Analyzing the Relationship Between Vegetation and Temperature Changes in the Sylhet Region †
Abstract
1. Introduction
2. Study Area
2.1. Topography
2.2. Climate
3. Materials and Methods
3.1. Data Collection
3.2. Satellite Imagery Acquisition and Preprocessing
3.2.1. Calculation of NDVI
3.2.2. Classification of NDVI
3.2.3. Analysis of Temperature
3.3. Correlation Analysis of NDVI and Temperature
4. Results and Discussion
4.1. Spatial and Statistical Distribution of Vegetation
4.2. Analysis of Temperature Trends
5. Relation Between Vegetation and Temperature Change
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ichii, K.; Kawabata, A.; Yamaguchi, Y. Global Correlation Analysis for NDVI and Climatic Variables and NDVI Trends: 1982–1990. Int. J. Remote Sens. 2002, 23, 3873–3878. [Google Scholar] [CrossRef]
- Islam, M.M.; Mamun, M.M.I. Variations of NDVI and Its Association with Rainfall and Evapotranspiration over Bangladesh. Rajshahi Univ. J. Sci. Eng. 2015, 43, 21–28. [Google Scholar] [CrossRef]
- Ueyama, M.; Ichii, K.; Iwata, H.; Euskirchen, E.S.; Zona, D.; Rocha, A.V.; Harazono, Y.; Iwama, C.; Nakai, T.; Oechel, W.C. Upscaling Terrestrial Carbon Dioxide Fluxes in Alaska with Satellite Remote Sensing and Support Vector Regression. J. Geophys. Res. Biogeosci. 2013, 118, 1266–1281. [Google Scholar] [CrossRef]
- Kulsum, U.; Moniruzzaman, M. Exploring the Relationship of Climate Change and Land-Use Dynamics with Satellite-Derived Surface Indices and Temperature in Greater Dhaka, Bangladesh. J. Earth Syst. Sci. 2022, 131, 117. [Google Scholar] [CrossRef]
- Nazmul Haque, S.M.; Uddin, M.J. Monitoring LULC Dynamics and Detecting Transformation Hotspots in Sylhet, Bangladesh (2000–2023) Using Google Earth Engine. Sci. Rep. 2025, 15, 31263. [Google Scholar] [CrossRef] [PubMed]
- Uddin, G.T.; Hossain, M.A.; Ishaque, F. Identifying Climatic Variables with Rice Yield Relationship and Land Cover Change Detection at Sylhet Region. Asian J. Geogr. Res. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Climatic and Environmental Challenges of Tea Cultivation at Sylhet Area in Bangladesh. In Springer Climate; Springer International Publishing: Cham, Switzerland, 2021; pp. 93–118. ISBN 978-3-030-75824-0.
- Khan, E.M.T.; Kamal, A.S.M.M.; Kabir, M.; Hassan, S.M.K.; Hayat, T.; Fahim, A.K.F. An Empirical Study to Develop a Relationship between Vulnerability and Disaster Damage and Loss for Sylhet Flood 2022. Discov. Appl. Sci. 2025, 7, 493. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA), National Centers for Environmental Information. Temperature Data. Available online: https://www.ncei.noaa.gov/maps/daily/ (accessed on 2 March 2025).
- U.S. Geological Survey (USGS). Landsat Satellite Imagery [EarthExplorer]. U.S. Department of the Interior: Reston, VA, USA. Available online: https://earthexplorer.usgs.gov/ (accessed on 3 March 2025).
- Almazroui, M.; Nazrul Islam, M.; Athar, H.; Jones, P.D.; Rahman, M.A. Recent Climate Change in the Arabian Peninsula: Annual Rainfall and Temperature Analysis of Saudi Arabia for 1978–2009. Int. J. Climatol. 2012, 32, 953–966. [Google Scholar] [CrossRef]
Satellite | Year | NDVI Formula |
---|---|---|
Landsat 5 | 1988, 1995 | (Band 4 − Band 3)/(Band 4 + Band 3) |
Landsat 7 | 2005 | (Band 4 − Band 3)/(Band 4 + Band 3) |
Landsat 8 | 2015, 2025 | (Band 5 − Band 4)/(Band 5 + Band 4) |
NDVI Class | Class Range |
---|---|
Water Body | <0.0 |
Urban Area/Barren Land | 0.0 ≤ NDVI < 0.2 |
Sparse Vegetation | 0.2 ≤ NDVI < 0.5 |
Dense Vegetation | NDVI ≥ 0.5 |
Type of Change | Year (1988–1995) | Year (1995–2005) | Year (2005–2015) | Year (2015–2025) | Year (1988–2025) |
---|---|---|---|---|---|
Water Body—Water Body (km2) | 8.012419 | 5.373532 | 1.329697 | 1.932187 | 5.373532 |
Water Body—Urban Area/Barren Land (km2) | 9.735015 | 6.525312 | 1.319181 | 0.148101 | 5.996399 |
Water Body—Sparse Vegetation (km2) | 4.273481 | 3.668904 | 0.429682 | 0.039027 | 5.206485 |
Water Body—Dense Vegetation (km2) | 0.001913 | 0.649105 | 0.026132 | 0.042527 | 5.444283 |
Urban Area/Barren Land—Water Body (km2) | 2.708974 | 0.001543 | 0.774978 | 4.063739 | 1.77701 |
Urban Area/Barren Land—Urban Area/Barren Land (km2) | 248.174892 | 2.548474 | 63.329284 | 51.862553 | 127.334783 |
Urban Area/Barren Land—Sparse Vegetation (km2) | 63.225581 | 232.57679 | 207.770414 | 9.94961 | 130.691764 |
Urban Area/Barren Land—Dense Vegetation (km2) | 0.007295 | 54.066216 | 19.153803 | 1.551276 | 54.249509 |
Sparse Vegetation—Water Body (km2) | 0.117156 | 0.347635 | 0.057183 | 1.39561 | 0.447443 |
Sparse Vegetation—Urban Area/Barren Land (km2) | 31.009367 | 0.254644 | 2.754987 | 109.227988 | 33.449779 |
Sparse Vegetation—Sparse Vegetation (km2) | 128.646017 | 48.517458 | 162.323755 | 231.586776 | 112.283359 |
Sparse Vegetation—Dense Vegetation (km2) | 0.030635 | 161.902016 | 51.857713 | 28.567213 | 13.625689 |
Dense Vegetation—Water Body (km2) | 0.010151 | 3.18865 | 0.0009 | 0.22457 | 0.02151 |
Dense Vegetation—Urban Area/Barren Land (km2) | 0.618517 | 0.002786 | 0.024017 | 6.982332 | 1.455767 |
Dense Vegetation—Sparse Vegetation (km2) | 17.678491 | 0.48087 | 0.286607 | 19.499991 | 12.871345 |
Dense Vegetation—Dense Vegetation (km2) | 17.678491 | 0.008414 | 3.233718 | 47.565456 | 4.408378 |
Average Temperature (°C) | 0.08 | 0.2 | –0.11 | 0.14 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supto, S.T.J. Analyzing the Relationship Between Vegetation and Temperature Changes in the Sylhet Region. Environ. Earth Sci. Proc. 2025, 34, 10. https://doi.org/10.3390/eesp2025034010
Supto STJ. Analyzing the Relationship Between Vegetation and Temperature Changes in the Sylhet Region. Environmental and Earth Sciences Proceedings. 2025; 34(1):10. https://doi.org/10.3390/eesp2025034010
Chicago/Turabian StyleSupto, Sk. Tanjim Jaman. 2025. "Analyzing the Relationship Between Vegetation and Temperature Changes in the Sylhet Region" Environmental and Earth Sciences Proceedings 34, no. 1: 10. https://doi.org/10.3390/eesp2025034010
APA StyleSupto, S. T. J. (2025). Analyzing the Relationship Between Vegetation and Temperature Changes in the Sylhet Region. Environmental and Earth Sciences Proceedings, 34(1), 10. https://doi.org/10.3390/eesp2025034010