Composite Electrolytes for Supercapacitors †
Abstract
:1. Introduction
- Wide available electrode potential window
- high ionic conductivity
- sufficient chemical and electrochemical stability
- thermal stability
- compatibility with electrode and separator materials
- environmental compatibility
- low price
- sustainable resources
- Enhanced ionic conductivity
- wider range of operating temperatures
- improved mechanical stability
- better long-term stability
- increased thermal stability
2. Electrolyte Tasks and Challenges
2.1. Composite Electrolytes
2.1.1. Composites with Polymer Hosts
2.1.2. Binary Composites
3. The Materials
3.1. Composite Electrolytes in Supercapacitors
3.1.1. Composites with Polymer Hosts
3.1.2. Binary Composites
3.2. Miscellaneous Materials and Observations
4. Concluding Remarks and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kortüm, G. Lehrbuch der Elektrochemie, 4th ed.; Verlag Chemie: Weinheim, Germany, 1966. [Google Scholar]
- Robinson, R.A.; Stokes, R.H. Electrolyte Solutions; Academic Press Inc.: New York, NY, USA, 1955. [Google Scholar]
- Harned, H.S.; Owen, B.B. Physical Chemistry of Electrolyte Solutions, 3rd ed.; Reinhold Publ. Corp: New York, NY, USA, 1957. [Google Scholar]
- Wright, M.R. An Introduction to Aqueous Electrolyte Solutions; Wiley: Chichester, UK, 2007. [Google Scholar]
- Holze, R. Between the Electrodes of a Supercapacitor: An Update on Electrolytes. Adv. Mater. Sci. Technol. 2024, 6, 0627771. [Google Scholar] [CrossRef]
- Shuja, A.; Khan, H.R.; Murtaza, I.; Ashraf, S.; Abid, Y.; Farid, F.; Sajid, F. Supercapacitors for energy storage applications: Materials, devices and future directions: A comprehensive review. J. Alloy. Compd. 2024, 1009, 176924. [Google Scholar] [CrossRef]
- Chen, X.; Holze, R. Polymer Electrolytes for Supercapacitors. Polymers 2024, 16, 3164. [Google Scholar]
- Lin, L.; Ning, H.; Song, S.; Xu, C.; Hu, N. Flexible electrochemical energy storage: The role of composite materials. Compos. Sci. Technol. 2020, 192, 108102. [Google Scholar] [CrossRef]
- Mohammed, N.B.; Batoo, K.M.; Hussain, S.; Subramaniam, R.; Kasi, R.; Bhuyan, M.; Imran, A.; Muthuramamoorthy, M. Natural Solid-State Hydrogel Electrolytes Based on 3D Pure Cotton/Graphene for Supercapacitor Application. Micromachines 2023, 14, 1379. [Google Scholar] [CrossRef]
- Casado, N.; Zendegi, S.; Olmo, R.D.; Dominguez-Alfaro, A.; Forsyth, M. Tuning Electronic and Ionic Conductivities in Composite Materials for Electrochemical Devices. ACS Appl. Polym. Mater. 2021, 3, 1777–1784. [Google Scholar] [CrossRef]
- Wang, W.M. Study on all solid-state composite polymer electrolyte. Adv. Mater. Res. 2012, 571, 13–16. [Google Scholar] [CrossRef]
- Wang, Z.F.; Zhang, X.X.; Li, C.H.; Liu, J.H.; Zhang, Q.L. Composite electrolyte containing binary ionic liquids and LiDFOB additive on the performance of graphite anode in Li-ion battery. Adv. Mater. Res. 2014, 986–987, 34–37. [Google Scholar] [CrossRef]
- Borges, R.S.; Reddy, A.L.M.; Rodrigues, M.T.F.; Gullapalli, H.; Balakrishnan, K.; Silva, G.G.; Ajayan, P.M. Supercapacitor Operating at 200 Degrees Celsius. Sci. Rep. 2013, 3, 2572. [Google Scholar] [CrossRef]
- Fang, X.; Yao, D. An overview of solid-like electrolytes for supercapacitors. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Diego, CA, USA, 15–21 November 2013. IMECE2013-64069. [Google Scholar]
- Ye, T.; Li, L.; Zhang, Y. Recent Progress in Solid Electrolytes for Energy Storage Devices. Adv. Funct. Mater. 2020, 30, 2000077. [Google Scholar] [CrossRef]
- Yu, X.; Xue, L.; Goodenough, J.B.; Manthiram, A. Ambient-Temperature All-Solid-State Sodium Batteries with a Laminated Composite Electrolyte. Adv. Funct. Mater. 2021, 31, 2002144. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.; Guo, K.; Min, Y.; Xu, Q. Directed and Continuous Interfacial Channels for Optimized Ion Transport in Solid-State Electrolytes. Adv. Funct. Mater. 2022, 32, 2206976. [Google Scholar] [CrossRef]
- Kumar, Y.; Gupta, A.; Thakur, A.K.; Uke, S.J.; Khatri, V.; Kumar, A.; Gupta, M.; Kumar, Y. Advancement and current scenario of engineering and design in transparent supercapacitors: Electrodes and electrolyte. J. Nanopart. Res. 2021, 23, 119. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, C.; Yao, C.; Yang, W.; Jing, Y.; Zhang, X.; Yu, N.; Su, S.; Zhu, J. Preparation of PVA based multifunctional hydrogel electrolyte reinforced by phosphoric acid-dissolved-cellulose and its application in quasi-solid supercapacitors. Cellulose 2024, 31, 1071–1087. [Google Scholar] [CrossRef]
- Singh, D.; Gupta, M.; Singh, R.C.; Pandey, S.P.; Karn, R.K.; Singh, P.K. Polyvinylpyrrolidone (PVP) with Ammonium Iodide (NH4I) and 1-Hexyl-3-Methylimidazolium Iodide Ionic Liquid Doped Solid Polymer Electrolyte for Efficient Supercapacitors. Macromol. Symp. 2019, 388, 1900036. [Google Scholar] [CrossRef]
- Qian, S.; Chen, H.; Wu, Z.; Li, D.; Liu, X.; Tang, Y.; Zhang, S. Designing Ceramic/Polymer Composite as Highly Ionic Conductive Solid-State Electrolytes. Batter. Supercaps 2021, 4, 39–59. [Google Scholar]
- Hibino, T.; Kobayashi, K.; Nagao, M.; Yamamoto, Y. Design of a rechargeable fuel-cell battery with enhanced performance and cyclability. J. Electrochem. Soc. 2016, 163, A1420–A1428. [Google Scholar] [CrossRef]
- Cheng, M.; Ramasubramanian, A.; Rasul, M.G.; Jiang, Y.; Yuan, Y.; Foroozan, T.; Deivanayagam, R.; Tamadoni Saray, M.; Rojaee, R.; Song, B.; et al. Direct Ink Writing of Polymer Composite Electrolytes with Enhanced Thermal Conductivities. Adv. Funct. Mater. 2021, 31, 2006683. [Google Scholar] [CrossRef]
- Poulsen, F.W.; Hessel Andersen, N.; Clausen, K.; Skaarup, S.; Toft Soerensen, O. Transport-structure relations in fast ion and mixed conductors, proceedings of the 6th riso international symposium on metallurgy and materials science. In Proceedings of the Riso International Symposium on Metallurgy and Materials Science, Roskilde, Denmark, 9 September 1985. [Google Scholar]
- Mallela, V.S.; Ilankumaran, V.; Rao, N.S. Trends in cardiac pacemaker batteries. Ind. Pac. Electrophysiol. J. 2004, 4, 201–212. [Google Scholar]
- Weston, J.E.; Steele, B.H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 1982, 7, 75–79. [Google Scholar] [CrossRef]
- Agrawal, R.C.; Pandey, G.P. Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. J. Phys. D Appl. Phys. 2008, 41, 223001. [Google Scholar] [CrossRef]
- Lee, S.J.; Yang, H.M.; Cho, K.G.; Seol, K.H.; Kim, S.; Hong, K.; Lee, K.H. Highly conductive and mechanically robust nanocomposite polymer electrolytes for solid-state electrochemical thin-film devices. Organ. Electr. 2019, 65, 426–433. [Google Scholar] [CrossRef]
- Yohans, M.; Singh, M.; Singh, R.C.; Shukla, P.K.; Singh, V.; Singh, P.K. Poly(vinylidine fluoride-co-hexafluoropropylene)-doped zinc acetate polymer electrolyte for supercapacitor application. High Perf. Polym. 2020, 32, 151–157. [Google Scholar] [CrossRef]
- Chen, L.; Zhong, F.; Zan, J. Discharge property and voltage delay of AZ31B Mg alloy in Mg(NO3)2/Mg(ClO4)2 composite electrolyte. J. Chin. Soc. Corros. Prot. 2018, 38, 197–202. [Google Scholar]
- Wu, Y.; Holze, R. Batterie oder Superkondensator oder Beides? Die Verschmelzung zweier elektrochemischer Speicheroptionen. Bunsen-Magazin 2022, 24, 100–102. [Google Scholar]
- Wu, Y.; Holze, R. Battery and/or supercapacitor?-On the merger of two electrochemical storage system families. Energy Stor. Convers. 2024, 2, 491. [Google Scholar] [CrossRef]
- Thomas, F.; Mahdi, L.; Lemaire, J.; Santos, D.M.F. Technological Advances and Market Developments of Solid-State Batteries: A Review. Materials 2024, 17, 239. [Google Scholar] [CrossRef]
- Cericola, D.; Kötz, R. Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochim. Acta 2012, 72, 1–17. [Google Scholar] [CrossRef]
- Ragone, D. Review of Battery Systems for Electrically Powered Vehicles. SAE Technical Paper, 1 February 1968. [Google Scholar]
- Afif, A.; Rahman, S.M.; Tasfiah Azad, A.; Zaini, J.; Islam, M.A.; Azad, A.K. Advanced materials and technologies for hybrid supercapacitors for energy storage—A review. J. Energy Stor. 2019, 25, 100852. [Google Scholar] [CrossRef]
- Fu, L.; Qu, Q.; Holze, R.; Kondratiev, V.V.; Wu, Y. Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: The best of both worlds? J. Mater. Chem. A 2019, 7, 14937–14970. [Google Scholar]
- Wu, Q.; He, T.; Zhang, Y.; Zhang, J.; Wang, Z.; Liu, Y.; Zhao, L.; Wu, Y.; Ran, F. Cyclic stability of supercapacitors: Materials, energy storage mechanism, test methods, and device. J. Mater. Chem. A 2021, 9, 24094–24147. [Google Scholar]
- Dalvi, A. Fast ionic PEO-NaCF3SO3-Na3Zr2Si2P3O12 membranes for all-solid-state energy storage devices. Mater. Sci. Eng. B 2023, 289, 116252. [Google Scholar]
- Bruce, P.G.; Vincent, C.A. Polymer electrolytes. J. Chem. Soc. Farad. Trans. 1993, 89, 3187–3203. [Google Scholar] [CrossRef]
- Ahamed, M.I.; Boddula, R.; Altalhi, T.A. (Eds.) Polymers in Energy Conversion and Storage; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Xi, G.; Xiao, M.; Wang, S.; Han, D.; Li, Y.; Meng, Y. Polymer-Based Solid Electrolytes: Material Selection, Design, and Application. Adv. Funct. Mater. 2021, 31, 2007598. [Google Scholar] [CrossRef]
- Majumdar, D.; Bhattacharya, S.K. Polymer Electrolytes for Supercapacitor Applications. In Polymers in Energy Conversion and Storage; Inamuddin, M.I., Boddula, R., Altalhi, T., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 13–61. [Google Scholar]
- Bakar, R.; Darvishi, S.; Senses, E. Enhanced ionic conductivity and mechanical strength in nanocomposite electrolytes with nonlinear polymer architectures. Turk. J. Chem. 2023, 47, 242–252. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.J.; Kim, S. Thermal and electrical conducting property of sodium polymer electrolyte containing barium titanate filler. J. Nanosci. Nanotechnol. 2017, 17, 5768–5770. [Google Scholar] [CrossRef]
- Croce, F.; Persi, L.; Scrosati, B.; Serraino-Fiory, F.; Plichta, E.; Hendrickso, M.A. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta 2001, 46, 2457–2461. [Google Scholar] [CrossRef]
- Capiglia, C.; Yang, J.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O. Composite polymer electrolyte: The role of filler grain size. Solid State Ionics 2002, 154–155, 7–14. [Google Scholar] [CrossRef]
- Arya, A.; Sadiq, M.; Sharma, A.L. Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites. Ionics 2018, 24, 2295–2319. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, I.; Ur Rahman, M.; Khan, H.; Shah, A.B.; Althomali, R.H.; Rahman, M.M. Inorganic-polymer composite electrolytes: Basics, fabrications, challenges and future perspectives. Rev. Inorg. Chem. 2024, 44, 347–375. [Google Scholar] [CrossRef]
- Koduru, H.K.; Kondamareddy, K.K.; Iliev, M.T.; Marinov, Y.G.; Hadjichristov, G.B.; Karashanova, D.; Scaramuzza, N. Synergetic effect of TiO2 nano filler additives on conductivity and dielectric properties of PEO/PVP nanocomposite electrolytes for electrochemical cell applications. J. Phys. Conf. Ser. 2017, 780, 012006. [Google Scholar] [CrossRef]
- Sadiq, M.; Tanwar, S.; Raza, M.M.H.; Aalam, S.M.; Sarvar, M.; Zulfequar, M.; Sharma, A.L.; Ali, J. High performance of the sodium-ion conducting flexible polymer blend composite electrolytes for electrochemical double-layer supercapacitor applications. Energy Storage 2022, 4, e345. [Google Scholar] [CrossRef]
- Gurusamy, R.; Lakshmanan, A.; Srinivasan, N.; Venkatachalam, S. Incorporating LLTO ceramic into PVDF/PEO polymer electrolyte for lithium-ion capacitor. J. Electroanal. Chem. 2024, 957, 118135. [Google Scholar] [CrossRef]
- Yadav, N.; Mishra, K.; Hashmi, S.A. Nanozirconia polymer composite porous membrane prepared by sustainable immersion precipitation method for use as electrolyte in flexible supercapacitors. Mater. Today Commun. 2020, 25, 101506. [Google Scholar] [CrossRef]
- Wang, W.M. Preparation and characterization of composite polymer electrolyte. Adv. Mater. Res. 2012, 571, 17–21. [Google Scholar] [CrossRef]
- Teramoto, D.; Yokoyama, R.; Kagawa, H.; Sada, T.; Ogata, N. A Novel Ionic Liquid-Polymer Electrolyte for the Advanced Lithium Ion Polymer Battery. In Molten Salts and Ionic Liquids: Never the Twain? Gaune-Escard, M., Seddon, K.R., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 367–388. [Google Scholar]
- Xi, J.; Qiu, X.; Zhu, W.; Tang, X. Enhanced electrochemical properties of poly(ethylene oxide)-based composite polymer electrolyte with ordered mesoporous materials for lithium polymer battery. Micropor. Mesopor. Mater. 2006, 88, 1–7. [Google Scholar] [CrossRef]
- Kim, D.W.; Jung, S.M.; Jung, H.Y. A super-thermostable, flexible supercapacitor for ultralight and high performance devices. J. Mater. Chem. A 2020, 8, 532–542. [Google Scholar] [CrossRef]
- Kim, D.W.; Jung, S.M.; Jung, H.Y. Long term thermostable supercapacitor using in-situ SnO2 doped porous graphene aerogel. J. Power Sources 2020, 448, 227422. [Google Scholar] [CrossRef]
- Kumar, B.; Scanlon, L.G. Solid electrolyte development for lithium batteries. SAE Technical Papers, 18 June 1997. [Google Scholar]
- Cui, L.F.; Ju, J.W.; Cui, G.L. Three-dimensional porous ceramic framework reinforcing composite electrolyte. Acta Phys. Sin. 2020, 69, 228203. [Google Scholar] [CrossRef]
- Yin, C.; Liu, X.; Wei, J.; Tan, R.; Zhou, J.; Ouyang, M.; Wang, H.; Cooper, S.J.; Wu, B.; George, C.; et al. “all-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance. J. Mater. Chem. A 2019, 7, 8826–8831. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.H.; Han, J.H.; Lee, J.Y.; So, S.; Yoon, S.J.; Kim, H.J.; Lee, K.T.; Kim, T.H. Cross-Linked Composite Gel Polymer Electrolyte Based on an H-Shaped Poly(ethylene oxide)-Poly(propylene oxide) Tetrablock Copolymer with SiO2 Nanoparticles for Solid-State Supercapacitor Applications. ACS Omega 2021, 6, 16924–16933. [Google Scholar] [CrossRef]
- Bandara, T.M.W.J.; Gunasekara, L.B.E.; Gunathilake, S.M.S.; Mellander, B.E. Transport parameters of charge carriers in PEO-LiTf-based, plasticized, composite, and plasticized-composite electrolytes intended for Li-ion batteries. Ionics 2022, 28, 2701–2714. [Google Scholar] [CrossRef]
- Kimura, K.; Tominaga, Y. Ionic liquid-containing composite poly(ethylene oxide) electrolyte reinforced by electrospun silica nanofiber. J. Electrochem. Soc. 2017, 164, A3357–A3361. [Google Scholar] [CrossRef]
- Denney, J.; Huang, H. Thermal Decomposition Characteristics of PEO/LiBF4 /LAGP Composite Electrolytes. J. Compos. Sci. 2022, 6, 117. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, M.D.; Dalvi, A. All-solid-state electric double layer supercapacitors using Li1.3Al0.3Ti1.7(PO4)3 reinforced solid polymer electrolyte. J. Energy Stor. 2022, 49, 104178. [Google Scholar] [CrossRef]
- Sharma, S.; Dalvi, A. Solid polymer electrolyte membranes using the "polymer-in-ceramic" approach for all-solid-state supercapacitor applications. Solid State Ionics 2022, 387, 116063. [Google Scholar] [CrossRef]
- Lee, J.; Rottmayer, M.; Huang, H. Impacts of Lithium Salts on the Thermal and Mechanical Characteristics in the Lithiated PEO/LAGP Composite Electrolytes. J. Compos. Sci. 2022, 6, 12. [Google Scholar] [CrossRef]
- Méry, A.; Rousselot, S.; Lepage, D.; Aymé-Perrot, D.; Dollé, M. Limiting Factors Affecting the Ionic Conductivities of LATP/Polymer Hybrid Electrolytes. Batteries 2023, 9, 87. [Google Scholar] [CrossRef]
- Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R. Physical and chemical properties of nanocomposite polymer electrolytes. J. Phys. Chem. B 1999, 103, 10632–10638. [Google Scholar] [CrossRef]
- Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456–458. [Google Scholar] [CrossRef]
- Kim, S.; . Hwang, E.J.; Jung, Y.; Han, M.; Park, S.J. Ionic conductivity of polymeric nanocomposite electrolytes based on poly(ethylene oxide) and organo-clay materials. Coll. Surf. A Physicochem. Engin. Asp. 2008, 313–314, 216–219. [Google Scholar] [CrossRef]
- Chen, H.W.; Chang, F.C. The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer 2001, 42, 9763–9769. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.J. Interlayer spacing effect of alkylammonium-modified montmorillonite on conducting and mechanical behaviors of polymer composite electrolytes. J. Coll. Interf. Sci. 2009, 332, 145–150. [Google Scholar] [CrossRef]
- Nookala, M.; Kumar, B.; Rodrigues, S. Ionic conductivity and ambient temperature Li electrode reaction in composite polymer electrolytes containing nanosize alumina. J. Power Sources 2002, 111, 165–172. [Google Scholar] [CrossRef]
- Karabelli, D.; Leprêtre, J.C.; Cointeaux, L.; Sanchez, J.Y. Preparation and characterization of poly(vinylidene fluoride) based composite electrolytes for electrochemical devices. Electrochim. Acta 2013, 109, 741–749. [Google Scholar] [CrossRef]
- Tripathi, M.; Kumar Dwivedi, B.; Kumar, Y.; Bobade, S.M.; Kumar, A. Synthesis and performance assessment of silica dispersed nano-composite polymer gel electrolyte for high-performance solid-state supercapacitors. J. Electroanal. Chem. 2023, 948, 117797. [Google Scholar] [CrossRef]
- Ortega, P.F.R.; Trigueiro, J.P.C.; Silva, G.G.; Lavall, R.L. Improving supercapacitor capacitance by using a novel gel nano composite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid. Electrochim. Acta 2016, 188, 809–817. [Google Scholar] [CrossRef]
- Acauan, L.H.; Zhou, Y.; Kalfon-Cohen, E.; Fritz, N.K.; Wardle, B.L. Multifunctional nanocomposite structural separators for energy storage. Nanoscale 2019, 11, 21964–21973. [Google Scholar] [CrossRef]
- Kim, D.W.; Jung, H. High temperature supercapacitor with free standing quasi-solid composite electrolytes. Kor. J. Mater. Res. 2019, 29, 121–128. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Y.; Ma, Z.; Zhu, T.; Liu, L.; Zheng, J.; Gong, X. All-Solid-State Asymmetric Supercapacitors with Metal Selenides Electrodes and Ionic Conductive Composites Electrolytes. Adv. Funct. Mater. 2019, 29, 1904182. [Google Scholar] [CrossRef]
- Hou, G.M.; Huang, Y.F.; Ruan, W.H.; Zhang, M.Q.; Rong, M.Z. Hypergrafted nano-silica modified polymer gel electrolyte for high-performance solid-state supercapacitor. J. Solid State Electr. 2016, 20, 1903–1911. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, C.; Liao, X.; Luo, A.; Jing, Y.; Yu, N.; Su, S.; Zhang, X.; Zhu, J.; Deng, G. Preparation of PVA/cellulose composite hydrogel electrolytes based on zinc chloride-dissolved cellulose for flexible solid-state capacitors. J. Mater. Chem. C 2024, 12, 2063–2072. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, R.; Sun, X.; Lu, L.; Chen, Y. Constructing two dimensional composite nanosheets with montmorillonite and graphene-like carbon: Towards high-rate-performance PVA based gel polymer electrolytes for quasi-solid-state supercapacitors. Mater. Chem. Phys. 2022, 287, 126333. [Google Scholar] [CrossRef]
- Xin, Y.; Yu, Z.; Soomro, R.A.; Sun, N. Facile Synthesis of Polyacrylic Acid/Graphene Oxide Composite Hydrogel Electrolyte for High-Performance Flexible Supercapacitors. Coatings 2023, 13, 382. [Google Scholar] [CrossRef]
- Majumdar, S.; Sen, P.; Ray, R. High-performance graphene oxide-grafted chitosan-starch solid biopolymer electrolytes for flexible hybrid supercapacitors. J. Solid State Electr. 2022, 26, 527–547. [Google Scholar] [CrossRef]
- Li, W.C.; Chen, R.K.; Wen, T.C. The role of nano-hydroxyapatite bearing zwitterion within carboxylated chitosan hydrogel electrolyte in improving supercapacitor performance. Electrochim. Acta 2023, 466, 143064. [Google Scholar] [CrossRef]
- Zaidi, S.F.A.; Saeed, A.; Ho, V.C.; Heo, J.H.; Cho, H.H.; Sarwar, N.; Lee, N.E.; Mun, J.; Lee, J.H. Chitosan-reinforced gelatin composite hydrogel as a tough, anti-freezing, and flame-retardant gel polymer electrolyte for flexible supercapacitors. Int. J. Biol. Macromol. 2023, 234, 123725. [Google Scholar] [CrossRef]
- Tang, J.; Yuan, P.; Cai, C.; Fu, Y.; Ma, X. Combining Nature-Inspired, Graphene-Wrapped Flexible Electrodes with Nanocomposite Polymer Electrolyte for Asymmetric Capacitive Energy Storage. Adv. Energy Mater. 2016, 6, 1600813. [Google Scholar] [CrossRef]
- Jiao, F.; Edberg, J.; Zhao, D.; Puzinas, S.; Khan, Z.U.; Mäkie, P.; Naderi, A.; Lindström, T.; Odén, M.; Engquist, I.; et al. Nanofibrillated Cellulose-Based Electrolyte and Electrode for Paper-Based Supercapacitors. Adv. Sust. Syst. 2018, 2, 1700121. [Google Scholar] [CrossRef]
- Maria Mahimai, B.; Moorthy, S.; Sivasubramanian, G.; Deivanayagam, P. Selective Proton-Conducting Polystyrene-Based Polyelectrolyte Membrane Containing Bi2O3 Nanoparticles and Graphitic Carbon Nitride Nanosheets for Fuel Cells and Supercapacitors. ACS Appl. Nano Mater. 2023, 6, 18139–18149. [Google Scholar] [CrossRef]
- Wu, H.; Cai, H.; Xu, Y.; Wu, Q.; Yan, W. Hybrid electrolyte SiW9MoV2/rGO/SPEEK for solid supercapacitors with enhanced conductive performance. Mater. Chem. Phys. 2018, 215, 163–167. [Google Scholar] [CrossRef]
- Reece, R.; Lekakou, C.; Smith, P.A. A structural supercapacitor based on activated carbon fabric and a solid electrolyte. Mater. Sci. Technol. 2019, 35, 368–375. [Google Scholar] [CrossRef]
- Hwang, M.; Jeong, J.S.; Lee, J.C.; Yu, S.; Jung, H.S.; Cho, B.S.; Kim, K.Y. Composite solid polymer electrolyte with silica filler for structural supercapacitor applications. Kor. J. Chem. Eng. 2021, 38, 454–460. [Google Scholar] [CrossRef]
- Kwon, S.J.; Kim, T.; Jung, B.M.; Lee, S.B.; Choi, U.H. Multifunctional Epoxy-Based Solid Polymer Electrolytes for Solid-State Supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 35108–35117. [Google Scholar] [CrossRef]
- Liao, G.Y.; Geier, S.; Mahrholz, T.; Wierach, P.; Wiedemann, M. Temperature influence on electrical properties of carbon nanotubes modified solid electrolyte-based structural supercapacitor. In Proceedings of the ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird, UT, USA, 18–20 September 2017. [Google Scholar]
- Hu, F.; Liu, Y.; Shao, W.; Zhang, T.; Liu, S.; Liu, D.; Zhang, S.; Jian, X. Novel poly(arylene ether ketone)/poly(ethylene glycol)-grafted poly(arylene ether ketone) composite microporous polymer electrolyte for electrical double-layer capacitors with efficient ionic transport. RSC Adv. 2021, 11, 14814–14823. [Google Scholar] [CrossRef]
- Liu, W.; Li, Z.; Pan, F.; He, Q.; Zhang, Q. Solid polymer electrolytes reinforced with porous polypropylene separators for all-solid-state supercapacitors. RSC Adv. 2023, 13, 34652–34659. [Google Scholar] [CrossRef]
- Huang, B.; Wu, X. Multi-adaptability supercapacitor electrolyte based on Na-MMT/PDADMAC and application in wide temperature range. Mater. Lett. 2020, 269, 127657. [Google Scholar] [CrossRef]
- Vedhanarayanan, B.; Lakshmi, K.C.S.; Lin, T.W. Interfacial Tuning of Polymeric Composite Materials for High-Performance Energy Devices. Batteries 2023, 9, 487. [Google Scholar] [CrossRef]
- Wang, J.; Yu, X.; Wang, C.; Xiang, K.; Deng, M.; Yin, H. PAMPS/MMT composite hydrogel electrolyte for solid-state supercapacitors. J. Alloy. Compd. 2017, 709, 596–601. [Google Scholar] [CrossRef]
- Hu, Q.; Cui, S.; Sun, K.; Shi, X.; Zhang, M.; Peng, H.; Ma, G. An antifreezing and thermally stable hydrogel electrolyte for high-performance all-in-one flexible supercapacitor. J. Energy Stor. 2022, 50, 104231. [Google Scholar] [CrossRef]
- Hina, M.; Bashir, S.; Kamran, K.; Iqbal, J.; Ramesh, S.; Ramesh, K. Fabrication of aqueous solid-state symmetric supercapacitors based on self-healable poly (acrylamide)/PEDOT:PSS composite hydrogel electrolytes. Mater. Chem. Phys. 2021, 273, 125125. [Google Scholar] [CrossRef]
- Thapaliya, B.P.; Do-Thanh, C.L.; Jafta, C.J.; Tao, R.; Lyu, H.; Borisevich, A.Y.; Yang, S.Z.; Sun, X.G.; Dai, S. Simultaneously Boosting the Ionic Conductivity and Mechanical Strength of Polymer Gel Electrolyte Membranes by Confining Ionic Liquids into Hollow Silica Nanocavities. Batter. Supercaps 2019, 2, 985–991. [Google Scholar] [CrossRef]
- Hibino, T.; Kobayashi, K.; Nagao, M.; Kawasaki, S. High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte. Sci. Rep. 2015, 5, 7903. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Jung, H. Useful effects of fumed silica nanoparticles in an ionic liquid electrolyte for high temperature supercapacitor. Kor. J. Mater. Res. 2018, 28, 43–49. [Google Scholar] [CrossRef]
- Pereira, N.D.M.; Trigueiro, J.P.C.; Monteiro, I.D.F.; Montoro, L.A.; Silva, G.G. Graphene oxide—Ionic liquid composite electrolytes for safe and high-performance supercapacitors. Electrochim. Acta 2018, 259, 783–792. [Google Scholar] [CrossRef]
- Qian, Y.; Yu, Y.; Wu, W.; Fan, Q.; Chai, C.; Hao, J. Wide-Temperature Flexible Supercapacitor from an Organohydrogel Electrolyte and Its Combined Electrode. Chem. Eur. J. 2023, 29, e202300123. [Google Scholar] [CrossRef]
- Zabihi, Z.; Rodriguez, P.E.D.S.; Boujakhrout, A.; Viera, J.C.; del Valle, J.A.; Araghi, H.; Villalonga, R. Reduced graphene oxide-poly(methyl methacrylate) nanocomposite as a supercapacitor. J. Appl. Polym. Sci. 2018, 135, 46685. [Google Scholar] [CrossRef]
- Hou, P.; Gao, C.; Wang, J.; Zhang, J.; Liu, Y.; Gu, J.; Huo, P. A semi-transparent polyurethane/porous wood composite gel polymer electrolyte for solid-state supercapacitor with high energy density and cycling stability. Chem. Eng. J. 2023, 454, 139954. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, C.; Yang, W.; Yao, C.; Jing, Y.; Yu, N.; Su, S.; Mahmud, S.; Zhang, X.; Zhu, J. Design of delignified wood-based high-performance composite hydrogel electrolyte with double crosslinking of sodium alginate and PAM for flexible supercapacitors. Ind. Crops Prod. 2024, 210, 118187. [Google Scholar] [CrossRef]
- Hou, P.; Liu, Y.; Gao, Z.; Liu, Y.; Gu, J.; Dong, J.; Huo, P. Porous Wood Composite as a Green Approach for Enhancing Electrochemical Performance of Gel Polymer Electrolytes for Supercapacitors. ChemSusChem 2024, 17, e202400883. [Google Scholar] [CrossRef]
- Gao, C.; Liu, Y.; Zhang, J.; Li, H.; Liu, Y.; Gu, J.; Ma, T.; Huo, P. Wood-inspired High Ionic Conductivity Hydrogel Electrolytes for Flexible Supercapacitors. Batter. Supercaps 2024, 7, e202400630. [Google Scholar] [CrossRef]
- Gao, Z.; Gao, Z.; Wei, Y.; Luo, N.; Liu, Y.; Huo, P. Flexible Wood Enhanced Poly(acrylic acid-co-acrylamide)/Quaternized Gelatin Hydrogel Electrolytes for High-Energy-Density Supercapacitors. ACS Appl. Mater. Interfaces 2022, 15, 2951–2960. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Sivasubramanian, S.C.; Dalvi, A. Solid-state supercapacitors using ionic liquid dispersed Li+-NASICONs as electrolytes. Electrochim. Acta 2022, 434, 141311. [Google Scholar] [CrossRef]
- Wang, J.; Zhan, P.; Zhang, D.; Tang, L. Nickel cobalt sulfide composite nanosheet anchored on rGO as effective electrode for quasi-solid supercapacitor. J. Energy Storage 2023, 70, 107938. [Google Scholar] [CrossRef]
- Ran, M.; Wang, J.; Zhang, D. A superior electrolyte composite with high conductivity and strength based on alkali-activated slag and polyacrylamide for structural supercapacitor. J. Energy Storage 2024, 79, 110169. [Google Scholar] [CrossRef]
- Zhan, P.; Xu, J.; Wang, J.; Zuo, J.; He, Z. Structural supercapacitor electrolytes based on cementitious composites containing recycled steel slag and waste glass powders. Cement Concrete Compos. 2023, 137, 104924. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D. Polymer/cement composite electrolyte with high strength and high ionic conductivity for structural supercapacitors. Cement Concrete Compos. 2024, 149, 105512. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, D. Enhanced Electrochemical Matching between NiCo2O4/Reduced Graphene Oxide and Polymer Cement Electrolyte for Structural Supercapacitor. J. Electrochem. Soc. 2022, 169, 060528. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, D. Multifunctional structural supercapacitor based on cement/PVA-KOH composite and graphene. J. Compos. Mater. 2021, 55, 1359–1369. [Google Scholar] [CrossRef]
- Wang, J.; Zhan, P.; Zhang, D. Redox active cement-based electrolyte towards high-voltage asymmetric solid supercapacitor. Cement Concrete Compos. 2023, 138, 104987. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, D. Portland cement electrolyte for structural supercapacitor in building application. Constr. Build. Mater. 2021, 285, 122897. [Google Scholar] [CrossRef]
- Shi, N.; Zhang, D. Inorganic-organic composite solid electrolyte based on cement and Polyacrylamide prepared by a synchronous reaction method. Electrochim. Acta 2021, 391, 138998. [Google Scholar] [CrossRef]
- Muñoz, B.K.; Lozano, J.; Sánchez, M.; Ureña, A. Hybrid Solid Polymer Electrolytes Based on Epoxy Resins, Ionic Liquid, and Ceramic Nanoparticles for Structural Applications. Polymers 2024, 16, 2048. [Google Scholar] [CrossRef]
- Gienger, E.B.; Nguyen, P.A.T.; Chin, W.; Behler, K.D.; Snyder, J.F.; Wetzel, E.D. Microstructure and multifunctional properties of liquid + polymer bicomponent structural electrolytes: Epoxy gels and porous monoliths. J. Appl. Polym. Sci. 2015, 132, 42681. [Google Scholar] [CrossRef]
- Gallagher, T.M.; Ciocanel, C.; Browder, C. Structural load bearing supercapacitors using a pegdge based solid polymer electrolyte matrix, ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Smart Mater. Adapt. Struct. Intell. Syst. 2011, 1, 141–148. [Google Scholar]
- Chang, Y.C.; Teymoory, P.; Shen, C. High-Toughness Hydrated Polymer Electrolytes for Advanced Structural Supercapacitors. Adv. Mater. Technol. 2024, 9, 2400033. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Qu, Q.; Liu, L.; Holze, R. Composite Electrolytes for Supercapacitors. Energy Storage Appl. 2025, 2, 6. https://doi.org/10.3390/esa2020006
Fu L, Qu Q, Liu L, Holze R. Composite Electrolytes for Supercapacitors. Energy Storage and Applications. 2025; 2(2):6. https://doi.org/10.3390/esa2020006
Chicago/Turabian StyleFu, Lijun, Qunting Qu, Lili Liu, and Rudolf Holze. 2025. "Composite Electrolytes for Supercapacitors" Energy Storage and Applications 2, no. 2: 6. https://doi.org/10.3390/esa2020006
APA StyleFu, L., Qu, Q., Liu, L., & Holze, R. (2025). Composite Electrolytes for Supercapacitors. Energy Storage and Applications, 2(2), 6. https://doi.org/10.3390/esa2020006