Ethylchloroformate Derivatization for GC–MS Analysis of Resveratrol Isomers in Red Wine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Derivatization Process
2.2. GC–MS Characterization of ECF Derivatives
2.3. Method Validation
2.4. Red Wine Analysis
3. Materials and Methods
3.1. Reagents and Standards
3.2. Extraction/Derivatization Procedure
3.3. Gas Chromatography–Mass Spectrometry
3.4. Method Validation
3.5. Red Wine Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Di Minno, G.; Ritieni, A. Red Wine Consumption and Cardiovascular Health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bavaresco, L.; Lucini, L.; Busconi, M.; Flamini, R.; De Rosso, M. Wine Resveratrol: From the Ground Up. Nutrients 2016, 8, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.F.; Ma, L.; Xi, H.F.; Wang, L.J.; Li, S.H. Resveratrol synthesis under natural conditions and after UV-C irradiation in berry skin is associated with berry development stages in ‘Beihong’ (V. vinifera×V. amurensis). Food Chem. 2015, 168, 430–438. [Google Scholar] [CrossRef]
- Sobolev, V.S.; Cole, R.J. Trans-resveratrol content in commercial peanuts and peanut products. J. Agric. Food Chem. 1999, 47, 1435–1439. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M.; Foddai, M.S. Phenolics Profile and Antioxidant Activity of Special Beers. Molecules 2020, 25, 2466. [Google Scholar] [CrossRef]
- Silva, P.; Sureda, A.; Tur, J.A.; Andreoletti, P.; Cherkaoui-Malki, M.; Latruffe, N. How efficient is resveratrol as an antioxidant of the Mediterranean diet, towards alterations during the aging process? Free Radic. Res. 2019, 53, 1101–1112. [Google Scholar] [CrossRef]
- Vervandier-Fasseur, D.; Latruffe, N. The Potential Use of Resveratrol for Cancer Prevention. Molecules 2019, 24, 4506. [Google Scholar] [CrossRef] [Green Version]
- Velmurugan, B.K.; Rathinasamy, B.; Lohanathan, B.P.; Thiyagarajan, V.; Weng, C.F. Neuroprotective Role of Phytochemicals. Molecules 2018, 23, 2485. [Google Scholar] [CrossRef] [Green Version]
- Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int. J. Mol. Sci. 2020, 21, 1250. [Google Scholar] [CrossRef] [Green Version]
- Fiod Riccio, B.V.; Fonseca-Santos, B.; Colerato Ferrari, P.; Chorilli, M. Characteristics, Biological Properties and Analytical Methods of Trans-Resveratrol: A Review. Crit. Rev. Anal. Chem. 2020, 50, 339–358. [Google Scholar] [CrossRef]
- Svilar, L.; Martin, J.; Defoort, C.; Paut, C.; Tourniaire, F.; Brochot, A. Quantification of trans-resveratrol and its metabolites in human plasma using ultra-high performance liquid chromatography tandem quadrupole-orbitrap mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1104, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Li, Q.; Ji, H.; Lou, H. Investigation of the distribution and season regularity of resveratrol in Vitis amurensis via HPLC-DAD-MS/MS. Food Chem. 2014, 142, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Francioso, A.; Laštovičková, L.; Mosca, L.; Boffi, A.; Bonamore, A.; Macone, A. Gas Chromatographic–Mass Spectrometric Method for the Simultaneous Determination of Resveratrol Isomers and 2,4,6-Trihydroxyphenanthrene in Red Wines Exposed to UV-Light. J. Agric. Food Chem. 2019, 67, 11752–11757. [Google Scholar] [CrossRef] [PubMed]
- Fan, E.; Lin, S.; Du, D.; Jia, Y.; Kang, L.; Zhang, K. Currents separative strategies used for resveratrol determination from natural sources. Anal. Methods 2011, 3, 2454–2462. [Google Scholar] [CrossRef]
- Francioso, A.; Boffi, A.; Villani, C.; Manzi, L.; D’Erme, M.; Macone, A.; Mosca, L. Isolation and identification of 2,4,6-trihydroxyphenanthrene as a byproduct of trans-resveratrol photochemical isomerization and electrocyclization. J. Org. Chem. 2014, 79, 9381–9384. [Google Scholar] [CrossRef]
- Husek, P. Chloroformates in gas chromatography as general purpose derivatizing agents. J. Chromatogr. B Biomed. Sci. Appl. 1998, 717, 57–91. [Google Scholar] [CrossRef]
- Reddy, B.S.; Chary, V.N.; Pavankumar, P.; Prabhakar, S. Characterization of N-methylated amino acids by GC-MS after ethyl chloroformate derivatization. J. Mass Spectrom. 2016, 51, 638–650. [Google Scholar] [CrossRef]
- Boffi, A.; Favero, G.; Federico, R.; Macone, A.; Antiochia, R.; Tortolini, C.; Sanzò, G.; Mazzei, F. Amine oxidase-based biosensors for spermine and spermidine determination. Anal. Bioanal. Chem. 2015, 407, 1131–1137. [Google Scholar] [CrossRef]
- Citová, I.; Sladkovský, R.; Solich, P. Analysis of phenolic acids as chloroformate derivatives using solid phase microextraction-gas chromatography. Anal. Chim. Acta 2006, 573, 231–241. [Google Scholar] [CrossRef]
- Vera, L.; Mestres, M.; Boqué, R.; Busto, O.; Guash, J. Use of synthetic wine for models transfer in wine analysis by HS-MS e-nose. Sens. Actuat. B Chem. 2010, 143, 689–695. [Google Scholar] [CrossRef]
- Paulo, L.; Domingues, F.; Queiroz, J.A.; Gallardo, E. Development and validation of an analytical method for the determination of trans- and cis-resveratrol in wine: Analysis of its contents in 186 Portuguese red wines. J. Agric. Food Chem. 2011, 59, 2157–2168. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, G.; Tiwari, R. Bioanalytical method validation: An updated review. Pharm. Methods 2010, 1, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Natella, F.; Macone, A.; Ramberti, A.; Forte, M.; Mattivi, F.; Matarese, R.M.; Scaccini, C. Red wine prevents the postprandial increase in plasma cholesterol oxidation products: A pilot study. Br. J. Nutr. 2011, 105, 1718–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haseeb, S.; Alexander, B.; Baranchuk, A. Wine and cardiovascular health: A comprehensive review. Circulation 2017, 136, 1434–1448. [Google Scholar] [CrossRef] [PubMed]
- Di Majo, D.; La Guardia, M.; Giammanco, S.; La Neve, L.; Giammanco, M. The antioxidant capacity of red wine in relationship with its polyphenolic constituents. Food Chem. 2008, 111, 45–49. [Google Scholar] [CrossRef]
- Orallo, F. Comparative studies of the antioxidant effects of cis- and trans-resveratrol. Curr. Med. Chem. 2006, 13, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Weiskirchen, S.; Weiskirchen, R. Resveratrol: How Much Wine Do You Have to Drink to Stay Healthy? Adv. Nutr. 2016, 7, 706–718. [Google Scholar] [CrossRef] [Green Version]
Compound | Range (ng/mL) | Slope | Intercept | R2 | LOQ (LOD) * (ng/mL) | Concentration (ng/mL) | Accuracy (recovery %) | Precision (RSD %) |
---|---|---|---|---|---|---|---|---|
trans-RSV | 50–3000 | 0.0033 | 0.0907 | 0.9992 | 50 | 200 | 99.02 | 5.46 |
2000 | 99.20 | 3.28 | ||||||
cis-RSV | 25–1000 | 0.0126 | 0.08456 | 0.9991 | 25 | 100 | 103.11 | 4.19 |
1000 | 99.88 | 1.58 |
Wine | Vintage | Italian Region | Varieties | trans-RSV (ng/mL) | cis-RSV (ng/mL) | Total RSV (ng/mL) |
---|---|---|---|---|---|---|
#1 | 2018 | Piemonte | 100% Barbera | 1185.06 | 343.27 | 1528.33 |
#2 | 2019 | Alto Adige | 100% Lagrain | 475.97 | 170.77 | 646.74 |
#3 | 2017 | Alto Adige | 100% Pinot Noir | 1772.94 | 1322.76 | 3095.70 |
#4 | 2017 | Veneto | 70% Corvina, 30% Rondinella | 275.97 | 67.84 | 343.81 |
#5 | 2015 | Friuli Venezia Giulia | 100% Cabernet Franc | 766.88 | 302.48 | 1069.36 |
#6 | 2016 | Toscana | 90% Sangiovese, 10% Merlot | 885.06 | 290.44 | 1175.50 |
#7 | 2016 | Toscana | 100% Sangiovese | 1339.61 | 688.73 | 2028.34 |
#8 | 2018 | Umbria | 70% Sangiovese, 15% Merlot, 15% Sagrantino | 688.09 | 145.98 | 834.07 |
#9 | 2018 | Lazio | 100% Cesanese | 385.06 | 156.88 | 541.94 |
#10 | 2019 | Lazio | 100% Cabernet Sauvignon | 594.15 | 154.67 | 748.82 |
#11 | 2016 | Campania | 100% Aglianico | 254.76 | 81.66 | 336.42 |
#12 | 2016 | Puglia | 100% Primitivo | 891.12 | 243.44 | 1134.56 |
#13 | 2018 | Puglia | 100% Negramaro | 945.67 | 408.77 | 1354.44 |
#14 | 2018 | Sicilia | 60% Merlot, 40% Cabernet Sauvignon | 485.06 | 123.66 | 608.72 |
#15 | 2018 | Sicilia | 100% Syrah | 530.52 | 213.86 | 744.38 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Fabio, E.; Incocciati, A.; Palombarini, F.; Boffi, A.; Bonamore, A.; Macone, A. Ethylchloroformate Derivatization for GC–MS Analysis of Resveratrol Isomers in Red Wine. Molecules 2020, 25, 4603. https://doi.org/10.3390/molecules25204603
Di Fabio E, Incocciati A, Palombarini F, Boffi A, Bonamore A, Macone A. Ethylchloroformate Derivatization for GC–MS Analysis of Resveratrol Isomers in Red Wine. Molecules. 2020; 25(20):4603. https://doi.org/10.3390/molecules25204603
Chicago/Turabian StyleDi Fabio, Elisa, Alessio Incocciati, Federica Palombarini, Alberto Boffi, Alessandra Bonamore, and Alberto Macone. 2020. "Ethylchloroformate Derivatization for GC–MS Analysis of Resveratrol Isomers in Red Wine" Molecules 25, no. 20: 4603. https://doi.org/10.3390/molecules25204603
APA StyleDi Fabio, E., Incocciati, A., Palombarini, F., Boffi, A., Bonamore, A., & Macone, A. (2020). Ethylchloroformate Derivatization for GC–MS Analysis of Resveratrol Isomers in Red Wine. Molecules, 25(20), 4603. https://doi.org/10.3390/molecules25204603