You are currently viewing a new version of our website. To view the old version click .
Molecules
  • Review
  • Open Access

27 August 2020

Effects of the Non-Alcoholic Fraction of Beer on Abdominal Fat, Osteoporosis, and Body Hydration in Women

,
,
,
,
,
and
1
Department of Nutrition, Food Sciences and Gastronomy, XaRTA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
2
INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
3
CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
4
Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), XaRTA, TECNIO, MALTA-Consolider, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (Cerdanyola del Vallès), 08193 Bellaterra, Spain
This article belongs to the Special Issue Polyphenolic Compounds in Wine and Beer

Abstract

Several studies have shown that binge drinking of alcoholic beverages leads to non-desirable outcomes, which have become a serious threat to public health. However, the bioactive compounds in some alcohol-containing beverages might mitigate the negative effects of alcohol. In beer, the variety and concentration of bioactive compounds in the non-alcoholic fraction suggests that its consumption at moderate levels may not only be harmless but could also positively contribute to an improvement of certain physiological states and be also useful in the prevention of different chronic diseases. The present review focuses on the effects of non-alcoholic components of beer on abdominal fat, osteoporosis, and body hydration in women, conditions selected for their relevance to health and aging. Although beer drinking is commonly believed to cause abdominal fat deposition, the available literature indicates this outcome is inconsistent in women. Additionally, the non-alcoholic beer fraction might improve bone health in postmenopausal women, and the effects of beer on body hydration, although still unconfirmed seem promising. Most of the health benefits of beer are due to its bioactive compounds, mainly polyphenols, which are the most studied. As alcohol-free beer also contains these compounds, it may well offer a healthy alternative to beer consumers.

1. Introduction

Beer, an alcoholic drink composed of four main ingredients (water, malt, hops, and yeast) [1], is one of the most consumed beverages in the world [2]. From a nutritional point of view, its main components are water (around 90%), followed by carbohydrates, ethanol, minerals, vitamins, and bioactive compounds such as polyphenols and organic acids (iso-α-humulones). Beer composition, as well as its flavor, taste, and texture, differs considerably according to the ingredients and processing techniques [3]. Besides their health benefits, the bioactive compounds are also linked to the sensory characteristics of beer [4].
In view of the worldwide growth in beer consumption, studies investigating possible links between beer and different health outcomes are of utmost importance. Among others (i.e., liver disease), recently, one of the most important consequences of a high beer consumption is a greater risk of developing different site-specific cancers (e.g., colorectal [5], lung [6,7], prostate [8], and oral cavity, esophagus, and larynx cancer [9]). It is also known that high alcohol intake help to develop a dilated cardiomyopathy and also may trigger certain cardiovascular events [10,11]. Nevertheless, a moderate consumption of beer may also help to prevent these type of events [12,13].
Clinical evidence about beer consumption effects needs to be more specific on sex-related differences and health outcomes. Postmenopausal women due to the estrogen depletion suffer body changes [14] and there is an accumulation of abdominal fat [15], an increasing risk of osteoporosis [16] and a loss of body hydration [14] among other health issues. Interestingly, some studies have pointed out that bioactive compounds of beer may help to mitigate some of these adverse effects.
In a unit of beer the main bioactive compounds with health benefits described in several studies [9,17,18] are depicted in Table 1. Particular attention has been given to the polyphenols found in malt (75%) and hops (25%), due to their antioxidant and anti-inflammatory properties [19,20]. Polyphenols are also critical to the flavor, astringency, bitterness, haze, and body of beer [21,22], and their concentration varies according to the ingredients and processing [23,24]. Regular beer, both ale and lager beers, is richer in polyphenol content compared to alcohol-free beers [25].
Table 1. Mean content of selected bioactive compounds in a standard drink of regular beer.
Among polyphenols, a particular group has attracted special interest for their estrogen-like properties [29]. Hops (Humulus lupulus L.) are a source of prenylflavonoids, a class of phytoestrogens, predominantly xanthohumol (XN), that during the brewing process isomerizes into isoxanthohumol (IX), 6-prenylnaringenine (6-PN), and 8-prenylnaringenine (8-PN) [30]. These compounds can mimic and modulate the action of estrogenic hormones by epigenetic mechanisms, via binding with cell surface receptors or by interacting with estrogen receptors (ERs). In particular, 8-PN has been described as the most estrogenic phytoestrogen, surpassing those typically found in soya products [31].
The aim of the present review is to summarize the available literature on the health outcomes of beer consumption in women, focusing on three specific health-related conditions: increased abdominal fat, osteoporosis, and overall body hydration. In particular, findings related to the beer bioactive compounds are discussed.

3. Implications and Future Research

Most of the health benefits of beer are thought to be originated by its non-alcoholic components, mainly polyphenols. Although found in small quantities in the final product, the flavonoid XN (whose only source is hops) is of particular interest. Intestinal metabolites of related flavonoids, notably 8-PN, could also have an important role in human health. Other components, such as silicon or bitter acids, may help to explain other health effects of beer consumption, such as improvement in bone density. Nevertheless, the beneficial properties of beer components outlined in this review have not been extensively studied because of the adverse effects of ethanol. Human interventional trials are required to elucidate the real association between beer intake and health benefits in women, but the consumption of ethanol is an important obstacle for their development. We, therefore, suggest a directional change towards the non-alcoholic fraction of beer and its effect on the female population as an interesting target for future studies. With some authors already using this strategy, a greater focus on alcohol-free beer will lead to the emergence of more human trials and new evidence in this field. Finally, new long-term randomized trials on the effects of moderate alcoholic and non-alcoholic beer consumption (and other alcoholic beverages) on health and diseases, including cardiovascular disease, obesity, diabetes, cancer, cognitive decline, osteoporosis, and others in women (and also in women) are needed to better define the protective role (or not) of beer consumption, independent of other lifestyle factors, on the aforementioned conditions.

4. Conclusions

Although the results of studies on abdominal fat deposition in female beer consumers are inconsistent, moderate consumption appears not to have a significant effect on adiposity. Moderate beer intake has also been associated with improved bone health in elderly women in observational studies. Moreover, the non-alcoholic fraction of beer is of potential interest as a counteracting agent for bone mass loss after menopause.
In the elderly, beer intake does not seem to pose a risk for hydration. When ingested before exercise, beer with lower alcohol content has a better rehydration effect, and the consumption of alcohol-free beer may even have a positive impact on electrolyte homeostasis. However, the effects of beer on hydration in women still need to be investigated.

Author Contributions

Conceptualization, A.T.-R, R.E., and R.M.L.-R.; Acquisition and interpretation of data, M.T.-S., A.V.-F., G.S., and C.E.S.; writing—original draft preparation, M.T.-S. and A.V.-F.; writing—review and editing, A.T.-R, G.S., C.E.S, R.E., and R.M.L.-R. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the European Foundation for Alcohol Research (ERAB) (EA 1514, EA 1515, and EA 1517), the CICYT (AGL2016-79113-R), the Instituto de Salud Carlos III (ISCIII) (CIBEROBN) from the Ministerio de Economía, Industria y Competitividad (MEIC) (AEI/FEDER, UE) and Generalitat de Catalunya (GC) (2017 SGR196). Marta Trius-Soler is thankful for the APIF 2018-2019 fellowship from the University of Barcelona.

Conflicts of Interest

Anna Tresserra-Rimbau and Rosa M. Lamuela-Raventós have received funding from The European Foundation for Alcohol Research (ERAB). Rosa M. Lamuela-Raventós has received lecture fees and travel support from Cerveceros de España. Ramon Estruch is a Board Membership of Cerveza y Salud, Madrid (Spain) and of Fundación Dieta Mediterránea, Barcelona (Spain), and has received lecture fees and travel support from Brewers of Europe, Brussels (Belgium) and Organización Interprofesional del Aceite de Oliva, Madrid (Spain).

References

  1. Buiatti, S. Beer Composition: An Overview. In Beer in Health and Disease Prevention; Elsevier: London, UK, 2009; pp. 213–225. ISBN 9780123738912. [Google Scholar]
  2. Colen, L.; Swinnen, J. Economic growth, globalisation and beer consumption. J. Agric. Econ. 2016, 67, 186–207. [Google Scholar] [CrossRef]
  3. Handbook of Brewing, 2nd ed.; Stewart, G.G., Priest, F.G., Eds.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 9780429116179. [Google Scholar]
  4. Tucker, K.L.; Jugdaohsingh, R.; Powell, J.J.; Qiao, N.; Hannan, M.T.; Sripanyakorn, S.; Cupples, L.A.; Kiel, D.P. Effects of beer, wine, and liquor intakes on bone mineral density in older men and women. Am. J. Clin. Nutr. 2009, 89, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
  5. Zhang, C.; Zhong, M. Consumption of beer and colorectal cancer incidence: A meta-analysis of observational studies. Cancer Causes Control 2015, 26, 549–560. [Google Scholar] [CrossRef] [PubMed]
  6. Benedetti, A.; Parent, M.E.; Siemiatycki, J. Consumption of alcoholic beverages and risk of lung cancer: Results from two case-control studies in Montreal, Canada. Cancer Causes Control 2006, 17, 469–480. [Google Scholar] [CrossRef]
  7. Chao, C. Associations between beer, wine, and liquor consumption and lung cancer risk: A meta-analysis. Cancer Epidemiol. Biomark. Prev. 2007, 16, 2436–2447. [Google Scholar] [CrossRef]
  8. Demoury, C.; Karakiewicz, P.; Parent, M.-E. Association between lifetime alcohol consumption and prostate cancer risk: A case-control study in Montreal, Canada. Cancer Epidemiol. 2016, 45, 11–17. [Google Scholar] [CrossRef]
  9. de Gaetano, G.; Costanzo, S.; Di Castelnuovo, A.; Badimon, L.; Bejko, D.; Alkerwi, A.; Chiva-Blanch, G.; Estruch, R.; La Vecchia, C.; Panico, S.; et al. Effects of moderate beer consumption on health and disease: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 443–467. [Google Scholar] [CrossRef]
  10. Reynolds, K.; Lewis, L.B.; Nolen, J.D.L.; Kinney, G.L.; Sathya, B.; He, J. Alcohol consumption and risk of stroke: A meta-analysis. J. Am. Med. Assoc. 2003, 289, 579–588. [Google Scholar] [CrossRef]
  11. Mukamal, K.J. Alcohol, beer, and ischemic stroke. In Beer in Health and Disease Prevention; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 623–634. ISBN 9780123738912. [Google Scholar]
  12. Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Wine, beer or spirit drinking in relation to fatal and non-fatal cardiovascular events: A meta-analysis. Eur. J. Epidemiol. 2011, 26, 833–850. [Google Scholar] [CrossRef]
  13. Di Castelnuovo, A.; Rotondo, S.; Iacoviello, L.; Donati, M.B.; De Gaetano, G. Meta-analysis of wine and beer consumption in relation to vascular risk. Circulation 2002, 105, 2836–2844. [Google Scholar] [CrossRef]
  14. Stachenfeld, N.S. Hormonal changes during menopause and the impact on fluid regulation. Reprod. Sci. 2014, 21, 555–561. [Google Scholar] [CrossRef] [PubMed]
  15. Ko, S.H.; Kim, H.S. Menopause-associated lipid metabolic disorders and foods beneficial for postmenopausal women. Nutrients 2020, 12, 202. [Google Scholar] [CrossRef] [PubMed]
  16. Bainbridge, K.; Sowers, M.; Lin, X.; Harlow, S. Risk factors for low bone mineral density and the 6-year rate of bone loss among premenopausal and perimenopausal women. Osteoporos. Int. 2004, 15, 439–446. [Google Scholar] [CrossRef][Green Version]
  17. Sripanyakorn, S.; Jugdaohsingh, R.; Mander, A.; Davidson, S.L.; Thompson, R.P.H.; Powell, J.J. Moderate ingestion of alcohol is associated with acute ethanol-induced suppression of circulating CTX in a PTH-independent fashion. J. Bone Miner. Res. 2009, 24, 1380–1388. [Google Scholar] [CrossRef] [PubMed]
  18. Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef]
  19. Proestos, C.; Komaitis, M. Antioxidant Capacity of Hops; Elsevier Inc.: Amsterdam, The Netherlands, 2008; ISBN 9780123738912. [Google Scholar]
  20. Feick, P.; Gerloff, A.; Singer, M.V. The effect of beer and its non-alcoholic constituents on the exocrine and endocrine pancreas as well as on gastrointestinal hormones. In Beer in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2009; pp. 587–601. ISBN 9780123738912. [Google Scholar]
  21. Callemien, D.; Collin, S. Structure, organoleptic properties, quantification methods, and stability of phenolic compounds in beer—A review. Food Rev. Int. 2010, 26, 1–84. [Google Scholar] [CrossRef]
  22. Intelmann, D.; Haseleu, G.; Dunkel, A.; Lagemann, A.; Stephan, A.; Hofmann, T. Comprehensive sensomics analysis of hop-derived bitter compounds during storage of beer. J. Agric. Food Chem. 2011, 59, 1939–1953. [Google Scholar] [CrossRef]
  23. Rivero, D.; Pérez-Magariño, S.; González-Sanjosé, M.L.; Valls-Belles, V.; Codoñer, P.; Muñiz, P. Inhibition of induced DNA oxidative damage by beers: Correlation with the content of polyphenols and melanoidins. J. Agric. Food Chem. 2005, 53, 3637–3642. [Google Scholar] [CrossRef]
  24. Venturelli, S.; Burkard, M.; Biendl, M.; Lauer, U.M.; Frank, J.; Busch, C. Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition 2016, 32, 1171–1178. [Google Scholar] [CrossRef]
  25. Boronat, A.; Soldevila-Domenech, N.; Rodríguez-Morató, J.; Martínez-Huélamo, M.; Lamuela-Raventós, R.M.; de la Torre, R. Beer phenolic composition of simple phenols, prenylated flavonoids and alkylresorcinols. Molecules 2020, 25, 2582. [Google Scholar] [CrossRef]
  26. Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remon, A.; M’Hiri, N.; Garcia-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef] [PubMed]
  27. Česlová, L.; Holčapek, M.; Fidler, M.; Drštičková, J.; Lísa, M. Characterization of prenylflavonoids and hop bitter acids in various classes of Czech beers and hop extracts using high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A 2009, 1216, 7249–7257. [Google Scholar] [CrossRef] [PubMed]
  28. Jugdaohsingh, R. Silicon and bone health. J. Nutr. Health Aging 2007, 11, 99–110. [Google Scholar] [PubMed]
  29. Štulíková, K.; Karabín, M.; Nešpor, J.; Dostálek, P. Therapeutic perspectives of 8-prenylnaringenin, a potent phytoestrogen from hops. Molecules 2018, 23, 660. [Google Scholar] [CrossRef]
  30. Quifer-Rada, P.; Vallverdú-Queralt, A.; Martínez-Huélamo, M.; Chiva-Blanch, G.; Jáuregui, O.; Estruch, R.; Lamuela-Raventós, R. A comprehensive characterisation of beer polyphenols by high resolution mass spectrometry (LC–ESI-LTQ-Orbitrap-MS). Food Chem. 2015, 169, 336–343. [Google Scholar] [CrossRef] [PubMed]
  31. Omoruyi, I.M.; Pohjanvirta, R. Estrogenic activities of food supplements and beers as assessed by a yeast bioreporter assay. J. Diet. Suppl. 2018, 15, 665–672. [Google Scholar] [CrossRef] [PubMed][Green Version]
  32. Wannamethee, S.G. Beer and Adiposity; Elsevier Inc.: Amsterdam, The Netherlands, 2009; ISBN 9780123738912. [Google Scholar]
  33. Zugravu, C.-A.; Pătrașcu, D.; Otelea, M. Central obesity and beer consumption. Ann. Univ. Dunarea Jos Galati Fascicle VI Food Technol. 2019, 43, 110–124. [Google Scholar] [CrossRef]
  34. Ferreira, M.G.; Valente, J.G.; Gonçalves-Silva, R.M.V.; Sichieri, R. Alcohol consumption and abdominal fat in blood donors. Rev. Saude Publica 2008, 42, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
  35. Dorn, J.M.; Hovey, K.; Muti, P.; Freudenheim, J.L.; Russell, M.; Nochajski, T.H.; Trevisan, M. Alcohol drinking patterns differentially affect central adiposity as measured by abdominal height in women and men. J. Nutr. 2003, 133, 2655–2662. [Google Scholar] [CrossRef]
  36. Schütze, M.; Schulz, M.; Steffen, A.; Bergmann, M.M.; Kroke, A.; Lissner, L.; Boeing, H. Beer consumption and the “beer belly”: Scientific basis or common belief? Eur. J. Clin. Nutr. 2009, 63, 1143–1149. [Google Scholar] [CrossRef]
  37. Dallongeville, J.; Marécaux, N.; Ducimetière, P.; Ferrières, J.; Arveiler, D.; Bingham, A.; Ruidavets, J.; Simon, C.; Amouyel, P. Influence of alcohol consumption and various beverages on waist girth and waist-to-hip ratio in a sample of French men and women. Int. J. Obes. 1998, 22, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
  38. Wong, M.C.S.; Huang, J.; Wang, J.; Chan, P.S.F.; Lok, V.; Chen, X.; Leung, C.; Wang, H.H.X.; Lao, X.Q.; Zheng, Z.-J. Global, regional and time-trend prevalence of central obesity: A systematic review and meta-analysis of 13.2 million subjects. Eur. J. Epidemiol. 2020. [Google Scholar] [CrossRef] [PubMed]
  39. Marchand, G.B.; Carreau, A.-M.; Weisnagel, S.J.; Bergeron, J.; Labrie, F.; Lemieux, S.; Tchernof, A. Increased body fat mass explains the positive association between circulating estradiol and insulin resistance in postmenopausal women. Am. J. Physiol. Metab. 2018, 314, E448–E456. [Google Scholar] [CrossRef] [PubMed]
  40. Bendsen, N.T.; Christensen, R.; Bartels, E.M.; Kok, F.J.; Sierksma, A.; Raben, A.; Astrup, A. Is beer consumption related to measures of abdominal and general obesity? A systematic review and meta-analysis. Nutr. Rev. 2013, 71, 67–87. [Google Scholar] [CrossRef]
  41. Bergmann, M.M.; Schütze, M.; Steffen, A.; Boeing, H.; Halkjaer, J.; Tjonneland, A.; Travier, N.; Agudo, A.; Slimani, N.; Rinaldi, S.; et al. The association of lifetime alcohol use with measures of abdominal and general adiposity in a large-scale European cohort. Eur. J. Clin. Nutr. 2011, 65, 1079–1087. [Google Scholar] [CrossRef]
  42. Freiberg, M.S.; Cabral, H.J.; Heeren, T.C.; Vasan, R.S.; Curtis Ellison, R. Alcohol consumption and the prevalence of the metabolic syndrome in the U.S.: A cross-sectional analysis of data from the Third National Health and Nutrition Examination Survey. Diabetes Care 2004, 27, 2954–2959. [Google Scholar] [CrossRef]
  43. Lapidus, L.; Bengtsson, C.; Hällström, T.; Björntorp, P. Obesity, adipose tissue distribution and health in women-Results from a population study in Gothenburg, Sweden. Appetite 1989, 13, 25–35. [Google Scholar] [CrossRef]
  44. Slattery, M.L.; McDonald, A.; Bild, D.E.; Caan, B.J.; Hilner, J.E.; Jacobs, D.R.; Liu, K. Associations of body fat and its distribution with dietary intake, physical activity, alcohol, and smoking in blacks and whites. Am. J. Clin. Nutr. 1992, 55, 943–949. [Google Scholar] [CrossRef]
  45. Kahn, H.S.; Tatham, L.M.; Heath, C.W. Contrasting factors associated with abdominal and peripheral weight gain among adult women. Int. J. Obes. 1997, 21, 903–911. [Google Scholar] [CrossRef]
  46. Rosmond, R.; Björntorp, P. Psychosocial and socio-economic factors in women and their relationship to obesity and regional body fat distribution. Int. J. Obes. 1999, 23, 138–145. [Google Scholar] [CrossRef]
  47. Machado, P.A.N.; Sichieri, R. Relação cintura-quadril e fatores de dieta em adultos. Rev. Saude Publica 2002, 36, 198–204. [Google Scholar] [CrossRef] [PubMed][Green Version]
  48. Vadstrup, E.; Petersen, L.; Sørensen, T.; Grønbaek, M. Waist circumference in relation to history of amount and type of alcohol: Results from the Copenhagen City Heart Study. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 238–246. [Google Scholar] [CrossRef] [PubMed]
  49. Bobak, M.; Skodova, Z.; Marmot, M. Beer and obesity: A cross-sectional study. Eur. J. Clin. Nutr. 2003, 57, 1250–1253. [Google Scholar] [CrossRef][Green Version]
  50. Halkjær, J.; Sørensen, T.I.; Tjønneland, A.; Togo, P.; Holst, C.; Heitmann, B.L. Food and drinking patterns as predictors of 6-year BMI-adjusted changes in waist circumference. Br. J. Nutr. 2004, 92, 735–748. [Google Scholar] [CrossRef] [PubMed]
  51. Halkjær, J.; Tjønneland, A.; Thomsen, B.L.; Overvad, K.; Sørensen, T.I.A. Intake of macronutrients as predictors of 5-y changes in waist circumference. Am. J. Clin. Nutr. 2006, 84, 789–797. [Google Scholar] [CrossRef]
  52. Deschamps, V.; Alamowitch, C.; Borys, J. Boissons alcooliques, poids et paramètres d’adiposité chez 520 adultes issus de l’étude Fleurbaix Laventie Ville Santé. Cah. Nutr. Diététique 2004, 39, 262–268. [Google Scholar] [CrossRef]
  53. Lukasiewicz, E.; Mennen, L.I.; Bertrais, S.; Arnault, N.; Preziosi, P.; Galan, P.; Hercberg, S. Alcohol intake in relation to body mass index and waist-to-hip ratio: The importance of type of alcoholic beverage. Public Health Nutr. 2005, 8, 315–320. [Google Scholar] [CrossRef]
  54. Krachler, B.; Eliasson, M.; Stenlund, H.; Johansson, I.; Hallmans, G.; Lindahl, B. Reported food intake and distribution of body fat: A repeated cross-sectional study. Nutr. J. 2006, 5, 1–11. [Google Scholar] [CrossRef]
  55. Tolstrup, J.S.; Halkjær, J.; Heitmann, B.L.; Tjønneland, A.M.; Overvad, K.; Sørensen, T.I.A.; Grønbæk, M.N. Alcohol drinking frequency in relation to subsequent changes in waist circumference. Am. J. Clin. Nutr. 2008, 87, 957–963. [Google Scholar] [CrossRef]
  56. Molina-Hidalgo, C.; De-Lao, A.; Jurado-Fasoli, L.; Amaro-Gahete, F.J.; Castillo, M.J. Beer or ethanol effects on the body composition response to high-intensity interval training. The BEER-HIIT study. Nutrients 2019, 11, 909. [Google Scholar] [CrossRef]
  57. Yamazaki, T.; Morimoto-Kobayashi, Y.; Koizumi, K.; Takahashi, C.; Nakajima, S.; Kitao, S.; Taniguchi, Y.; Katayama, M.; Ogawa, Y. Secretion of a gastrointestinal hormone, cholecystokinin, by hop-derived bitter components activates sympathetic nerves in brown adipose tissue. J. Nutr. Biochem. 2019, 64, 80–87. [Google Scholar] [CrossRef] [PubMed]
  58. Morimoto-Kobayashi, Y.; Ohara, K.; Ashigai, H.; Kanaya, T.; Koizumi, K.; Manabe, F.; Kaneko, Y.; Taniguchi, Y.; Katayama, M.; Kowatari, Y.; et al. Matured hop extract reduces body fat in healthy overweight humans: A randomized, double-blind, placebo-controlled parallel group study. Nutr. J. 2015, 15, 25. [Google Scholar] [CrossRef] [PubMed]
  59. Ayabe, T.; Ohya, R.; Kondo, K.; Ano, Y. Iso-α-acids, bitter components of beer, prevent obesity-induced cognitive decline. Sci. Rep. 2018, 8, 4760. [Google Scholar] [CrossRef] [PubMed]
  60. Miura, Y.; Hosono, M.; Oyamada, C.; Odai, H.; Oikawa, S.; Kondo, K. Dietary isohumulones, the bitter components of beer, raise plasma HDL-cholesterol levels and reduce liver cholesterol and triacylglycerol contents similar to PPARα activations in C57BL/6 mice. Br. J. Nutr. 2005, 93, 559–567. [Google Scholar] [CrossRef]
  61. Dostálek, P.; Karabín, M.; Jelínek, L. Hop phytochemicals and their potential role in metabolic syndrome prevention and therapy. Molecules 2017, 22, 1761. [Google Scholar] [CrossRef]
  62. Obara, K.; Mizutani, M.; Hitomi, Y.; Yajima, H.; Kondo, K. Isohumulones, the bitter component of beer, improve hyperglycemia and decrease body fat in Japanese subjects with prediabetes. Clin. Nutr. 2009, 28, 278–284. [Google Scholar] [CrossRef]
  63. Vanhoenacker, G.; De Keukeleire, D.; Sandra, P. Analysis of iso-α-acids and reduced iso-α-acids in beer by direct injection and liquid chromatography with ultraviolet absorbance detection or with mass spectrometry. J. Chromatogr. A 2004, 1035, 53–61. [Google Scholar] [CrossRef]
  64. Morimoto-Kobayashi, Y.; Ohara, K.; Takahashi, C.; Kitao, S.; Wang, G.; Taniguchi, Y.; Katayama, M.; Nagai, K. Matured hop bittering components induce thermogenesis in brown adipose tissue via sympathetic nerve activity. PLoS ONE 2015, 10, e131042. [Google Scholar] [CrossRef]
  65. Intelmann, D.; Batram, C.; Kuhn, C.; Haseleu, G.; Meyerhof, W.; Hofmann, T. Three TAS2R bitter taste receptors mediate the psychophysical responses to bitter compounds of hops (Humulus lupulus L.) and beer. Chemosens. Percept. 2009, 2, 118–132. [Google Scholar] [CrossRef]
  66. Kok, B.P.; Galmozzi, A.; Littlejohn, N.K.; Albert, V.; Godio, C.; Kim, W.; Kim, S.M.; Bland, J.S.; Grayson, N.; Fang, M.; et al. Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits. Mol. Metab. 2018, 16, 76–87. [Google Scholar] [CrossRef]
  67. Kidd, M.; Modlin, I.M.; Gustafsson, B.I.; Drozdov, I.; Hauso, O.; Pfragner, R. Luminal regulation of normal and neoplastic human EC cell serotonin release is mediated by bile salts, amines, tastants, and olfactants. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, 260–272. [Google Scholar] [CrossRef] [PubMed]
  68. Wu, S.V.; Rozengurt, N.; Yang, M.; Young, S.H.; Sinnett-Smith, J.; Rozengurt, E. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc. Natl. Acad. Sci. USA 2002, 99, 2392–2397. [Google Scholar] [CrossRef] [PubMed]
  69. Kiyofuji, A.; Yui, K.; Takahashi, K.; Osada, K. Effects of xanthohumol-rich hop extract on the differentiation of preadipocytes. J. Oleo Sci. 2014, 63, 593–597. [Google Scholar] [CrossRef] [PubMed]
  70. Miranda, C.L.; Elias, V.D.; Hay, J.J.; Choi, J.; Reed, R.L.; Stevens, J.F. Xanthohumol improves dysfunctional glucose and lipid metabolism in diet-induced obese C57BL/6J mice. Arch. Biochem. Biophys. 2016, 599, 22–30. [Google Scholar] [CrossRef] [PubMed]
  71. Zhang, Y.; Bobe, G.; Revel, J.S.; Rodrigues, R.R.; Sharpton, T.J.; Fantacone, M.L.; Raslan, K.; Miranda, C.L.; Lowry, M.B.; Blakemore, P.R.; et al. Improvements in metabolic syndrome by xanthohumol derivatives are linked to altered gut microbiota and bile acid metabolism. Mol. Nutr. Food Res. 2020, 64, 1900789. [Google Scholar] [CrossRef] [PubMed]
  72. Yamashita, M.; Fukizawa, S.; Nonaka, Y. Hop-derived prenylflavonoid isoxanthohumol suppresses insulin resistance by changing the intestinal microbiota and suppressing chronic inflammation in high fat diet-fed mice. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1537–1547. [Google Scholar] [CrossRef] [PubMed]
  73. Pietschmann, P.; Rauner, M.; Sipos, W.; Kerschan-Schindl, K. Osteoporosis: An age-related and gender-specific disease—A mini-review. Gerontology 2009, 55, 3–12. [Google Scholar] [CrossRef]
  74. Biino, G.; Casula, L.; De Terlizzi, F.; Adamo, M.; Vaccargiu, S.; Francavilla, M.; Loi, D.; Casti, A.; Atzori, M.; Pirastu, M. Epidemiology of osteoporosis in an isolated sardinian population by using quantitative ultrasound. Am. J. Epidemiol. 2011, 174, 432–439. [Google Scholar] [CrossRef]
  75. Price, C.T.; Koval, K.J.; Langford, J.R. Silicon: A review of its potential role in the prevention and treatment of postmenopausal osteoporosis. Int. J. Endocrinol. 2013, 2013, 316783. [Google Scholar] [CrossRef]
  76. Fairweather-Tait, S.J.; Skinner, J.; Guile, G.R.; Cassidy, A.; Spector, T.D.; MacGregor, A.J. Diet and bone mineral density study in postmenopausal women from the twinsUK registry shows a negative association with a traditional english dietary pattern and a positive association with wine. Am. J. Clin. Nutr. 2011, 94, 1371–1375. [Google Scholar] [CrossRef]
  77. Marrone, J.A.; Maddalozzo, G.F.; Branscum, A.J.; Hardin, K.; Cialdella-Kam, L.; Philbrick, K.A.; Breggia, A.C.; Rosen, C.J.; Turner, R.T.; Iwaniec, U.T. Moderate alcohol intake lowers biochemical markers of bone turnover in postmenopausal women. Menopause 2012, 19, 974–979. [Google Scholar] [CrossRef] [PubMed]
  78. Liel, Y.; Shany, S.; Smirnoff, P.; Schwartz, B. Estrogen increases 1,25-dihydroxyvitamin D receptors expression bioresponse in the rat duodenal mucosa. Endocrinology 1999, 140, 280–285. [Google Scholar] [CrossRef] [PubMed]
  79. Tucker, K.L. Osteoporosis prevention and nutrition. Curr. Osteoporos. Rep. 2009, 7, 111. [Google Scholar] [CrossRef]
  80. Sommer, I.; Erkkilä, A.T.; Järvinen, R.; Mursu, J.; Sirola, J.; Jurvelin, J.S.; Kröger, H.; Tuppurainen, M. Alcohol consumption and bone mineral density in elderly women. Public Health Nutr. 2013, 16, 704–712. [Google Scholar] [CrossRef] [PubMed]
  81. McLernon, D.J.; Powell, J.J.; Jugdaohsingh, R.; Macdonald, H.M. Do lifestyle choices explain the effect of alcohol on bone mineral density in women around menopause? Am. J. Clin. Nutr. 2012, 95, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
  82. Yin, J.; Winzenberg, T.; Quinn, S.; Giles, G.; Jones, G. Beverage-specific alcohol intake and bone loss in older men and women: A longitudinal study. Eur. J. Clin. Nutr. 2011, 65, 526–532. [Google Scholar] [CrossRef]
  83. Mukamal, K.J.; Robbins, J.A.; Cauley, J.A.; Kern, L.M.; Siscovick, D.S. Alcohol consumption, bone density, and hip fracture among older adults: The cardiovascular health study. Osteoporos. Int. 2007, 18, 593–602. [Google Scholar] [CrossRef]
  84. Pedrera-Zamorano, J.D.; Lavado-Garcia, J.M.; Roncero-Martin, R.; Calderon-Garcia, J.F.; Rodriguez-Dominguez, T.; Canal-Macias, M.L. Effect of beer drinking on ultrasound bone mass in women. Nutrition 2009, 25, 1057–1063. [Google Scholar] [CrossRef]
  85. Kubo, J.T.; Stefanick, M.L.; Robbins, J.; Wactawski-Wende, J.; Cullen, M.R.; Freiberg, M.; Desai, M. Preference for wine is associated with lower hip fracture incidence in post-menopausal women. BMC Womens Health 2013, 13, 36. [Google Scholar] [CrossRef]
  86. Berg, K.M.; Kunins, H.V.; Jackson, J.L.; Nahvi, S.; Chaudhry, A.; Harris, K.A.; Malik, R.; Arnsten, J.H. Association between alcohol consumption and both osteoporotic fracture and bone density. Am. J. Med. 2008, 121, 406–418. [Google Scholar] [CrossRef]
  87. Hansen, S.A.; Folsom, A.R.; Kushi, L.H.; Sellers, T.A. Association of fractures with caffeine and alcohol in postmenopausal women: The Iowa Women’s Health Study. Public Health Nutr. 2000, 3, 253–261. [Google Scholar] [CrossRef] [PubMed]
  88. Hardcastle, A.C.; Aucott, L.; Reid, D.M.; MacDonald, H.M. Associations between dietary flavonoid intakes and bone health in a scottish population. J. Bone Miner. Res. 2011, 26, 941–947. [Google Scholar] [CrossRef] [PubMed]
  89. Welch, A.; MacGregor, A.; Jennings, A.; Fairweather-Tait, S.; Spector, T.; Cassidy, A. Habitual flavonoid intakes are positively associated with bone mineral density in women. J. Bone Miner. Res. 2012, 27, 1872–1878. [Google Scholar] [CrossRef] [PubMed]
  90. Effenberger, K.E.; Johnsen, S.A.; Monroe, D.G.; Spelsberg, T.C.; Westendorf, J.J. Regulation of osteoblastic phenotype and gene expression by hop-derived phytoestrogens. J. Steroid Biochem. Mol. Biol. 2005, 96, 387–399. [Google Scholar] [CrossRef]
  91. Xia, T.S.; Lin, L.Y.; Zhang, Q.Y.; Jiang, Y.P.; Li, C.H.; Liu, X.Y.; Qin, L.P.; Xin, H.L. Humulus lupulus, L. extract prevents ovariectomy-induced osteoporosis in mice and regulates activities of osteoblasts and osteoclasts. Chin. J. Integr. Med. 2019, 1–8. [Google Scholar] [CrossRef]
  92. Tobe, H.; Muraki, Y.; Kitamura, K.; Komiyama, O.; Sato, Y.; Sugioka, T.; Maruyama, H.B.; Matsuda, E.; Nagai, M. Bone resorption inhibitors from hop extract. Biosci. Biotechnol. Biochem. 1997, 61, 158–159. [Google Scholar] [CrossRef]
  93. Lambert, M.N.T.; Hu, L.M.; Jeppesen, P.B. A systematic review and meta-analysis of the effects of isoflavone formulations against estrogen-deficient bone resorption in peri- and postmenopausal women. Am. J. Clin. Nutr. 2017, 106, ajcn151464. [Google Scholar] [CrossRef]
  94. Prouillet, C.; Mazière, J.-C.; Mazière, C.; Wattel, A.; Brazier, M.; Kamel, S. Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem. Pharmacol. 2004, 67, 1307–1313. [Google Scholar] [CrossRef]
  95. Jeong, H.M.; Han, E.H.; Jin, Y.H.; Choi, Y.H.; Lee, K.Y.; Jeong, H.G. Xanthohumol from the hop plant stimulates osteoblast differentiation by RUNX2 activation. Biochem. Biophys. Res. Commun. 2011, 409, 82–89. [Google Scholar] [CrossRef]
  96. Luo, D.; Kang, L.; Ma, Y.; Chen, H.; Kuang, H.; Huang, Q.; He, M.; Peng, W. Effects and mechanisms of 8-prenylnaringenin on osteoblast MC3T3-E1 and osteoclast-like cells RAW264.7. Food Sci. Nutr. 2014, 2, 341–350. [Google Scholar] [CrossRef]
  97. Dong, M.; Jiao, G.; Liu, H.; Wu, W.; Li, S.; Wang, Q.; Xu, D.; Li, X.; Liu, H.; Chen, Y. Biological silicon stimulates collagen type 1 and osteocalcin synthesis in human osteoblast-like cells through the BMP-2/Smad/RUNX2 signaling pathway. Biol. Trace Elem. Res. 2016, 173, 306–315. [Google Scholar] [CrossRef] [PubMed]
  98. Boguszewska-Czubara, A.; Pasternak, K. Silicon in medicine and therapy. J. Elem. 2011, 16, 489–497. [Google Scholar] [CrossRef]
  99. Suh, K.S.; Rhee, S.Y.; Kim, Y.S.; Lee, Y.S.; Choi, E.M. Xanthohumol modulates the expression of osteoclast-specific genes during osteoclastogenesis in RAW264.7 cells. Food Chem. Toxicol. 2013, 62, 99–106. [Google Scholar] [CrossRef] [PubMed]
  100. Chen, Y.-M.; Ho, S.C.; Lam, S.S.H.; Ho, S.S.S.; Woo, J.L.F. Soy isoflavones have a favorable effect on bone loss in chinese postmenopausal women with lower bone mass: A double-blind, randomized, controlled trial. J. Clin. Endocrinol. Metab. 2003, 88, 4740–4747. [Google Scholar] [CrossRef] [PubMed]
  101. Giersch, G.E.W.; Charkoudian, N.; Stearns, R.L.; Casa, D.J. Fluid balance and hydration considerations for women: Review and ruture directions. Sport. Med. 2020, 50, 253–261. [Google Scholar] [CrossRef]
  102. Stachenfeld, N.S.; DiPietro, L.; Palter, S.F.; Nadel, E.R. Estrogen influences osmotic secretion of AVP and body water balance in postmenopausal women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 274, 187–195. [Google Scholar] [CrossRef]
  103. Stachenfeld, N.S.; Splenser, A.E.; Calzone, W.L.; Taylor, M.P.; Keefe, D.L. Selected contribution: Sex differences in osmotic regulation of AVP and renal sodium handling. J. Appl. Physiol. 2001, 91, 1893–1901. [Google Scholar] [CrossRef]
  104. González-SanJosé, M.L.; Rodríguez, P.M.; Valls-Bellés, V. Beer and its role in human health. In Fermented Foods in Health and Disease Prevention; Elsevie: Amsterdam, The Netherlands, 2017; pp. 365–384. ISBN 9780128023099. [Google Scholar]
  105. Jiménez-Pavón, D.; Cervantes-Borunda, M.S.; Díaz, L.E.; Marcos, A.; Castillo, M.J. Effects of a moderate intake of beer on markers of hydration after exercise in the heat: A crossover study. J. Int. Soc. Sports Nutr. 2015, 12, 26. [Google Scholar] [CrossRef]
  106. Orrù, S.; Imperlini, E.; Nigro, E.; Alfieri, A.; Cevenini, A.; Polito, R.; Daniele, A.; Buono, P.; Mancini, A. Role of functional beverages on sport performance and recovery. Nutrients 2018, 10, 1470. [Google Scholar] [CrossRef]
  107. Hobson, R.M.; Maughan, R.J. Hydration status and the diuretic action of a small dose of alcohol. Alcohol Alcohol. 2010, 45, 366–373. [Google Scholar] [CrossRef]
  108. Polhuis, K.C.M.M.; Wijnen, A.H.C.; Sierksma, A.; Calame, W.; Tieland, M. The diuretic action of weak and strong alcoholic beverages in elderly men: A randomized diet-controlled crossover trial. Nutrients 2017, 9, 660. [Google Scholar] [CrossRef] [PubMed]
  109. Shirreffs, S.M.; Maughan, R.J. The effect of alcohol on athletic performance. Curr. Sports Med. Rep. 2006, 5, 192–196. [Google Scholar] [CrossRef] [PubMed]
  110. Barnes, M.J.; Mündel, T.; Stannard, S.R. A low dose of alcohol does not impact skeletal muscle performance after exercise-induced muscle damage. Eur. J. Appl. Physiol. 2011, 111, 725–729. [Google Scholar] [CrossRef] [PubMed]
  111. Shirreffs, S.M.; Maughan, R.J. Restoration of fluid balance after exercise-induced dehydration: Effects of alcohol consumption. J. Appl. Physiol. 1997, 83, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
  112. Flores-Salamanca, R.; Aragón-Vargas, L.F. Postexercise rehydration with beer impairs fluid retention, reaction time, and balance. Appl. Physiol. Nutr. Metab. 2014, 39, 1175–1181. [Google Scholar] [CrossRef]
  113. Castro-Sepulveda, M.; Johannsen, N.; Astudillo, S.; Jorquera, C.; Álvarez, C.; Zbinden-Foncea, H.; Ramírez-Campillo, R. Effects of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis in athletes. Nutrients 2016, 8, 345. [Google Scholar] [CrossRef]
  114. Wijnen, A.H.C.; Steennis, J.; Catoire, M.; Wardenaar, F.C.; Mensink, M. Post-exercise rehydration: Effect of consumption of beer with varying alcohol content on fluid balance after mild dehydration. Front. Nutr. 2016, 3, 45. [Google Scholar] [CrossRef]
  115. Desbrow, B.; Murray, D.; Leveritt, M. Beer as a sports drink? Manipulating beer’s ingredients to replace lost fluid. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 593–600. [Google Scholar] [CrossRef]
  116. Desbrow, B.; Cecchin, D.; Jones, A.; Grant, G.; Irwin, C.; Leveritt, M. Manipulations to the alcohol and sodium content of beer for postexercise rehydration. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 262–270. [Google Scholar] [CrossRef]

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.