Evaluation of an Integrated Low-Cost Pyranometer System for Application in Household Installations †
Abstract
1. Introduction
- increased accuracy;
- open-source software infrastructure;
- integrated system;
- low energy consumption;
- outdoor durability.
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Results
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janjai, S.; Laksanaboonsong, J.; Nunez, M.; Thongsathitya, A. Development of a Method for Generating Operational Solar Radiation Maps from Satellite Data for a Tropical Environment. Solar Energy 2005, 78, 739–751. [Google Scholar] [CrossRef]
- Ubertini, S.; Desideri, U. Performance Estimation and Experimental Measurements of a Photovoltaic Roof. Renewable Energy 2003, 28, 1833–1850. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alahmadi, A.N.M.; Aljohani, A.J. Design of Silicon Nanowire Array for PEDOT:PSS-Silicon Nanowire-Based Hybrid Solar Cell. Energies 2020, 13, 3797. [Google Scholar] [CrossRef]
- Kipp & Zonen. Pyranometers. Available online: http://www.kippzonen.com/ProductGroup/3/Pyranometers (accessed on 1 August 2024).
- Forstinger, A.; Wilbert, S.; Driesse, A.; Kraas, B. Uncertainty Calculation Method for Photodiode Pyranometers. Solar RRL 2021, 6, 2100468. [Google Scholar] [CrossRef]
- Reda, I. Method to Calculate Uncertainty Estimate of Measuring Shortwave Solar Irradiance Using Thermopile and Semiconductor Solar Radiometers; Technical Report No. NREL/TP-5000-50069; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2011. [Google Scholar]
- Krstić, D.; Zigar, D.; Hederić, Z.; Trifunović, N.; Barukčić, M. Calculation of the Earth’s Magnetic Field Distortion Caused by the Ferromagnetic Parts in Bed and Its Effects on Health. In Proceedings of the 7th International Symposium on Applied Electromagnetics SAEM 18, Niš, Serbia, 27–29 August 2018; pp. 165–172. [Google Scholar] [CrossRef]
- Wood, J.D.; Griffis, T.J.; Baker, J.M. Detecting Drift Bias and Exposure Errors in Solar and Photosynthetically Active Radiation Data. Agric. For. Meteorol. 2015, 206, 33–44. [Google Scholar] [CrossRef]
- Sanchez, G.; Serrano, A.; Cancillo, M.L.; Garcia, J.A. Pyranometer Thermal Offset: Measurement and Analysis. J. Atmos. Ocean. Technol. 2015, 32, 234–246. [Google Scholar] [CrossRef]
- Oliveira, M.; Silva Lopes, H.; Mendonça, P.; Tenpierik, M.; Silva, L.T. Solar Radiation Measurement Tools and Their Impact on in Situ Testing—A Portuguese Case Study. Buildings 2024, 14, 2117. [Google Scholar] [CrossRef]
- Hafid, A.A.; Meddah, K.; Attari, M.; Remram, Y. A Thermopile Based Pyranometer for Large Spectrum Sunlight Measurement. In Proceedings of the International Conference on Embedded Systems in Telecommunications and Instrumentation (ICESTI’14), Annaba, Algeria, 27 October 2014. [Google Scholar]
- Taha, M.; Omar, M.; Khan, S.; Usman, M.; Larkin, S.; Imran, M. A Low-Cost IoT-Enabled Pyranometer; Based on the Peltier Element. Int. J. Eng. Trends Technol. 2023, 71, 334–340. [Google Scholar] [CrossRef]
- Lim, M.T.M.; Tan, R.H.G.; Tan, G.A.; Hew, C.H.; Lee, W.K.; Mercha, M. Development of Low Cost Pyranometer IoT Based Solar Irradiance Measurement Station. Earth Environ. Sci. 2023, 1281, 012012. [Google Scholar] [CrossRef]
- Vignola, F.; Peterson, J.; Kessler, R.; Dooraghi, M.; Sengupta, M.; Mavromatakis, F. Evaluation of photodiode-based pyranometers and reference solar cells on a two-axis tracking system. In Proceedings of the IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 2376–2381. [Google Scholar]
- Parthasarathy, S.; Anandkumar, N.V. Development of Low Cost Data Acquisition System for Photo Voltaic Systems. Int. J. Innov. Res. Sci. Eng. Technol. 2016, 5, 12850–12856. [Google Scholar]
- Ogundimu, E.; Akinlabi, E.; Mgbemene, C.; Jacobs, I. Design and Implementation of a Low-Cost Irradiance—Temperature Data Logging Meter for Solar PV Applications. Am. J. Mech. Ind. Eng. 2021, 6, 50. [Google Scholar] [CrossRef]
- Onwuala, W.I.; Okonkwo, A.P. Design, Construction and Evaluation of a Pyranometer for Radiation Measurement. Sci. Forum J. Pure Appl. 2002, 5, 234–240. [Google Scholar]
- Tohsing, K.; Phaisathit, D.; Pattarapanitchai, S.; Masiri, I.; Buntoung, S.; Aumporn, O.; Wattan, R. A development of a low-cost pyranometer for measuring broadband solar radiation. J. Phys. 2019, 1380, 12045. [Google Scholar] [CrossRef]
- Cappelli, I.; Parri, L.; Tani, M.; Vignoli, V.; Fort, A. Pervasive Monitoring in the Context of Precision Agriculture: Using Low-Cost LDR Sensors for Solar Intensity Measurement. In Proceedings of the 2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 20–23 May 2024; pp. 1–6. [Google Scholar]
- de Barros, R.C.; Callegari, J.M.S.; do Carmo Mendonça, D.; Amorim, W.C.S.; Silva, M.P.; Pereira, H.A. Low-cost solar irradiance meter using LDR sensors. In Proceedings of the 13th IEEE International Conference on Industry Applications (INDUSCON), Sao Paulo, Brazil, 12–14 November 2018; pp. 72–79. [Google Scholar]
- Habibullah, A.D.; Lidiawati, L.; Ekawita, R. A Simple and Inexpensive Irradiance Monitoring System Using Photovoltaic Panel. In Proceedings of the 4th international conference on mathematics and science education (ICoMSE) 2020: Innovative Research in Science and Mathematics Education in The Disruptive Era, Malang, Indonesia, 25–26 November 2020; p. 040003. [Google Scholar]
- Bouazza, F.; Abdellah, K.; Hamid, K. Solar Irradiance measuring using PV module and PIC microcontroller based Electronic assembly. In Proceedings of the 18th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia, 22–25 March 2021; pp. 1053–1058. [Google Scholar]
- Mitropoulos, S.; Orfanos, V.A.; Rimpas, D.; Christakis, I. LoRa Radius Coverage Map on Urban and Rural Areas: Case Study of Athens’ Northern Suburbs and Tinos Island, Greece. Eng. Proc. 2023, 58, 19. [Google Scholar] [CrossRef]
- Rimpas, D.; Orfanos, V.A.; Chalkiadakis, P.; Christakis, I. Design and Development of a Low-Cost and Compact Real-Time Monitoring Tool for Battery Life Calculation. Eng. Proc. 2023, 58, 17. [Google Scholar] [CrossRef]
- Christakis, I.; Orfanos, V.A.; Chalkiadakis, P.; Rimpas, D. Low-Cost Environmental Monitoring Station to Acquire Health Quality Factors. Eng. Proc. 2023, 58, 11. [Google Scholar] [CrossRef]
- Risdiyanto, A.; Kristi, A.A.; Junaedi, A.; Susanto, B.; Rachman, N.A.; Muqorobin, A.; Santosa, H.P.; Fudholi, A. Performance of Low-Cost Solar Radiation Logger. Int. J. Power Electron. Drive Syst./Int. J. Electr. Comput. Eng. 2023, 13, 3885–3894. [Google Scholar] [CrossRef]
- Mekkas, Y.; Benguesmia, H.; Bakri, B.; Benguesmia, M. Projeto E Implementação de Um Sensor de Radiação Solar Com Arduino Uno E Célula de Referência. Stud. Eng. Exact Sci. 2024, 5, e6398. [Google Scholar] [CrossRef]
- Meshram, S.; Valvi, S.; Raykar, N. A Cost-Effective Microcontroller Based Sensor for Dual Axis Solar Tracking. Renew. Energy Power Qual. J. 2016, 650–656. [Google Scholar] [CrossRef]
- Yao, J.; Chow, D.; Chi, Y.-W. Impact of Manually Controlled Solar Shades on Indoor Visual Comfort. Sustainability 2016, 8, 727. [Google Scholar] [CrossRef]
- Tayag, C.R.C.; Conejos, S. Passive Cooling in Tropical Residential Buildings Using Thermal and Energy Performance Analysis. In Proceedings of the 8th International Conference on Civil and Environmental Engineering (ICCEE 2024), Manila, Philippines, 14–16 November 2024; p. 012060. [Google Scholar]
- Zukowska, D.; Ananida, M.; Kolarik, J.; Khanie, M.S.; Nielsen, T.R. Solar Control Solutions for Reducing Overheating Risks in Retrofitted Danish Apartment Buildings from the Period 1850–1900—A Simulation-Based Study. In Proceedings of the 11th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings (IAQVEC 2019), Bari, Italy, 7–10 September 2019; p. 03051. [Google Scholar]
- WEMOS Documentation. LOLIN D1 Mini. Available online: https://www.wemos.cc/en/latest/d1/d1_mini.html (accessed on 1 August 2024).
- Adafruit BH1750 Ambient Light Sensor. Adafruit Learning System. Available online: https://learn.adafruit.com/adafruit-bh1750-ambient-light-sensor/overview (accessed on 1 August 2024).
- Katsoulis, S.; Koulouras, G.; Christakis, I. Energy-Efficient Data Acquisition and Control System Using Both LoRaWAN and Wi-Fi Communication for Smart Classrooms. In Proceedings of the 13th International Conference on Modern Circuits and Systems Technologies (MOCAST), Balkans, Greece, 27–29 May 2024; pp. 1–4. [Google Scholar]
- Grafana Labs. Grafana—The Open Platform for Analytics and Monitoring. Available online: https://grafana.com/ (accessed on 1 August 2024).
- BH1750FVI Datasheet. Semiconductors Datasheet. Available online: https://semiconductors.es/datasheet/BH1750FVI.html (accessed on 1 August 2024).
- Latest Conditions in Nomismatokopeio. Available online: https://penteli.meteo.gr/stations/nomismatokopeio/ (accessed on 1 August 2024).
- Christakis, I.; Tsakiridis, O.; Sarri, E.; Triantis, D.; Stavrakas, I. Nonlinear Regression Approach as a Correction Factor of Measurements of Low-Cost Electrochemical Air Quality Sensors. Appl. Sci. 2024, 14, 3282. [Google Scholar] [CrossRef]
- Christakis, I.; Sarri, E.; Tsakiridis, O.; Stavrakas, I. Investigation of LASSO Regression Method as a Correction Measurements’ Factor for Low-Cost Air Quality Sensors. Signals 2024, 5, 60–86. [Google Scholar] [CrossRef]
- Christakis, I.; Sarri, E.; Tsakiridis, O.; Stavrakas, I. Identification of the Safe Variation Limits for the Optimization of the Measurements in Low-Cost Electrochemical Air Quality Sensors. Electrochem. 2024, 5, 1–28. [Google Scholar] [CrossRef]
Method | MSE | RMSE |
---|---|---|
Primary (raw)—reference measurements | 2798.66 | 0.00034 |
Corrected—reference measurements | 2090.00 | 0.0000001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinis, T.; Mitropoulos, S.; Chalkiadakis, P.; Christakis, I. Evaluation of an Integrated Low-Cost Pyranometer System for Application in Household Installations. Environ. Earth Sci. Proc. 2025, 34, 5. https://doi.org/10.3390/eesp2025034005
Chinis T, Mitropoulos S, Chalkiadakis P, Christakis I. Evaluation of an Integrated Low-Cost Pyranometer System for Application in Household Installations. Environmental and Earth Sciences Proceedings. 2025; 34(1):5. https://doi.org/10.3390/eesp2025034005
Chicago/Turabian StyleChinis, Theodore, Spyridon Mitropoulos, Pavlos Chalkiadakis, and Ioannis Christakis. 2025. "Evaluation of an Integrated Low-Cost Pyranometer System for Application in Household Installations" Environmental and Earth Sciences Proceedings 34, no. 1: 5. https://doi.org/10.3390/eesp2025034005
APA StyleChinis, T., Mitropoulos, S., Chalkiadakis, P., & Christakis, I. (2025). Evaluation of an Integrated Low-Cost Pyranometer System for Application in Household Installations. Environmental and Earth Sciences Proceedings, 34(1), 5. https://doi.org/10.3390/eesp2025034005