Previous Issue
Volume 1, December
 
 

Bioresour. Bioprod., Volume 2, Issue 1 (March 2026) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 4198 KB  
Article
Assessing Sugarcane Bagasse Biomethanation After a Pretreatment with Proteus Mirabilis KC94
by Kgodiso J. Rabapane, Charles Rashama and Tonderayi S. Matambo
Bioresour. Bioprod. 2026, 2(1), 1; https://doi.org/10.3390/bioresourbioprod2010001 (registering DOI) - 27 Dec 2025
Abstract
Sugarcane bagasse (SCB) is a lignocellulosic byproduct with low biodegradability, limiting its potential for biological processes such as biogas production. The objective of this study was to evaluate whether a short-term biological pretreatment with the cellulolytic bacterium Proteus mirabilis KC94 could enhance SCB [...] Read more.
Sugarcane bagasse (SCB) is a lignocellulosic byproduct with low biodegradability, limiting its potential for biological processes such as biogas production. The objective of this study was to evaluate whether a short-term biological pretreatment with the cellulolytic bacterium Proteus mirabilis KC94 could enhance SCB hydrolysis, improve nutrient balance, and increase biomethane potential (BMP). Three treatments were compared: untreated bagasse (UB), sterilized bagasse (SB), and KC94-pretreated bagasse (PB). Glucose release was highest in PB (61.83 ± 0.8 mg/mL), indicating enhanced cellulose degradation in PB relative to UB (53.19 ± 0.9 mg/mL) and SB (44.00 ± 0.5 mg/mL). Elemental analysis revealed a more balanced nutrient profile in PB, characterized by optimal carbon and nitrogen levels, and reduced sulfur content, indicating microbial assimilation and potential biological desulfurization. Scanning electron microscopy revealed pronounced structural disruption, increased porosity, and fiber delamination in PB, confirming the efficacy of KC94-mediated lignocellulosic pretreatment. BMP assays conducted over a 31-day incubation period revealed that PB produced the highest cumulative methane yield (99 ± 0.7 mL CH4/g VS), representing 19% and 25% increases over UB and SB, respectively. PB biomethanation was also faster compared to the other two substrates. These findings demonstrate the novelty of a 5-day bacterial pretreatment strategy, which significantly improves lignocellulosic hydrolysis and methane yield. Specifically, P. mirabilis KC94 pretreatment increased glucose release by 16–40% and cumulative methane yield by 19–25% compared to untreated and sterilized controls. This cost-effective and environmentally friendly approach highlights the potential of P. mirabilis KC94 to valorize sugarcane bagasse, advancing sustainable energy recovery and circular bioeconomy practices. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop