Previous Issue
Volume 1, December
 
 

Bioresour. Bioprod., Volume 2, Issue 1 (March 2026) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
36 pages, 3844 KB  
Review
Bioinspired Improvement of Lignocellulosic Bio-Based Materials Against Fire and Fungi—A Comprehensive Review
by Jovale Vincent Tongco and Armando G. McDonald
Bioresour. Bioprod. 2026, 2(1), 3; https://doi.org/10.3390/bioresourbioprod2010003 - 16 Jan 2026
Viewed by 504
Abstract
Lignocellulosic bio-based materials, such as wood, biocomposites, and natural fibers, exhibit desirable structural properties. This comprehensive review emphasizes the foundational and latest advancements in bioinspired improvement strategies, such as direct mineralization, biomineralization, lignocellulosic nanomaterials, protein-based treatments, and metal-chelating processes. Significant focus was placed [...] Read more.
Lignocellulosic bio-based materials, such as wood, biocomposites, and natural fibers, exhibit desirable structural properties. This comprehensive review emphasizes the foundational and latest advancements in bioinspired improvement strategies, such as direct mineralization, biomineralization, lignocellulosic nanomaterials, protein-based treatments, and metal-chelating processes. Significant focus was placed on biomimetics, emulating natural protective mechanisms, with discussions on relevant topics including hierarchical mineral deposition, free-radical formation and quenching, and selective metal ion binding, and relating them to lignocellulosic bio-based material property improvements, particularly against fire and fungi. This review evaluates the effectiveness of different bioinspired processes: mineralized and biomineralized composites improve thermal stability, nanocellulose and lignin nanoparticles provide physical, thermal, and chemical barriers, proteins offer biochemical inhibition and mineral templating, and chelators interfere with fungal oxidative pathways while simultaneously improving fire retardancy through selective binding with metal ions. Synergistic approaches integrating various mechanisms could potentially lead to long-lasting and multifunctional protection. This review also highlights the research gaps, challenges, and potential for future applications. Full article
Show Figures

Figure 1

20 pages, 1204 KB  
Systematic Review
A Circular Bioeconomy Framework for Biodegradable Waste: Strategies and Opportunities
by Salomeh Chegini, Abdul Razak Mohamed Sikkander, Mehran Masoudi, Homeira Ekhtari, Elham Mojaver and Hirad Jafari
Bioresour. Bioprod. 2026, 2(1), 2; https://doi.org/10.3390/bioresourbioprod2010002 - 9 Jan 2026
Viewed by 503
Abstract
Biodegradable waste is commonly treated as a problem to be managed, but it can be a valuable resource when considered within a circular bioeconomy perspective. This article develops a practical and systems-based frame work for integrating biodegradable waste, ranging from municipal food scraps [...] Read more.
Biodegradable waste is commonly treated as a problem to be managed, but it can be a valuable resource when considered within a circular bioeconomy perspective. This article develops a practical and systems-based frame work for integrating biodegradable waste, ranging from municipal food scraps to wastewater biosolids, into valuable resources. It explores real-world strategies for transforming waste into value-added products, including composting, anaerobic digestion, biochemical conversion, and the creation of bio-based materials. The review also highlights key drivers and barriers, including technical, regulatory, and social factors, which shape the feasibility and impact of circular solutions. A visual model illustrates the full cycle, from identifying waste streams to reintegrating recovered resources. The paper also highlights case studies from Toronto, Milan and Brazil as examples of successful implementation. Overall, this paper emphasizes a pragmatic yet regenerative shift toward organic resource recovery aligned with sustainability and decarbonization goals. Full article
Show Figures

Figure 1

17 pages, 4199 KB  
Article
Assessing Sugarcane Bagasse Biomethanation After a Pretreatment with Proteus mirabilis KC94
by Kgodiso J. Rabapane, Charles Rashama and Tonderayi S. Matambo
Bioresour. Bioprod. 2026, 2(1), 1; https://doi.org/10.3390/bioresourbioprod2010001 - 27 Dec 2025
Viewed by 354
Abstract
Sugarcane bagasse (SCB) is a lignocellulosic byproduct with low biodegradability, limiting its potential for biological processes such as biogas production. The objective of this study was to evaluate whether a short-term biological pretreatment with the cellulolytic bacterium Proteus mirabilis KC94 could enhance SCB [...] Read more.
Sugarcane bagasse (SCB) is a lignocellulosic byproduct with low biodegradability, limiting its potential for biological processes such as biogas production. The objective of this study was to evaluate whether a short-term biological pretreatment with the cellulolytic bacterium Proteus mirabilis KC94 could enhance SCB hydrolysis, improve nutrient balance, and increase biomethane potential (BMP). Three treatments were compared: untreated bagasse (UB), sterilized bagasse (SB), and KC94-pretreated bagasse (PB). Glucose release was highest in PB (61.83 ± 0.8 mg/mL), indicating enhanced cellulose degradation in PB relative to UB (53.19 ± 0.9 mg/mL) and SB (44.00 ± 0.5 mg/mL). Elemental analysis revealed a more balanced nutrient profile in PB, characterized by optimal carbon and nitrogen levels, and reduced sulfur content, indicating microbial assimilation and potential biological desulfurization. Scanning electron microscopy revealed pronounced structural disruption, increased porosity, and fiber delamination in PB, confirming the efficacy of KC94-mediated lignocellulosic pretreatment. BMP assays conducted over a 31-day incubation period revealed that PB produced the highest cumulative methane yield (99 ± 0.7 mL CH4/g VS), representing 19% and 25% increases over UB and SB, respectively. PB biomethanation was also faster compared to the other two substrates. These findings demonstrate the novelty of a 5-day bacterial pretreatment strategy, which significantly improves lignocellulosic hydrolysis and methane yield. Specifically, P. mirabilis KC94 pretreatment increased glucose release by 16–40% and cumulative methane yield by 19–25% compared to untreated and sterilized controls. This cost-effective and environmentally friendly approach highlights the potential of P. mirabilis KC94 to valorize sugarcane bagasse, advancing sustainable energy recovery and circular bioeconomy practices. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop