The Relationship between Surface Roughness, Capillarity and Mineral Composition in Roofing Slates
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cárdenes, V.; Cnudde, J.P.; Wichert, J.; Large, D.; López-Munguira, A.; Cnudde, V. Roofing slate standards: A critical review. Constr. Build. Mater. 2016, 115, 93–104. [Google Scholar] [CrossRef]
- Cárdenes, V.; Rubio-Ordoñez, A.; Ruiz de Argandoña, V.G. Definition of Roofing Slate Lithotypes for an International Roofing Slate Classification. Key Mater. Eng. 2020, 848, 48–57. [Google Scholar]
- Wagner, H.W.; Jung, D.; Wagner, J.F.; Wagner, M.P. Slatecalculation—A practical tool for deriving norm minerals in the lowest-grade metamorphic pelites and roof slates. Minerals 2020, 10, 395. [Google Scholar] [CrossRef]
- Cárdenes, V.; Rubio-Ordóñez, Á.; Wichert, J.; Cnudde, J.P.; Cnudde, V. Petrography of roofing slates. Earth-Sci. Rev. 2014, 138, 435–453. [Google Scholar] [CrossRef]
- Garabito, J.; Rodriguez, A.; Garabito, J.C.; Calderon, V. Durability of slate and zinc sheets in the rehabilitation of historical heritage. A case study. Constr. Build. Mater. 2017, 135, 212–224. [Google Scholar] [CrossRef]
- Perini, K.; Castellari, P.; Giachetta, A.; Turcato, C.; Roccotiello, E. Experiencing innovative biomaterials for buildings: Potentialities of mosses. Build. Environ. 2020, 172, 8. [Google Scholar] [CrossRef]
- Sanmartín, P.; Silva, B.; Prieto, B. Effect of surface finish on roughness, color and gloss of ornamental granites. J. Mater. Civ. Eng. 2010, 23, 1239–1249. [Google Scholar] [CrossRef]
- Cárdenes, V.; Rubio-Ordóñez, A.; López-Munguira, A.; De la Horra, R.; Monterroso, C.; Paradelo, R.; Calleja, L. Mineralogy and modulus of rupture of roofing slate: Applications in the prospection and quarrying of slate deposits. Eng. Geol. 2010, 114, 191–197. [Google Scholar] [CrossRef]
- Grissom, C.A.; Charola, A.E.; Wachowiak, M.J. Measuring surface roughness on stone: Back to basics. Stud. Conserv. 2000, 45, 73–84. [Google Scholar] [CrossRef]
- Alonso, F.J.; Vázquez, P.; Esbert, R.; Ordaz, J. Influence of measuring conditions on roughness parameters of ornamental rocks. In Proceedings of the International Workshop in Preservation of Natural Stone and Rock Weathering, Madrid, Spain, 14 July 2007. [Google Scholar]
- Gadelmawla, E.S.; Koura, M.M.; Maksoud, T.M.A.; Elewa, I.M.; Soliman, H.H. Roughness parameters. J. Mater. Process. Technol. 2002, 123, 133–145. [Google Scholar] [CrossRef]
- Butt, H.-J. Capillary Forces: Influence of Roughness and Heterogeneity. Langmuir 2008, 24, 4715–4721. [Google Scholar] [CrossRef] [PubMed]
- Butt, H.J.; Kappl, M. Normal capillary forces. Adv. Colloid Interface Sci. 2009, 146, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Fasana, S.; Nelva, R. Improvement of the performance of traditional stone roofs by wind driven rain experimental tests. Constr. Build. Mater. 2011, 25, 1491–1502. [Google Scholar] [CrossRef]
- Jenkins, J.C. The Slate Roof Bible, 3rd ed.; Traditionalroofs.com: Grove City, PA, USA, 2016. [Google Scholar]
- Menéndez-Seigas, J.L. Architecture and Techniques of Slate Roofing; Asociación Galega de Pizarristas: Sobradelo de Valdeorras, Spain, 2007. [Google Scholar]
- British Standards Institution (BSI). Code of Practice for Slating and Tiling (Including Shingles); BS 5534:2014; BSI: London, UK, 2014; p. 141. [Google Scholar]
- AEN/CTN_22. UNE 22190:2014. Productos de Piedra Natural. Construcción de Cubiertas Inclinadas y Revestimiento de Paramentos Verticales con Pizarra; AENOR: Brussels, Belgium, 2014; p. 44. [Google Scholar]
- López-Mesones, F. Diseño y Construcción de Cubiertas de Pizarra; Cluster da Pizarra de Galicia: Sobradelo de Valdeorras, Spain, 2012. [Google Scholar]
- Guimaraes, A.S.; Delgado, J.; de Freitas, V.P.; Albuquerque, A.P. The Effect of Salt Solutions and Absorption Cycles in the Capillary and Drying Coefficient of Red Brick Samples with Different Joints. Adv. Mater. Sci. Eng. 2016, 2016. [Google Scholar] [CrossRef]
- Cann, J.H. Physical weathering of slate gravestones in a Mediterranean climate. Aust. J. Earth Sci. 2012, 59, 1021–1032. [Google Scholar] [CrossRef]
- CEN/TC_128. EN 12326. Slate and Stone Products for Discontinuous Roofing and Cladding—Parts 1 (Product Specification) and 2 (Methods of Test); BSI Corporate: London, UK, 2014. [Google Scholar]
- ISO_25178-2. ISO 25178-2: Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters; BSI Corporate: London, UK, 2012. [Google Scholar]
- CEN/TC_246. EN 12370—Natural Stone Test Methods—Determination of Resistance to Salt Crystallization; BSI Corporate: London, UK, 2020. [Google Scholar]
- Derluyn, H.; Dewanckele, J.; Boone, M.N.; Cnudde, V.; Derome, D.; Carmeliet, J. Crystallization of hydrated and anhydrous salts in porous limestone resolved by synchrotron X-ray microtomography. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 2014, 324, 102–112. [Google Scholar] [CrossRef]
- Ward, C.; Gómez-Fernandez, F. Quantitative mineralogical analysis of spanish roofing slates using the Rietveld method and X-ray powder diffraction data. Eur. J. Mineral. 2003, 15, 1051–1062. [Google Scholar] [CrossRef]
CODE | IRSC | Market | Location | Surface Texture | ||||
---|---|---|---|---|---|---|---|---|
Smooth | Grained | Flaked | Lineation | Features | ||||
BRA | B0 | Low | Minas Gerais, Brazil | X | X | |||
WAM | B0 | Low | Gauteng, South Africa | X | ||||
BUR | B0 | Low | Lake District, UK | X | X | |||
01 | B1 | High | Valdeorras, Spain | XX | ||||
02 | B1 | High | Valdeorras, Spain | X | X | |||
03 | B1 | High | Valdeorras, Spain | X | XX | |||
04 | B1 | High | Valdeorras, Spain | X | ||||
05 | B1 | No market | Valdeorras, Spain | X | XXX | |||
06 | B1 | Low | Valdeorras, Spain | X | XX | Pyrite | ||
PIV | B1 | High | Valdeorras, Spain | X | X | |||
PEN | R1 | Medium | Penrhyn, UK | X | ||||
NYR | R1 | Low | New York, USA | X | ||||
RIM | G1 | No market | Rimogne, France | X | X | Magnetite | ||
OSO | G2 | Medium | Lugo, Spain | X | ||||
SPT | ST | Low | Valmalenco, Italy | X | X | XXX | ||
ALT | ST | Low | Alta, Norway | X |
CODE | Mineralogy (%) | RUG Sa (µm) | Capillary Ascension (cm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q | Chl | Mica | Fs | Cte | Acc | Wt // | Wt Ͱ | Na2SO4 // | Na2SO4 Ͱ | NaCl // | NaCl Ͱ | ||
BRA | 65.5 | 9.1 | 6.2 | 19.2 | 0.0 | 0.0 | 110.7 | 4.8(6.1) | 5.2(5.6) | 4.5(6.4) | 4.5(6.0) | 4.6(5.2) | 4.7(--) |
WAM | 49.5 | 4.1 | 30.6 | 5.7 | 9.7 | 0.4 | 136.0 | 4.8(7.0) | 5.2(6.0) | 3.8(6.0) | 5.5(7.5) | 3.8(--) | 4.7(--) |
BUR | 64.1 | 18.2 | 17.6 | 0.0 | 0.0 | 0.0 | 114.5 | 5.2(5.8) | 5.2(5.3) | 3.6(--) | 3.6(4.4) | 4.5(5.9) | 4.3(--) |
01 | 47.7 | 11.0 | 22.5 | 17.9 | 0.0 | 0.9 | 173.3 | 4.8(5.8) | 5.1(--) | 4.8(5.8) | 4.7(5.7) | 4.4(--) | 4.2(5.5) |
02 | 33.5 | 13.4 | 39.7 | 13.4 | 0.0 | 0.0 | 51.7 | 4.0(8.0) | 3.9(8.3) | 3.3(4.5) | 4.5(8.0) | 3.2(5.8) | 3.8(8.5) |
03 | 31.3 | 21.4 | 17.6 | 29.2 | 0.0 | 0.5 | 100.1 | 4.9(5.0) | 5.2(--) | 3.4(--) | 4.9(--) | 3.8(5.0) | 3.8(5.5) |
04 | 45.7 | 15.0 | 20.4 | 18.3 | 0.0 | 0.5 | 82.5 | 3.9(4.5) | 4.5(4.6) | 2.9(--) | 4.2(--) | 3.5(--) | 4.2(--) |
05 | 34.9 | 26.1 | 17.0 | 21.3 | 0.0 | 0.7 | 292.6 | 3.8(6.8) | 4.1(4.6) | 3.3(4.3) | 5.0(7.0) | 5.5(6.5) | 4.5(6.5) |
06 | 32.2 | 21.5 | 18.0 | 27.9 | 0.0 | 0.4 | 63. 0 | 3.3(4.5) | 4.4(6.0) | 3.0(4.4) | 3.8(--) | 3.6(--) | 3.8(5.4) |
PIV | 41.6 | 9.9 | 15.8 | 31.6 | 0.0 | 1.1 | 94.8 | 3.3(5.5) | 4.9(--) | 2.8(--) | 3.6(--) | 3.5(4.5) | 4.2(--) |
PEN | 47.5 | 14.9 | 11.0 | 19.3 | 0.0 | 7.3 | 126.0 | 4.2(5.0) | 5.2(6.2) | 3.0(3.0) | 5.5(5.9) | 5.0(6.0) | 4.5(6.5) |
NYR | 37.3 | 1.6 | 9.8 | 12.9 | 30.9 | 7.6 | 95.6 | 4.5(5.0) | 4.9(5.8) | 3.4(3.6) | 4.2(4.5) | 4.0(5.7) | 3.8(4.4) |
RIM | 35.3 | 6.6 | 30.4 | 27.7 | 0.0 | 0.0 | 127.7 | 4.8(7.0) | 5.0(6.0) | 4.8(5.8) | 5.5(7.5) | 4.5(8.0) | 5.0(9.3) |
OSO | 35.5 | 10.0 | 39.0 | 15.6 | 0.0 | 0.0 | 117.3 | 4.6(5.0) | 5.3(6.9) | 3.5(4.5) | 4.5(6.0) | 4.2(5.1) | 4.1(--) |
ALT | 58.9 | 0.0 | 21.6 | 19.5 | 0.0 | 0.0 | 401.1 | 5.7(--) | 6.2(--) | 5.0(5.0) | 7.0(9.0) | 4.2(5.5) | 9.8(14.8) |
Ant | Chy | Srp | Liz | ||||||||||
SPT | 26.4 | 37.5 | 22.9 | 13.2 | 202.1 | 5.4(6.5) | 5.9(6.9) | 4.9(6.5) | 5.5(8.0) | 6.2(9.5) | 5.5(6.3) |
Correlation Matrix | Sa | Wt // | Wt Ͱ | Na2SO4 // | Na2SO4 Ͱ | NaCl // | NaCl Ͱ | Q | Chl | Mica | Fs | Cte | Acc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sa | 1 | 0.479 | 0.487 | 0.743 (**) | 0.539 (*) | 0.766 (**) | 0.493 | 0.297 | −0.189 | −0.064 | 0.007 | −0.131 | −0.129 |
16 | 16 | 16 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | |
Wt // | 1 | 0.795 (**) | 0.597 (*) | 0.787 (**) | 0.603 (*) | 0.403 | 0.543 (*) | -0.468 | 0.077 | −0.429 | 0.069 | −0.126 | |
16 | 16 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | ||
WtͰ | 1 | 0.564 (*) | 0.635 (**) | 0.707 (**) | 0.384 | 0.561 (*) | −0.571 (*) | −0.145 | −0.099 | 0.012 | 0.033 | ||
16 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | |||
Na2SO4 // | 1 | 0.613 (*) | 0.765 (**) | 0.375 | 0.156 | −0.409 | 0.164 | 0.045 | −0.088 | 0.006 | |||
16 | 16 | 16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | ||||
Na2SO4Ͱ | 1 | 0.612 (*) | 0.460 | 0.433 | −0.522 (*) | 0.111 | −0.076 | −0.085 | −0.302 | ||||
16 | 16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | |||||
NaCl // | 1 | 0.161 | 0.478 | −0.552 (*) | 0.019 | −0.002 | −0.132 | −0.162 | |||||
16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | ||||||
NaClͰ | 1 | 0.262 | 0.205 | −0.349 | −0.078 | −0.115 | 0.210 | ||||||
16 | 15 | 15 | 15 | 15 | 15 | 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardenes, V.; García, A.; Rodríguez, E.; Hernández Battez, A.; López-Piñeiro, S.; Ruiz de Argandoña, V.G.; Rubio-Ordoñez, Á. The Relationship between Surface Roughness, Capillarity and Mineral Composition in Roofing Slates. Minerals 2020, 10, 539. https://doi.org/10.3390/min10060539
Cardenes V, García A, Rodríguez E, Hernández Battez A, López-Piñeiro S, Ruiz de Argandoña VG, Rubio-Ordoñez Á. The Relationship between Surface Roughness, Capillarity and Mineral Composition in Roofing Slates. Minerals. 2020; 10(6):539. https://doi.org/10.3390/min10060539
Chicago/Turabian StyleCardenes, Víctor, Alberto García, Eduardo Rodríguez, Antolín Hernández Battez, Santiago López-Piñeiro, Vicente G. Ruiz de Argandoña, and Álvaro Rubio-Ordoñez. 2020. "The Relationship between Surface Roughness, Capillarity and Mineral Composition in Roofing Slates" Minerals 10, no. 6: 539. https://doi.org/10.3390/min10060539
APA StyleCardenes, V., García, A., Rodríguez, E., Hernández Battez, A., López-Piñeiro, S., Ruiz de Argandoña, V. G., & Rubio-Ordoñez, Á. (2020). The Relationship between Surface Roughness, Capillarity and Mineral Composition in Roofing Slates. Minerals, 10(6), 539. https://doi.org/10.3390/min10060539