Effect of the Form of the Error Correlation Functions on Uncertainty in the Estimation of Atmospheric Aerosol Distribution When Using Spatial-Temporal Optimal Interpolation †
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Bocquet, M.; Elbern, H.; Eskes, H.; Hirtl, M.; Žabkar, R.; Carmichael, G.R.; Flemming, J.; Inness, A.; Pagowski, M.; Pérez Camaño, J.L.; et al. Data Assimilation in Atmospheric Chemistry Models: Current Status and Future Prospects for Coupled Chemistry Meteorology Models. Atmos. Chem. Phys. 2015, 15, 5325–5358. [Google Scholar] [CrossRef]
- Tandeo, P.; Ailliot, P.; Bocquet, P.; Carrassi, A.; Miyoshi, T.; Pulido, M.; Zhen, Y. A Review of Innovation-Based Methods to Jointly Estimate Model and Observation Error Covariance Matrices in Ensemble Data Assimilation. Mon. Weather Rev. 2020, 148, 3973–3994. [Google Scholar] [CrossRef]
- Candiani, G.; Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M. A Comparison of Reanalysis Techniques: Applying Optimal Interpolation and Ensemble Kalman Filtering to Improve Air Quality Monitoring at Mesoscale. Sci. Total Environ. 2013, 458–460, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Perrot, A.; Pannekoucke, O.; Guidard, V. Toward a Multivariate Formulation of the Parametric Kalman Filter Assimilation: Application to a Simplified Chemical Transport Model. Nonlinear Process. Geophys. 2023, 30, 139–166. [Google Scholar] [CrossRef]
- Li, K.; Bai, K.; Li, Z.; Guo, J.; Chang, N.-B. Synergistic Data Fusion of Multimodal AOD and Air Quality Data for Near Real-Time Full Coverage Air Pollution Assessment. J. Environ. Manag. 2022, 302, 114121. [Google Scholar] [CrossRef] [PubMed]
- Zang, Z.; You, W.; Ye, H.; Liang, Y.; Li, Y.; Wang, D.; Hu, Y.; Yan, P. 3DVAR Aerosol Data Assimilation and Evaluation Using Surface PM2.5, Himawari-8 AOD and CALIPSO Profile Observations in the North China. Remote Sens. 2022, 14, 4009. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, H.; Feng, X.; Li, X. i4DVar: An Integral Correcting Four-Dimensional Variational Data Assimilation Method. Earth Space Sci. 2021, 8, e2021EA001767. [Google Scholar] [CrossRef]
- Huang, B.; Pagowski, M.; Trahan, S.; Martin, C.R.; Tangborn, A.; Kondragunta, S.; Kleist, D.T. JEDI-based Three-Dimensional Ensemble-Variational Data Assimilation System for Global Aerosol Forecasting at NCEP. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003232. [Google Scholar] [CrossRef]
- Desroziers, G.; Berre, L.; Chapnik, B.; Poli, P. Diagnosis of Observation, Background and Analysis-Error Statistics in Observation Space. Q. J. R. Meteorol. Soc. 2005, 131, 3385–3396. [Google Scholar] [CrossRef]
- Bocquet, M.; Raanes, P.N.; Hannart, A. Expanding the Validity of the Ensemble Kalman Filter without the Intrinsic Need for Inflation. Nonlinear Process. Geophys. 2015, 22, 645–662. [Google Scholar] [CrossRef]
- Kotsuki, S.; Ota, Y.; Miyoshi, T. Adaptive Covariance Relaxation Methods for Ensemble Data Assimilation: Experiments in the Real Atmosphere. Q. J. R. Meteorol. Soc. 2017, 143, 2001–2015. [Google Scholar] [CrossRef]
- Collins, W.D.; Rasch, P.J.; Eaton, B.E.; Khattatov, B.V.; Lamarque, J.-F.; Zender, C.S. Simulating Aerosols Using a Chemical Transport Model with Assimilation of Satellite Aerosol Retrievals: Methodology for INDOEX. J. Geophys. Res. 2001, 106, 7313–7336. [Google Scholar] [CrossRef]
- Barth, A.; Azcárate, A.A.; Joassin, P.; Jean-Marie, B.; Troupin, C. Introduction to Optimal Interpolation and Variational Analysis. In Proceedings of the SESAME Summer School, Varna, Bulgaria, 26 November 2008. [Google Scholar]
- Xia, X.; Zhang, T.; Wang, L.; Gong, W.; Zhu, Z.; Wang, W.; Gu, Y.; Lin, Y.; Zhou, X.; Dong, J.; et al. Spatial–Temporal Fusion of 10-Min Aerosol Optical Depth Products with the GEO–LEO Satellite Joint Observations. Remote Sens. 2023, 15, 2038. [Google Scholar] [CrossRef]
- Yu, H.; Dickinson, R.E.; Chin, M.; Kaufman, Y.J.; Holben, B.N.; Geogdzhayev, I.V.; Mishchenko, M.I. Annual Cycle of Global Distributions of Aerosol Optical Depth from Integration of MODIS Retrievals and GOCART Model Simulations. J. Geophys. Res. 2003, 108, 4128. [Google Scholar] [CrossRef]
- Miatselskaya, N.; Milinevsky, G.; Bril, A.; Chaikovsky, A.; Miskevich, A.; Yukhymchuk, Y. Application of Optimal Interpolation to Spatially and Temporally Sparse Observations of Aerosol Optical Depth. Atmosphere 2023, 14, 32. [Google Scholar] [CrossRef]
- Miatselskaya, N.; Bril, A.; Chaikovsky, A. Using Chemical Transport Model and Climatology Data as Backgrounds for Aerosol Optical Depth Spatial–Temporal Optimal Interpolation. Atmosphere 2025, 16, 623. [Google Scholar] [CrossRef]
- GEOS-Chem. Available online: https://geoschem.github.io (accessed on 9 July 2025).
- Bey, I.; Jacob, D.J.; Yantosca, R.M.; Logan, J.A.; Field, B.D.; Fiore, A.M.; Li, Q.; Liu, H.Y.; Mickley, L.J.; Schultz, M.G. Global Modeling of Tropospheric Chemistry with Assimilated Meteorology: Model Description and Evaluation. J. Geophys. Res. 2001, 106, 23073–23096. [Google Scholar] [CrossRef]
- NASA. Goddard Spase Flight Center; AERONET.; Aerosol Robotic Network. Available online: https://aeronet.gsfc.nasa.gov/ (accessed on 9 July 2025).
- Holben, B.N.; Tanre, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.; Chatenet, B.; Lavenue, F.; et al. An Emerging Ground-Based Aerosol Climatology: Aerosol Optical Depth from AERONET. J. Geophys. Res. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A Flexible Inversion Algorithm for Retrieval of Aerosol Optical Properties from Sun and Sky Radiance Measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Li, S.; Garay, M.J.; Chen, L.; Rees, E.; Liu, Y. Comparison of GEOS-Chem Aerosol Optical Depth with AERONET and MISR Data over the Contiguous United States. J. Geophys. Res. 2013, 118, 11228–11241. [Google Scholar] [CrossRef]
- Curci, G.; Hogrefe, C.; Bianconi, R.; Im, U.; Balzarini, A.; Baró, R.; Brunner, D.; Forkel, R.; Giordano, L.; Hirtl, M.; et al. Uncertainties of Simulated Aerosol Optical Properties Induced by Assumptions on Aerosol Physical and Chemical Properties: An AQMEII-2 Perspective. Atmos. Environ. 2015, 115, 541–552. [Google Scholar] [CrossRef]
440 nm | 675 nm | 870 nm | Averaged | |
---|---|---|---|---|
Spatial | exp (−0.00207d) | exp (−0.00215d) | exp (−0.00204d) | |
Temporal | exp (−0.298t) | exp (−0.384t) | exp (−0.424t) | |
Reduction in RMSE | ||||
Granada | 54% | 61% | 62% | 59% |
Lille | 18% | 13% | 14% | 15% |
Minsk | 24% | 17% | 16% | 19% |
440 nm | 675 nm | 870 nm | Averaged | |
---|---|---|---|---|
Spatial | exp (−0.0015d) | exp (−0.0015d) | exp (−0.0015d) | |
Temporal | exp (−0.25t) | exp (−0.335t) | exp (−0.375t) | |
Reduction in RMSE | ||||
Granada | 53% | 61% | 62% | 59% |
Lille | 18% | 13% | 14% | 15% |
Minsk | 24% | 19% | 19% | 21% |
440 nm | 675 nm | 870 nm | Averaged | |
---|---|---|---|---|
Spatial | exp (−0.0025d) | exp (−0.0025d) | exp (−0.0025d) | |
Temporal | exp (−0.35t) | exp (−0.435t) | exp (−0.475t) | |
Reduction in RMSE | ||||
Granada | 54% | 61% | 63% | 59% |
Lille | 18% | 13% | 14% | 15% |
Minsk | 23% | 15% | 12% | 17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miatselskaya, N.; Bril, A.; Chaikovsky, A. Effect of the Form of the Error Correlation Functions on Uncertainty in the Estimation of Atmospheric Aerosol Distribution When Using Spatial-Temporal Optimal Interpolation. Environ. Earth Sci. Proc. 2025, 34, 11. https://doi.org/10.3390/eesp2025034011
Miatselskaya N, Bril A, Chaikovsky A. Effect of the Form of the Error Correlation Functions on Uncertainty in the Estimation of Atmospheric Aerosol Distribution When Using Spatial-Temporal Optimal Interpolation. Environmental and Earth Sciences Proceedings. 2025; 34(1):11. https://doi.org/10.3390/eesp2025034011
Chicago/Turabian StyleMiatselskaya, Natallia, Andrey Bril, and Anatoly Chaikovsky. 2025. "Effect of the Form of the Error Correlation Functions on Uncertainty in the Estimation of Atmospheric Aerosol Distribution When Using Spatial-Temporal Optimal Interpolation" Environmental and Earth Sciences Proceedings 34, no. 1: 11. https://doi.org/10.3390/eesp2025034011
APA StyleMiatselskaya, N., Bril, A., & Chaikovsky, A. (2025). Effect of the Form of the Error Correlation Functions on Uncertainty in the Estimation of Atmospheric Aerosol Distribution When Using Spatial-Temporal Optimal Interpolation. Environmental and Earth Sciences Proceedings, 34(1), 11. https://doi.org/10.3390/eesp2025034011