; Fridman, A.; Fridman, G.; Grun, J. Evaluation of Dielectric Barrier Discharge Sterilization of Escherichia coli with a Swept-Wavelength Resonance-Raman Device. Plasma Med. 2011, 1, 231–240. [Google Scholar] [CrossRef]
- Sakiyama, Y.; Graves, D.B.; Chang, H.W.; Shimizu, T.; Morfill, G.E. Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J. Phys. D Appl. Phys. 2012, 45, 1–19. [Google Scholar] [CrossRef]
- Seeböck, R.; Esrom, H.; Charbonnier, M.; Romand, M. Modification of polyimide in barrier discharge air-plasmas: Chemical and morphological effects. Plasmas Polym. 2000, 5, 103–118. [Google Scholar] [CrossRef]
- Bartis, E.A.J.; Knoll, A.J.; Luan, P.; Seog, J.; Oehrlein, G.S. On the interaction of cold atmospheric pressure plasma with surfaces of bio-molecules and model polymers. Plasma Chem. Plasma Process 2016, 36, 121–149. [Google Scholar] [CrossRef]
- Bartis, E.A.J.; Luan, P.; Knoll, A.J.; Graves, D.B.; Seog, J.; Oehrlein, G.S. Biodeactivation of lipopolysaccharide correlates with surface-bound NO3 after cold atmospheric plasma treatment. Plasma Process. Polym. 2016, 13, 410–418. [Google Scholar] [CrossRef]
- Xiong, Z.; Roe, J.; Grammer, T.C.; Graves, D.B. Plasma Treatment of Onychomycosis. Plasma Process. Polym. 2016, 13, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Vandamme, M.; Robert, E.; Dozias, S.; Sobilo, J.; Lerondel, S.; Pape, A.L.; Pouvesle, J.M. Response of Human Glioma U87 Xenografted on Mice to Non Thermal Plasma Treatment. Plasma Med. 2011, 1, 27–43. [Google Scholar] [CrossRef] [Green Version]
- Köritzer, J. Biophysical Effects of Cold Atmospheric Plasma on Glial Tumor Cells. Ph.D. Thesis, Ludwig-Maximilian-Universität München, Munich, Germany, 2013. [Google Scholar]
- Boxhammer, V. Development of a Safe Therapeutic Window for Cold Atmospheric Plasma Treatments. Ph.D. Thesis, Ludwig-Maximilian-Universität München, Munich, Germany, 2014. [Google Scholar]
- Arndt, S.; Wacker, E.; Li, Y.F.; Shimizu, T.; Thomas, H.M.; Morfill, G.E.; Karrer, S.; Zimmermann, J.L.; Bosserhoff, A.K. Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp. Dermatol. 2013, 22, 284–289. [Google Scholar] [CrossRef]
- Li, Y.F.; Taylor, D.; Zimmermann, J.L.; Bunk, W.; Monetti, R.; Isbary, G.; Boxhammer, V.; Schmidt, H.U.; Shimizu, T.; Thomas, H.M.; et al. In vivo skin treatment using two portable plasma devices:Comparison of a direct and an indirect cold atmospheric plasma treatment. Clin. Plasma Med. 2013, 1, 35–39. [Google Scholar] [CrossRef]
- Morfill, G.E.; Shimizu, T.; Steffes, B.; Schmidt, H.U. Nosocomial infections—A new approach towards preventive medicine using plasmas. New J. Phys. 2009, 11, 1–10. [Google Scholar] [CrossRef]
- Klämpfl, T.G. Cold Atmospheric Plasma Decontamination Against Nosocomial Bacteria. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2014. [Google Scholar]
- Jeon, J. Surface Micro-Discharge (SMD)—Analysis of the Antimicrobial Effect and the Plasma Chemistry. Ph.D. Thesis, Ludwig-Maximilian-Universität München, Munich, Germany, 2019. [Google Scholar]
- Klämpfl, T.G.; Isbary, G.; Shimizu, T.; Li, Y.F.; Zimmermann, J.L.; Stolz, W.; Schlegel, J.; Morfill, G.E.; Schmidtd, H.U. Cold Atmospheric Air Plasma Sterilization against Spores and Other Microorganisms of Clinical Interest. Appl. Environ. Microbiol. 2012, 78, 5077–5082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, P.; Bastarrachea, L.J.; Gilbert, A.R.; Tikekar, R.; Oehrlein, G.S. Decontamination of raw produce by surface microdischarge and the evaluation of its damage to cellular components. Plasma Process. Polym. 2019, 16, 1800193. [Google Scholar] [CrossRef]
- Jeong, W.S.; Kwon, J.S.; Choi, E.H.; Kim, K.M. The Effects of Non-Thermal Atmospheric Pressure Plasma treated Titanium Surface on Behaviors of Oral Soft Tissue Cells. Nat. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ujino, D.; Nishizaki, H.; Higuchi, S.; Komasa, S.; Okazaki, J. Effect of Plasma Treatment of Titanium Surface on Biocompatibility. Appl. Sci. 2019, 9, 2257. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Komasa, S.; Nishida, H.; Agariguchi, A.; Sekino, T.; Okazaki, J. Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma. Int. J. Mol. Sci. 2020, 21, 3533. [Google Scholar] [CrossRef]
- Waters, R.; Rickard, T.; Stark, W. Electric field and current density in the impulse corona discharge in a rod/plane gap. Proc. R. Soc. A 1968, 304, 187–210. [Google Scholar]
- Waters, R.; Rickard, T.; Stark, W. the structure of the impulse corona in a rod/plane gap I. The positive corona. Proc. Roy. Soc. A 1970, 315, 1–25. [Google Scholar]
- Pavlovich, M.; Ono, T.; Galleher, C.; Curtis, B.; Clark, D.; Machala, Z.; Graves, D. Air spark-like plasma source for antimicrobial NOx generation. J. Phys. D Appl. Phys. 2014, 47, 1–10. [Google Scholar] [CrossRef]
- Arjunan, K.; Clyne, A. A Nitric Oxide Producing Pin-to-Hole Spark Discharge Plasma Enhances Endothelial Cell Proliferation and Migration. Plasma Med. 2011, 1, 279–293. [Google Scholar] [CrossRef]
- Özkurt, Z.; Kazazoğlu, E. Zirconia dental implants: A literature review. J. Oral Implantol. 2011, 37, 367–376. [Google Scholar]
- Apratim, A.; Eachempati, P.; Kumar, K.; Salian, K.; Singh, V.; Chhabra, S.; Shah, S. Zirconia in dental implantology: A review. J. Int. Soc. Prev. Community Dent. 2015, 5, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valverde, G.B.; Coelho, P.G.; Janal, M.N.; Lorenzoni, F.C.; Carvalho, R.M.; Thompson, V.P.; Weltemann, K.D.; Silva, N. Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment. J. Dent. 2013, 41, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Tashenov, S. Activation of Zirconia Surfaces with Atmospheric Pressure Air Plasma; Technical Report; Internal Report; Relyon Plasma GmbH: Regensburg, Germany, 2017. [Google Scholar]
- González-Martín, M.L.; Labajos-Broncano, L.; Jańczuk, B.; Bruque, J.M. Wettability and surface free energy of zirconia ceramics and their constituents. J. Mater. Sci. 1999, 34, 5923–5926. [Google Scholar] [CrossRef]
- Belloti-Lopes, B.; Ayres, A.P.A.; Bellotti-Lopes, L.; Negreiros, W.M.; Giannini, M. The effect of atmospheric plasma treatment of dental zirconia ceramics on the contact angle of water. Appl. Adhes. Sci. 2014, 2, 1–8. [Google Scholar]
- Stoffels, E.; Flikweert, A.J.; Stoffels, W.W.; Kroesen, G.M.W. Plasma needle: A non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Sci. Technol. 2002, 11, 383–388. [Google Scholar] [CrossRef]
- Landsberg, K.; Scharf, C.; Darm, K.; Wende, K.; Daeschlein, G.; Kindel, E.; Weltmann, K.D.; von Woedtke, T. Use of proteomics to investigate plasma-cell interactions. Plasma Med. 2011, 1, 55–63. [Google Scholar] [CrossRef]
- Fridman, A.; Kennedy, L. Plasma Physics and Engineering; Teylor & Francis Books, Inc.: New York, NY, USA, 2004; Chapter 3.1.2; p. 75. [Google Scholar]
- Laroussi, M.; Akan, T. Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review. Plasma Process. Polym. 2007, 4, 777–778. [Google Scholar] [CrossRef]
- Laroussi, M. Low Temperature Plasma Jets: Characterization and Biomedical Applications. Plasma 2020, 3, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Laroussi, M. Low Temperature Plasma-Based Sterilization: Overview and State-of-the-Art. Plasma Process. Polym. 2005, 2, 391–400. [Google Scholar] [CrossRef]
- Laroussi, M. Plasma Medicine: A Brief Introduction. Plasma 2018, 1, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Laroussi, M. Cold plasma in medicine and healthcare: The new frontier in low temperature plasma applications. Front. Phys. 2020, 8, 1–7. [Google Scholar] [CrossRef]
- Laroussi, M.; Tendero, C.; Lu, X.; Alla, S.; Hynes, W. Inactivation of Bacteria by the Plasma Pencil. Plasma Process. Polym. 2006, 3, 470–473. [Google Scholar] [CrossRef]
- Kieft, I.E.; Kurdi, M.; Stoffels, E. Reattachment and apoptosis after plasma-needle treatment of cultured cell. IEEE Trans. Plasma Sci. 2006, 34, 1331–1336. [Google Scholar] [CrossRef]
- Volotskova, O.; Shashurin, A.; Stepp, M.A.; Pal-Ghosh, S.; Keidar, M. Plasma-Controlled Cell Migration: Localization of Cold Plasma–Cell Interaction Region. Plasma Med. 2011, 1, 85–92. [Google Scholar] [CrossRef]
- Tipa, R.S.; Boekema, B.; Middelkoop, E.; Kroesen, G.M.W. Cold plasma for bacterial inactivation. In Proceedings of the International Symposium on Plasma Chemistry—ISPC, Philadelphia, PA, USA, 24–29 July 2011; pp. 1–4. [Google Scholar]
- Sladek, R.E.J.; Stoffels, E.; Walraven, R.; Tielbeek, P.J.A.; Koolhoven, R.A. Plasma treatment of dental cavities: A feasibility study. IEEE Trans. Plasma Sci. 2004, 32, 1540–1543. [Google Scholar] [CrossRef]
- Sladek, R.E.J. Plasma Needle: Non-Thermal Atmospheric Plasmas in Dentistry. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Sladek, R.E.J.; Stoffels, E. Deactivation of Escherichia coli by the plasma needle. J. Phys. D Appl. Phys. 2005, 38, 1716–1721. [Google Scholar] [CrossRef]
- Goree, J.; Liu, B.; Drake, D.; Stoffels, E. Killing of S. mutans Bacteria Using a Plasma Needle at Atmospheric Pressure. IEEE Trans. Plasma Sci. 2006, 34, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Stoffels, E.; Kieft, I.E.; Sladek, R.E.J. Superficial treatment of mammalian cells using plasma needle. J. Phys. D Appl. Phys. 2003, 36, 2908–2913. [Google Scholar] [CrossRef]
- Kieft, I.E.; Darios, D.; Roks, A.J.M.; Stoffels, E. Plasma treatment of mammalian vascular cells: A quantitative description. IEEE Trans. Plasma Sci. 2005, 33, 771–775. [Google Scholar] [CrossRef]
- Stoffels, E.; Kieft, I.E.; Sladek, R.E.J.; van den Bedem, L.J.M.; van der Laan, E.P.; Steinbuch, M. Plasma needle for in vivo medical treatment: Recent developments and perspectives. Plasma Sources Sci. Technol. 2006, 15, S169–S180. [Google Scholar] [CrossRef] [Green Version]
- Stoffels, E.; Roks, A.J.M.; Deelman, L.E. Delayed Effects of Cold Atmospheric Plasma on Vascular Cells. Plasma Process. Polym. 2008, 5, 599–605. [Google Scholar] [CrossRef]
- Weiss, M.; Barz, J.; Ackermann, M.; Utz, R.; Ghoul, A.; Weltmann, C.D.; Stope, M.B.; Wallwiener, D.; Schenke-Layland, K.; Oehr, C.; et al. Dose-Dependent Tissue-Level Characterization of a Medical Atmospheric Pressure Argon Plasma Jet. ACS Appl. Mater. Interfaces 2019, 11, 19841–19853. [Google Scholar] [CrossRef] [PubMed]
- Lademann, J.; Richter, H.; Alborova, A.; Humme, D.; Patzelt, A. Risk assesment of the application of a plasma jet in dermatology. J. Biomed. Opt. 2009, 14, 054025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heslin, C.; Boehm, D.; Milosavljevic, V.; Laycock, M.; Cullen, P.J.; Bourkea, P. Quantitative Assessment of Blood Coagulation by Cold Atmospheric Plasma. Plasma Med. 2014, 4, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Arndt, S.; Schmidt, A.; Karrer, S.; von Woedtke, T. Comparing two different plasma devices kINPen and Adtec SteriPlas regarding their molecular and cellular effects on wound healing. Clin. Plasma Med. 2018, 9, 24–33. [Google Scholar] [CrossRef]
- Pasqual-Melo, G.; Gandhirajan, R.K.; Stoffels, I.; Bekeschusa, S. Targeting malignant melanoma with physical plasmas. Clin. Plasma Med. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Bekeschus, S.; Lin, A.; Fridman, A.; Wende, K.; Weltmann, K.D.; Miller, V. A Comparison of Floating-Electrode DBD and kINPenJet: Plasma Parameters to Achieve Similar Growth Reduction in Colon Cancer Cells Under Standardized Conditions. Plasma Chem. Plasma Process. 2018, 38, 1–12. [Google Scholar] [CrossRef]
- Partecke, L.I.; Evert, K.; Haugk, J.; Doering, F.; Normann, L.; Diedrich, S.; Weiss, F.U.; Evert, M.; Huebner, N.O.; Guenther, C.; et al. Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer 2012, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.S.; Schnabel, U.; Weihe, T.; Weltmann, K.D.; von Woedtke, T. A Reference Technique to Compare the Antimicrobial Properties of Atmospheric Pressure Plasma Sources. Plasma Med. 2015, 5, 27–47. [Google Scholar] [CrossRef] [Green Version]
PCPG Type | CeraPlas™F [45] | CeraPlas™HF [43] |
---|---|---|
operating frequency [kHz] | 50 | 82 |
weight [g] | 8.0 | 3.8 |
length × widht × thickness [mm] | 72 × 6 × 2.8 | 45 × 4.0 × 2.8 |
piezoelectric material | PZT | PZT |
maximum operating power [W] | 8.0 | 4.0 |
input capacity [ F ] | ∼2.0 | ∼0.74 |
output capacity [ pF ] | ∼3.0 | ∼2.1 |
Fruit | Pristine | Treated |
---|---|---|
lime | 102 | 45 |
lemon | 100 | 56 |
mango | 102 | 60 |
apple | 101 | 65 |
organic apple | 103 | 60 |
Storage Time | 1 min Treatment | 5 min Treatment |
---|---|---|
10 min | flat spreading | flat spreading |
30 min | flat spreading | flat spreading |
1 h | 17 | flat spreading |
2 h | flat spreading | |
3 h | 26 | |
4 h | 25 | |
19 h | 35 | |
24 h | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzec, D.; Hoppenthaler, F.; Nettesheim, S. Piezoelectric Direct Discharge: Devices and Applications. Plasma 2021, 4, 1-41. https://doi.org/10.3390/plasma4010001
Korzec D, Hoppenthaler F, Nettesheim S. Piezoelectric Direct Discharge: Devices and Applications. Plasma. 2021; 4(1):1-41. https://doi.org/10.3390/plasma4010001
Chicago/Turabian StyleKorzec, Dariusz, Florian Hoppenthaler, and Stefan Nettesheim. 2021. "Piezoelectric Direct Discharge: Devices and Applications" Plasma 4, no. 1: 1-41. https://doi.org/10.3390/plasma4010001
APA StyleKorzec, D., Hoppenthaler, F., & Nettesheim, S. (2021). Piezoelectric Direct Discharge: Devices and Applications. Plasma, 4(1), 1-41. https://doi.org/10.3390/plasma4010001