Super Transition Arrays: A Tool for Studying Spectral Properties of Hot Plasmas
Abstract
:1. Introduction
2. Approximations of the Superconfiguration Method (Case of Absorption)
2.1. Photoabsorption Cross-Section
2.2. Use of Electronic Configurations
2.3. Approximation of the Probability of a State
2.4. Probability of an Electronic Configuration in the Superconfiguration Approximation. Calculation of the Self-Consistent Potential of a Superconfiguration
2.5. Transition Arrays between Two Configurations. Statistical Treatment of Lines
2.6. Transition Arrays between Two Superconfigurations. Statistical Treatment of Lines and Configurations
2.7. Partition Functions of the Superconfiguration Approach
- The first improvement consists in applying the recursion relation to holes, when a supershell is more than half-filled with electrons.
- The second improvement consists in precomputing some partition functions and storing the results. It stems from the successive use of generating functions with reduced degeneracies.
3. The Opacity Code SCO
4. Comparisons with Experimental Spectra
4.1. Measurement of the Transmission of an Iron Plasma in the XUV Range
4.2. Transmission of a Multilayer Plasma: Aluminum and Nickel
5. The Beginning of a New Story: The Birth of SCO-RCG Code
6. Recent Improvements of the STA Formalism
6.1. The STA Code by Krief et al.
6.2. The Reseos Code by Ovechkin et al.
6.3. The Configurationally Resolved Approach of Kurzweil and Hazak
6.4. Non-LTE Plasmas
7. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRSTA | Configurationally Resolved Super Transition Array |
DLA | Detailed Line Accounting |
HULLAC | Hebrew University Lawrence Livermore Atomic Code (LAC stands also for “Laboratoire Aimé Cotton”) |
LTE | Local Thermodynamic Equilibrium |
OP | Opacity Project |
OPAL | OPAcity Livermore |
PRTA | Partially Resolved Transition Array |
SCO | Superconfiguration Code for Opacity |
SCO-RCG | Superconfiguration Code for Opacity combined with Robert Cowan’s “G” subroutine |
SOSA | Spin-Orbit Split Array |
STA | Super Transition Array |
STAR | Super Transition Array - Revised |
UTA | Unresolved Transition Array |
WS | Wigner-Seitz |
References
- Cox, A.N. Stars and Stellar Systems, Stellar Structure; Aller, L.H., McLaughlin, D.B., Eds.; The University of Chicago: Chicago, IL, USA, 1965; Volume 8. [Google Scholar]
- Da Silva, L.B.; MacGowan, B.J.; Kania, D.R.; Hammel, B.A.; Back, C.A.; Hsieh, E.; Doyas, R.; Iglesias, C.A.; Rogers, F.J.; Lee, R.W. Absorption Measurements Demonstrating the Importance of Δn = 0 Transitions in the Opacity of Iron. Phys. Rev. Lett. 1992, 69, 438–441. [Google Scholar] [CrossRef]
- Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.; Shvarts, D.; Zigler, A. Super-transition-arrays: A model for the spectral analysis of hot, dense plasmas. Phys. Rev. A 1989, 40, 3183–3193. [Google Scholar] [CrossRef] [PubMed]
- Bauche-Arnoult, C.; Bauche, J.; Klapisch, M. Variance of the distribution of energy levels and of the transition arrays in atomic spectra. Phys. Rev. A 1979, 20, 2424–2439. [Google Scholar] [CrossRef]
- Bauche-Arnoult, C.; Bauche, J.; Klapisch, M. Variance of the distribution of energy levels and of the transition arrays in atomic spectra. II. Configurations with more than two open subshells. Phys. Rev. A 1982, 25, 2641–2646. [Google Scholar] [CrossRef]
- Bauche-Arnoult, C.; Bauche, J.; Klapisch, M. Variance of the distribution of energy levels and of the transition arrays in atomic spectra. III. Case of spin-orbit-split arrays. Phys. Rev. A 1985, 31, 2248–2259. [Google Scholar] [CrossRef] [PubMed]
- Pain, J.-C.; Gilleron, F. Statistical properties of levels and lines in complex spectra: A tribute to Jacques Bauche and Claire Bauche-Arnoult. AIP Conf. Proc. 2017, 1811, 050003. [Google Scholar]
- Cowan, R.D. The Theory of Atomic Structure and Spectra; University of California Press: Berkeley, CA, USA, 1981. [Google Scholar]
- Bauche-Arnoult, C.; Bauche, J.; Klapisch, M. Breakdown of jj coupling in spin-orbit-split atomic transition arrays. J. Phys. B At. Mol. Phys. 1991, 24, 1–11. [Google Scholar] [CrossRef]
- Bar-Shalom, A.; Oreg, J.; Goldstein, W.H. Configuration interaction in LTE spectra of heavy elements. J. Quant. Spectrosc. Radiat. Transf. 1994, 51, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Bar-Shalom, A.; Oreg, J.; Klapisch, M.; Lehecka, T. Effect of configuration interaction on shift widths and intensity redistribution of transition arrays. Phys. Rev. E 1999, 59, 3512–3525. [Google Scholar] [CrossRef]
- Bar-Shalom, A.; Oreg, J.; Klapisch, M. The effect of configuration interaction on relativistic transition arrays. J. Quant. Spectrosc. Radiat. Transf. 2000, 65, 415–428. [Google Scholar] [CrossRef]
- Blenski, T.; Morel, S. Thermal Hartree-Fock theory in opacity calculation. J. Quant. Spectrosc. Radiat. Transf. 1995, 54, 65–72. [Google Scholar] [CrossRef]
- Blenski, T.; Ishikawa, K. Relation between the super-transition-array method in opacity calculations and the Hartree-Fock approximation at nonzero temperature. Phys. Rev. E 1995, 51, 1602–1604. [Google Scholar] [CrossRef] [PubMed]
- Blenski, T.; Grimaldi, A.; Perrot, F. A Hartree-Fock statistical approach to atoms in plasmas-electron and hole countings in evaluation of statistical sums. J. Quant. Spectrosc. Radiat. Transf. 1997, 58, 495–500. [Google Scholar] [CrossRef]
- Pain, J.-C. Koopmans’ theorem in the statistical Hartree-Fock theory. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 145001. [Google Scholar] [CrossRef] [Green Version]
- Lions, P.L. Solutions of Hartree-Fock Equations for Coulomb Systems. Commun. Math. Phys. 1987, 109, 33–97. [Google Scholar] [CrossRef] [Green Version]
- Busquet, M. Pressure ionization in partition function algebra. High Energy Density Phys. 2013, 9, 535–541. [Google Scholar] [CrossRef]
- Oreg, J.; Bar-Shalom, A.; Klapisch, M. Operator technique for calculating superconfiguration-averaged quantities of atoms in plasmas. Phys. Rev. E 1997, 55, 5874–5882. [Google Scholar] [CrossRef]
- Wilson, B.; Chen, M.H. A revised algorithm for the computation of super-transition array spectra of hot dense plasmas. J. Quant. Spectrosc. Radiat. Transf. 1999, 61, 813–823. [Google Scholar] [CrossRef]
- Gilleron, F.; Pain, J.-C. Stable method for the calculation of partition functions in the superconfiguration approach. Phys. Rev. E 2004, 69, 056117. [Google Scholar] [CrossRef]
- Pain, J.-C.; Gilleron, F.; Porcherot, Q. Generating functions for canonical systems of fermions. Phys. Rev. E 2011, 83, 067701. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.G.; Gilleron, F.; Pain, J.-C. Further stable methods for the calculation of partition functions in the superconfiguration approach. Phys. Rev. E 2007, 76, 032103. [Google Scholar] [CrossRef] [PubMed]
- Pain, J.-C.; Gilleron, F.; Wilson, B.G. Optimized recursion relation for the computation of partition functions in the superconfiguration approach. High Energy Density Phys. 2020, 37, 100891. [Google Scholar] [CrossRef]
- Faussurier, G.; Wilson, B.G.; Chen, M.H. Generalization of super-transition-array methods to hot dense plasmas by using optimum independent particle reference systems. Phys. Rev. E 2002, 65, 016403, Erratum in 2002, 65, 049901. [Google Scholar] [CrossRef]
- Pain, J.-C.; Gilleron, F.; Faussurier, G. Jensen-Feynman approach to the statistics of interacting electrons. Phys. Rev. E 2009, 80, 026703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blenski, T.; Grimaldi, A.; Perrot, F. A superconfiguration code based on the local density approximation. J. Quant. Spectroc. Radiat. Transf. 2000, 65, 91–100. [Google Scholar] [CrossRef]
- Blenski, T.; Grimaldi, A.; Perrot, F. Hartree-Fock statistical approach to atoms and photoabsorption in plasmas. Phys. Rev. E 1997, 55, R4889–R4892. [Google Scholar] [CrossRef]
- Perrot, F.; Blenski, T. Electronic structure and statistical mechanics of ionic configurations in hot plasmas. J. Phys. IV Fr. 2000, 10, 473–480. [Google Scholar] [CrossRef]
- Blenski, T.; Ishikawa, K. Pressure ionization in the spherical ion-cell model of dense plasmas and a pressure formula in the relativistic Pauli approximation. Phys. Rev. E 1995, 51, 4869–4881. [Google Scholar] [CrossRef]
- Iyetomi, H.; Ichimaru, S. Free energies of electron-screened ion plasmas in the hypernetted-chain approximation. Phys. Rev. A 1986, 34, 433–439. [Google Scholar] [CrossRef]
- Winhart, G.; Eidmann, K.; Iglesias, C.A.; Bar-Shalom, A.; Minguez, E.; Rickert, A.; Rose, S.J. XUV opacity measurements and comparison with models. J. Quant. Spectrosc. Radiat. Transf. 1995, 54, 437–446. [Google Scholar] [CrossRef]
- Winhart, G.; Eidmann, K.; Iglesias, C.A.; Bar-shalom, A. Measurements of extreme uv opacities of hot dense Al, Fe and Ho. Phys. Rev. E 1996, 53, R1332–R1335. [Google Scholar] [CrossRef] [PubMed]
- Chenais-Popovics, C.; Fajardo, M.; Thais, F.; Gilleron, F.; Gauthier, J.-C.; Eidmann, K.; Fölsner, W.; Blenski, T.; Perrot, F.; Bauche-Arnoult, C.; et al. Absorption measurements of radiatively heated multi-layered Al/Ni foils. J. Quant. Spectrosc. Radiat. Transf. 2001, 71, 249–256. [Google Scholar] [CrossRef]
- Bar-Shalom, A.; Klapisch, M.; Oreg, J. HULLAC, an integrated computer package for atomic processes in plasmas. J. Quant. Spectrosc. Radiat. Transf. 2001, 71, 169–188. [Google Scholar] [CrossRef]
- Renaudin, P.; Blancard, C.; Bruneau, J.; Faussurier, G.; Fuchs, J.-E.; Gary, S. Absorption experiments on X-ray-heated magnesium and germanium constrained samples. J. Quant. Spectrosc. Radiat. Transf. 2006, 99, 511–522. [Google Scholar] [CrossRef]
- Bailey, J.E.; Arnault, P.; Blenski, T.; Dejonghe, G.; Peyrusse, O.; MacFarlane, J.J.; Mancini, R.C.; Cuneo, M.E.; Nielsen, D.S.; Rochau, G.A. Opacity measurements of tamped NaBr samples heated by z-pinch X-rays. J. Quant. Spectroc. Radiat. Transf. 2003, 81, 31–45. [Google Scholar] [CrossRef]
- Merdji, H.; Missalla, T.; Blenski, T.; Perrot, F.; Gauthier, J.-C.; Eidmann, K.; Chenais-Popovics, C. Absorption spectroscopy of a radiatively heated samarium plasma. Phys. Rev. E 1998, 57, 1042–1046. [Google Scholar] [CrossRef]
- Porcherot, Q.; Pain, J.-C.; Gilleron, F.; Blenski, T. A consistent approach for mixed detailed and statistical calculation of opacities in hot plasmas. High Energy Density Phys. 2011, 7, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Pain, J.-C.; Gilleron, F. Accounting for highly excited states in detailed opacity calculations. High Energy Density Phys. 2015, 15, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Pain, J.-C.; Gilleron, F.; Blenski, T. Detailed computation of hot-plasma atomic spectra. Laser Part. Beams 2015, 33, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Pain, J.-C.; Gilleron, F.; Porcherot, Q.; Blenski, T. The hybrid detailed/statistical opacity code SCO-RCG: New developments and applications. AIP Conf. Proc. 2017, 1811, 190010. [Google Scholar]
- Iglesias, C.A.; Sonnad, V. Partially resolved transition array model for atomic spectra. High Energy Density Phys. 2012, 8, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Kurzweil, Y.; Hazak, G. Summation of the spectra of all partially resolved transition arrays in a supertransition array. Phys. Rev. E 2016, 94, 053210. [Google Scholar] [CrossRef] [PubMed]
- Hazak, G.; Kurzweil, Y. A Configurationally Resolved-Super-Transition-Arrays method for calculation of the spectral absorption coefficient in hot plasmas. High Energy Density Phys. 2012, 8, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Kurzweil, Y.; Hazak, G. Inclusion of UTA widths in the Configurationally Resolved Super-Transition-Arrays (CRSTA) method. High Energy Density Phys. 2013, 9, 548–552. [Google Scholar] [CrossRef]
- Xiong, G.; Yang, J.; Zhang, J.; Hu, Z.; Zhao, Y.; Qing, B.; Yang, G.; Wei, M.; Yi, R.; Song, T.; et al. Opacity measurement and theoretical investigation of hot silicon plasma. Astrophys. J. 2016, 816, 36–46. [Google Scholar] [CrossRef]
- Dozières, M.; Thais, F.; Bastiani-Ceccotti, S.; Blenski, T.; Fariaut, J.; Fölsner, W.; Gilleron, F.; Khaghani, D.; Pain, J.-C.; Reverdin, C.; et al. X-ray opacity measurements in mid-Z dense plasmas with a new target design. High Energy Density Phys. 2015, 17, 231–239. [Google Scholar] [CrossRef]
- Bailey, J.E.; Rochau, G.A.; Iglesias, C.A.; Abdallah, J.; MacFarlane, J.J.; Golovkin, I.; Wang, P.; Mancini, R.C.; Lake, P.W.; Moore, T.C.; et al. Iron-Plasma Transmission Measurements at Temperatures Above 150 eV. Phys. Rev. Lett. 2007, 99, 265002. [Google Scholar] [CrossRef]
- Lee, T.-G.; Jarrah, W.; Benredjem, D.; Pain, J.-C.; Busquet, M.; Klapisch, M.; Schmitt, A.J.; Bates, J.W.; Giuliani, J. Super-transition-array calculations for synthetic spectra and opacity of high-density, high-temperature germanium plasmas. High Energy Density Phys. 2020, 35, 100742. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-G.; Busquet, M.; Klapisch, M.; Bates, J.W.; Schmitt, A.J.; Hu, S.X.; Giuliani, J. Radiative and atomic properties of C and CH plasmas in the warm-dense-matter regime. Phys. Rev. E 2018, 98, 043203. [Google Scholar] [CrossRef] [Green Version]
- Krief, M.; Feigel, A. The effect of first order superconfiguration energies on the opacity of hot dense matter. High Energy Density Phys. 2015, 15, 59–66. [Google Scholar] [CrossRef]
- Krief, M.; Feigel, A.; Gazit, D. Solar opacity calculations using the super-transition-array method. Astrophys. J. 2016, 821, 45–59. [Google Scholar] [CrossRef]
- Krief, M.; Feigel, A.; Gazit, D. A New Implementation of the STA Method for the Calculation of Opacities of Local Thermodynamic Equilibrium Plasmas. Atoms 2018, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The Chemical Composition of the Sun. Annu. Rev. Astron. Astrophys. 2009, 47, 481–522. [Google Scholar] [CrossRef] [Green Version]
- Krief, M.; Feigel, A.; Gazit, D. Line broadening and the solar opacity problem. Astrophys. J. 2016, 824, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Krief, M.; Kurzweil, Y.; Feigel, A.; Gazit, D. The effect of ionic correlations on radiative properties in the solar interior and terrestrial experiments. Astrophys. J. 2018, 856, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Starrett, C.E.; Saumon, D. Electronic and ionic structures of warm and hot dense matter. Phys. Rev. E 2013, 87, 013104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starrett, C.E.; Saumon, D. A simple method for determining the ionic structure of warm dense matter. High Energy Density Phys. 2014, 10, 35–42. [Google Scholar] [CrossRef]
- Ovechkin, A.A.; Loboda, P.A.; Novikov, V.G.; Grushin, A.S.; Solomyannaya, A.D. RESEOS-A model of thermodynamic and optical properties of hot and warm dense matter. High Energy Density Phys. 2014, 13, 20–33. [Google Scholar] [CrossRef]
- Ovechkin, A.A.; Loboda, P.A.; Falkov, A.L. Transport and dielectric properties of dense ionized matter from the average-atom RESEOS model. High Energy Density Phys. 2016, 20, 38–54. [Google Scholar] [CrossRef]
- Ovechkin, A.A.; Loboda, P.A.; Falkov, A.L. Plasma opacity calculations using the Starrett and Saumon average-atom model with ion correlations. High Energy Density Phys. 2019, 30, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Bar-Shalom, A.; Oreg, J.; Klapisch, M. Non-LTE superconfiguration collisional radiative model. J. Quant. Spectrosc. Radiat. Transf. 1997, 58, 427–439. [Google Scholar] [CrossRef]
- Bar-Shalom, A.; Oreg, J.; Klapisch, M. Collisional radiative model for heavy atoms in hot non-local-thermodynamical-equilibrium plasmas. Phys. Rev. E 1997, 56, R70–R73. [Google Scholar] [CrossRef]
- Peyrusse, O. A superconfiguration model for broadband spectroscopy of non-LTE plasmas. J. Phys. B At. Mol. Phys. 2000, 33, 4303–4321. [Google Scholar] [CrossRef]
- Bauche, J.; Bauche-Arnoult, C.; Fournier, K.B. Model for computing superconfiguration temperatures in non-local thermodynamic equilibrium hot plasmas. Phys. Rev. E 2004, 69, 026403. [Google Scholar] [CrossRef]
- Bauche, J.; Bauche-Arnoult, C.; Peyrusse, O. Effective temperatures in hot dense plasmas. J. Quant. Spectrosc. Radiat. Transf. 2006, 99, 55–66. [Google Scholar] [CrossRef]
- Busquet, M. Onset of pseudo-thermal equilibrium within configurations and superconfigurations. J. Quant. Spectroc. Radiat. Transf. 2006, 99, 131–141. [Google Scholar] [CrossRef]
- Feynman, R.P.; Metropolis, N.; Teller, E. Equations of State of Elements Based on the Generalized Fermi-Thomas Theory. Phys. Rev. 1949, 75, 1561–1573. [Google Scholar] [CrossRef]
- Pain, J.-C.; Blenski, T. Self-consistent approach for the thermodynamics of ions in dense plasmas in the superconfiguration approximation. J. Quant. Spectroc. Radiat. Transf. 2003, 81, 355–369. [Google Scholar] [CrossRef]
- Pain, J.-C. Sur la physique atomique des ions dans les plasmas en présence de l’écrantage. Ph.D. Thesis, Université Paris Sud XI, Orsay, France, 2002. (In French). [Google Scholar]
- Pain, J.-C.; Dejonghe, G.; Blenski, T. A self-consistent model for the study of electronic properties of hot dense plasmas in the superconfiguration approximation. J. Quant. Spectroc. Radiat. Transf. 2006, 99, 451–468. [Google Scholar] [CrossRef]
- Pain, J.-C.; Dejonghe, G.; Blenski, T. Quantum mechanical model for the study of pressure ionization in the superconfiguration approach. J. Phys. A Math. Gen. 2006, 39, 4659–4666. [Google Scholar] [CrossRef]
- Pain, J.-C. A model of dense-plasma atomic structure for equation-of-state calculations. J. Phys. B At. Mol. Opt. Phys. 2007, 40, 1553–1573. [Google Scholar] [CrossRef] [Green Version]
- Pain, J.-C.; Dejonghe, G.; Blenski, T. Equation of State of Dense Plasma Mixtures: Application to the Sun Center. Contrib. Plasma Phys. 2012, 52, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.G.; Iglesias, C.A.; Chen, M.H. Partially resolved super transition array method. High Energy Density Phys. 2015, 14, 67–73. [Google Scholar] [CrossRef] [Green Version]
Q | Configurations | States |
---|---|---|
1 | 7 | 50 |
4 | 196 | 230,300 |
8 | 2096 | 536,878,650 |
12 | 8652 | 1.21400·10 |
16 | 21,084 | 4.92369·10 |
20 | 35,413 | 4.71292·10 |
24 | 43,738 | 1.21549·10 |
28 | 40,798 | 8.87498·10 |
32 | 28,480 | 1.80535·10 |
36 | 14,242 | 9.37846·10 |
40 | 4622 | 1.02723·10 |
44 | 757 | 15,890,700 |
48 | 28 | 1225 |
49 | 7 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pain, J.-C. Super Transition Arrays: A Tool for Studying Spectral Properties of Hot Plasmas. Plasma 2021, 4, 42-64. https://doi.org/10.3390/plasma4010002
Pain J-C. Super Transition Arrays: A Tool for Studying Spectral Properties of Hot Plasmas. Plasma. 2021; 4(1):42-64. https://doi.org/10.3390/plasma4010002
Chicago/Turabian StylePain, Jean-Christophe. 2021. "Super Transition Arrays: A Tool for Studying Spectral Properties of Hot Plasmas" Plasma 4, no. 1: 42-64. https://doi.org/10.3390/plasma4010002
APA StylePain, J. -C. (2021). Super Transition Arrays: A Tool for Studying Spectral Properties of Hot Plasmas. Plasma, 4(1), 42-64. https://doi.org/10.3390/plasma4010002