Cardio-Protective-Promoting Properties of Functional Foods Inducing HDL-Cholesterol Levels and Functionality
Abstract
:1. Introduction
2. Methodology and Materials
3. HDL-C Physiology and Pathophysiology
3.1. Impacting Factors for HDL-C Function and Morphology
3.2. Inflammation Impact on HDL-C
4. Dietary Compounds and HDL-C
4.1. Cholesterol Efflux Capacity—HDL-C Improvement
4.1.1. Phenol-Rich Fruit
4.1.2. Nuts
4.1.3. Legumes
4.1.4. Fish
4.1.5. Extra Virgin Olive Oil
4.1.6. Fungi
4.1.7. Alcohol
4.1.8. Cocoa, Coffee, and Tea
4.2. Antioxidant Impact
4.2.1. Fruit, Fermented Beverages, and By-Products
4.2.2. Nuts
4.2.3. Legumes
4.2.4. Fish
4.2.5. Vitamin E
4.3. Anti-Inflammatory Impact
4.3.1. Fruit, Fermented Beverages, By-Products, and Flavonoids
4.3.2. Nuts
4.3.3. Spices
4.3.4. Fish
4.3.5. Algae
4.3.6. Dairy Products
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases (accessed on 10 April 2024).
- Tsoupras, A.; Lordan, R.; Zabetakis, I. Cardiovascular Risk: Assumptions, Limitations, and Research. In The Impact of Nutrition and Statins on Cardiovascular Diseases; Elsevier: Amsterdam, The Netherlands, 2019; pp. 201–266. ISBN 978-0-12-813792-5. [Google Scholar]
- Wu, Z.; Huang, Z.; Lichtenstein, A.H.; Jin, C.; Chen, S.; Wu, S.; Gao, X. Different Associations between HDL Cholesterol and Cardiovascular Diseases in People with Diabetes Mellitus and People without Diabetes Mellitus: A Prospective Community-Based Study. Am. J. Clin. Nutr. 2021, 114, 907–913. [Google Scholar] [CrossRef]
- HDL Cholesterol: How to Boost Your “Good” Cholesterol. Available online: https://www.mayoclinic.org/diseases-conditions/high-blood-cholesterol/in-depth/hdl-cholesterol/art-20046388 (accessed on 11 April 2024).
- Carroll, M.D.; Fryar, C.D. Total and High-Density Lipoprotein Cholesterol in Adults: United States, 2015–2018; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020.
- Marcason, W. What Role Does HDL Cholesterol Have in CVD and What Is the Most Effective Way to Increase It? J. Am. Diet. Assoc. 2011, 111, 1266. [Google Scholar] [CrossRef] [PubMed]
- Gordon, T.; Castelli, W.P.; Hjortland, M.C.; Kannel, W.B.; Dawber, T.R. High Density Lipoprotein as a Protective Factor against Coronary Heart Disease. Am. J. Med. 1977, 62, 707–714. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Balthazar, C.F.; Silva, R.; Rocha, R.S.; Graça, J.S.; Esmerino, E.A.; Silva, M.C.; Sant’Ana, A.S.; Duarte, M.C.K.H.; Freitas, M.Q.; et al. Impact of Probiotics and Prebiotics on Food Texture. Curr. Opin. Food Sci. 2020, 33, 38–44. [Google Scholar] [CrossRef]
- Zabetakis, I.; Lordan, R.; Tsoupras, A.; Ramji, D. Functional Foods and Their Implications for Health Promotion; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 978-0-12-823811-0. [Google Scholar]
- Entry Details | FAO Terminology Portal | Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faoterm/viewentry/en/?entryId=170967 (accessed on 16 September 2024).
- Guo, M. Introduction. In Functional Foods; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–8. ISBN 978-1-84569-592-7. [Google Scholar]
- Mashau, M.E.; Ramashia, S.E.; Mashau, M.E.; Ramashia, S.E. Role of Functional Food in Treating and Preventing Cardiovascular Diseases. In Functional Foods—Phytochemicals and Health Promoting Potential; IntechOpen: London, UK, 2021; ISBN 978-1-83968-933-8. [Google Scholar]
- Baumgartner, S.; Bruckert, E.; Gallo, A.; Plat, J. The Position of Functional Foods and Supplements with a Serum LDL-C Lowering Effect in the Spectrum Ranging from Universal to Care-Related CVD Risk Management. Atherosclerosis 2020, 311, 116–123. [Google Scholar] [CrossRef]
- Raygor, V.; Khera, A. New Recommendations and Revised Concepts in Recent Guidelines on the Management of Dyslipidemias to Prevent Cardiovascular Disease: The 2018 ACC/AHA and 2019 ESC/EAS Guidelines. Curr. Cardiol. Rep. 2020, 22, 87. [Google Scholar] [CrossRef]
- Hunter, P.M.; Hegele, R.A. Functional Foods and Dietary Supplements for the Management of Dyslipidaemia. Nat. Rev. Endocrinol. 2017, 13, 278–288. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Martinez, I.; Sourlas, A.; Bouza, K.V.; Campos, F.N.; Torres, V.; Montan, P.D.; Guzman, E. High-Density Lipoprotein (HDL) Functionality and Its Relevance to Atherosclerotic Cardiovascular Disease. Drugs Context 2018, 7, 212525. [Google Scholar] [CrossRef]
- Soria-Florido, M.T.; Schröder, H.; Grau, M.; Fitó, M.; Lassale, C. High Density Lipoprotein Functionality and Cardiovascular Events and Mortality: A Systematic Review and Meta-Analysis. Atherosclerosis 2020, 302, 36–42. [Google Scholar] [CrossRef]
- Damasceno, N.R.T.; De Freitas, M.C.P. High Density-Lipoprotein Functionality Score Predicts Cardiovascular Risk Estimates and Subclinical Atherosclerosis in Brazilian Individuals. Atherosclerosis 2022, 355, 69–70. [Google Scholar] [CrossRef]
- Ben-Aicha, S.; Badimon, L.; Vilahur, G. Advances in HDL: Much More than Lipid Transporters. Int. J. Mol. Sci. 2020, 21, 732. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, R.; Mu, H.; Wang, X.; Yao, Q.; Chen, C. Reverse Cholesterol Transport and Cholesterol Efflux in Atherosclerosis. QJM 2005, 98, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Favari, E.; Chroni, A.; Tietge, U.J.F.; Zanotti, I.; Escolà-Gil, J.C.; Bernini, F. Cholesterol Efflux and Reverse Cholesterol Transport. In High Density Lipoproteins: From Biological Understanding to Clinical Exploitation; Handbook of Experimental Pharmacology Series; Springer: Berlin/Heidelberg, Germany, 2015; Volume 224, pp. 181–206. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Zhu, L.; Wang, Q. Reverse Cholesterol Transport Pathway and Cholesterol Efflux in Diabetic Retinopathy. J. Diabetes Res. 2021, 2021, 8746114. [Google Scholar] [CrossRef] [PubMed]
- Translation of High-Density Lipoprotein Function into Clinical Practice. Available online: https://www.ahajournals.org/doi/epub/10.1161/CIRCULATIONAHA.113.000962 (accessed on 12 April 2024).
- Daniil, G.; Phedonos, A.A.P.; Holleboom, A.G.; Motazacker, M.M.; Argyri, L.; Kuivenhoven, J.A.; Chroni, A. Characterization of Antioxidant/Anti-Inflammatory Properties and apoA-I-Containing Subpopulations of HDL from Family Subjects with Monogenic Low HDL Disorders. Clin. Chim. Acta 2011, 412, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Cardioprotective Functions of HDLs-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0022227520350252 (accessed on 12 April 2024).
- Egea, J.C.L. HDL Lipoproteins: A Fluid and Changing Relationship between Quantity and Functionality. Clin. Investig. Arter. 2022, 34, 120–121. [Google Scholar] [CrossRef]
- Lordan, R.; Walsh, A.M.; Crispie, F.; Finnegan, L.; Cotter, P.D.; Zabetakis, I. The Effect of Ovine Milk Fermentation on the Antithrombotic Properties of Polar Lipids. J. Funct. Foods 2019, 54, 289–300. [Google Scholar] [CrossRef]
- Shiels, K.; Tsoupras, A.; Lordan, R.; Zabetakis, I.; Murray, P.; Kumar Saha, S. Anti-Inflammatory and Antithrombotic Properties of Polar Lipid Extracts, Rich in Unsaturated Fatty Acids, from the Irish Marine Cyanobacterium Spirulina Subsalsa. J. Funct. Foods 2022, 94, 105124. [Google Scholar] [CrossRef]
- Tsouka, A.N.; Tellis, C.; Tselepis, A. The Effect of LDL or HDL-Associated PCSK9 on Platelet Aggregation and Inflammatory Stimulation of Endothelial Cells, in Vitro. Atherosclerosis 2023, 379, S3–S4. [Google Scholar] [CrossRef]
- Marsche, G.; Heine, G.H.; Stadler, J.T.; Holzer, M. Current Understanding of the Relationship of HDL Composition, Structure and Function to Their Cardioprotective Properties in Chronic Kidney Disease. Biomolecules 2020, 10, 1348. [Google Scholar] [CrossRef]
- Pavanello, C.; Zheng, K.H.; Schnitzler, J.G.; Kroon, J.; Versloot, M.; Levels, J.H.; Calabresi, L.; Stroes, E.S.; Bekkering, S. Low Hdl-Cholesterol Levels Are Associated With A Decreased Monocyte Activity And Inflammation In Carriers Of Lcat Mutation. Atherosclerosis 2019, 287, e23–e24. [Google Scholar] [CrossRef]
- Estrada-Luna, D.; Ortiz-Rodriguez, M.; Medina-Briseño, L.; Carreón-Torres, E.; Izquierdo-Vega, J.; Sharma, A.; Cancino-Díaz, J.; Pérez-Méndez, O.; Belefant-Miller, H.; Betanzos-Cabrera, G. Current Therapies Focused on High-Density Lipoproteins Associated with Cardiovascular Disease. Molecules 2018, 23, 2730. [Google Scholar] [CrossRef] [PubMed]
- Chyu, K.-Y.; Shah, P.K. HDL/ApoA-1 Infusion and ApoA-1 Gene Therapy in Atherosclerosis. Front. Pharmacol. 2015, 6, 187. [Google Scholar] [CrossRef]
- High-Density Lipoprotein and Inflammation and Its Significance to Atherosclerosis—The American Journal of the Medical Sciences. Available online: https://www.amjmedsci.com/article/S0002-9629(16)30371-8/abstract (accessed on 12 April 2024).
- Kastelein, J.J.P.; Van Der Steeg, W.A.; Holme, I.; Gaffney, M.; Cater, N.B.; Barter, P.; Deedwania, P.; Olsson, A.G.; Boekholdt, S.M.; Demicco, D.A.; et al. Lipids, Apolipoproteins, and Their Ratios in Relation to Cardiovascular Events with Statin Treatment. Circulation 2008, 117, 3002–3009. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, B.J.; Boekholdt, S.M. Clinical and Biological Relevance of Statin-Mediated Changes in HDL Metabolism. Curr. Atheroscler. Rep. 2014, 16, 379. [Google Scholar] [CrossRef]
- Sampson, U.K.; Linton, M.F.; Fazio, S. Are Statins Diabetogenic? Curr. Opin. Cardiol. 2011, 26, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Sikarwar, P.; Khurana, S.; Sharma, J. Assessing the Incidence of New-Onset Diabetes Mellitus with Statin Use: A Systematic Review of the Systematic Reviews and Meta-Analyses. touchREVIEWS Endocrinol. 2022, 18, 96. [Google Scholar] [CrossRef]
- Cohen, H.; Sheinin, R.; Amital, H.; Bitzur, R. The Link between Statin Associated Muscle Pain and Chronic Pain Syndromes: A Cross-Section Study. Atherosclerosis 2019, 287, e273. [Google Scholar] [CrossRef]
- Paraskevas, K.I.; Mikhailidis, D.P.; Veith, F.J. Optimal Statin Type and Dosage for Vascular Patients. J. Vasc. Surg. 2011, 53, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.; Lordan, R.; Zabetakis, I. Inflammation, Not Cholesterol, Is a Cause of Chronic Disease. Nutrients 2018, 10, 604. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, C.E.; Sourlas, A.; Guzman, E.; Kostara, C.E. Environmental Factors Modifying HDL Functionality. Curr. Med. Chem. 2022, 29, 1687–1701. [Google Scholar] [PubMed]
- Badia, R.R.; Pradhan, R.V.; Ayers, C.R.; Chandra, A.; Rohatgi, A. The Relationship of Alcohol Consumption and HDL Metabolism in the Multiethnic Dallas Heart Study. J. Clin. Lipidol. 2023, 17, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Naharci, M.I. Is Very High HdL-Cholesterol Level Related to Cardiovascular Mortality Affected by Chronic Kidney Disease and Alcohol Use? Comment on Palatini et Al. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 913–914. [Google Scholar] [CrossRef] [PubMed]
- Gazzola, K.; Reeskamp, L.; van den Born, B.-J. Ethnicity, Lipids and Cardiovascular Disease. Curr. Opin. Lipidol. 2017, 28, 225. [Google Scholar] [CrossRef] [PubMed]
- Sviridov, D.; Nestel, P.J. Genetic Factors Affecting HDL Levels, Structure, Metabolism and Function. Curr. Opin. Lipidol. 2007, 18, 157. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Furtado, J.D.; Jensen, M.K. Protein-Based HDL Subspecies: Rationale and Association with Cardiovascular Disease, Diabetes, Stroke, and Dementia. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2022, 1867, 159182. [Google Scholar] [CrossRef] [PubMed]
- Afshoon, Z.; Bahiraee, A.; Esmaeili, F.; Mansouri, E.; Emami, M.A.; Montaseri, M.; Davoodian, N.; Ebrahimi, R.; Eftekhar, E. Study of the Relationship between Endothelial Lipase Gene Polymorphism and Serum Levels of HDL-C, Apo A-I and Severity of Stenosis in Non-Diabetic Coronary Artery Disease Patients. Gene Rep. 2020, 21, 100831. [Google Scholar] [CrossRef]
- Baik, I.; Lee, S.; Kim, S.H.; Shin, C. A Lipoprotein Lipase Gene Polymorphism Interacts with Consumption of Alcohol and Unsaturated Fat to Modulate Serum HDL-Cholesterol Concentrations1, 2, 3. J. Nutr. 2013, 143, 1618–1625. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R.; Grunfeld, C. Effect of Inflammation on HDL Structure and Function. Curr. Opin. Lipidol. 2016, 27, 521–530. [Google Scholar] [CrossRef]
- Spieker, L.E.; Ruschitzka, F.; Lüscher, T.F.; Noll, G. HDL and Inflammation in Atherosclerosis. Curr. Drug Targets Immune Endocr. Metab. Disord. 2004, 4, 51–57. [Google Scholar] [CrossRef]
- Inflammation, Not Cholesterol, Is a Cause of Chronic Disease-PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986484/ (accessed on 12 April 2024).
- Tall, A.R.; Yvan-Charvet, L. Cholesterol, Inflammation and Innate Immunity. Nat. Rev. Immunol. 2015, 15, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Marsche, G.; Saemann, M.D.; Heinemann, A.; Holzer, M. Inflammation Alters HDL Composition and Function: Implications for HDL-Raising Therapies. Pharmacol. Ther. 2013, 137, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Petropoulou, P.-I.; Berbée, J.F.P.; Theodoropoulos, V.; Hatziri, A.; Stamou, P.; Karavia, E.A.; Spyridonidis, A.; Karagiannides, I.; Kypreos, K.E. Lack of LCAT Reduces the LPS-Neutralizing Capacity of HDL and Enhances LPS-Induced Inflammation in Mice. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2015, 1852, 2106–2115. [Google Scholar] [CrossRef]
- O’Neill, F.; Riwanto, M.; Charakida, M.; Colin, S.; Manz, J.; McLoughlin, E.; Khan, T.; Klein, N.; Kay, C.W.M.; Patel, K.; et al. Structural and Functional Changes in HDL with Low Grade and Chronic Inflammation. Int. J. Cardiol. 2015, 188, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R.; Grunfeld, C. The Acute Phase Response Inhibits Reverse Cholesterol Transport1. J. Lipid Res. 2010, 51, 682–684. [Google Scholar] [CrossRef]
- Esteve, E.; Ricart, W.; Fernández-Real, J.M. Dyslipidemia and Inflammation: An Evolutionary Conserved Mechanism. Clin. Nutr. 2005, 24, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for the Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Jing, W.; Qian, W.; Fan, L.; Cheng, J. Association between Dietary Patterns and Cardiovascular Diseases: A Review. Curr. Probl. Cardiol. 2024, 49, 102412. [Google Scholar] [CrossRef]
- WHO Updates Guidelines on Fats and Carbohydrates. Available online: https://www.who.int/news/item/17-07-2023-who-updates-guidelines-on-fats-and-carbohydrates (accessed on 16 April 2024).
- Sikand, G.; Severson, T. Top 10 Dietary Strategies for Atherosclerotic Cardiovascular Risk Reduction. Am. J. Prev. Cardiol. 2020, 4, 100106. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, L.; Viguiliouk, E.; Nishi, S.K.; Blanco Mejia, S.; Rahelić, D.; Kahleová, H.; Salas-Salvadó, J.; Kendall, C.W.; Sievenpiper, J.L. DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients 2019, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Castro-Barquero, S.; Ruiz-León, A.M.; Sierra-Pérez, M.; Estruch, R.; Casas, R. Dietary Strategies for Metabolic Syndrome: A Comprehensive Review. Nutrients 2020, 12, 2983. [Google Scholar] [CrossRef] [PubMed]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean Diet, Its Components, and Cardiovascular Disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Diab, A.; Dastmalchi, L.N.; Gulati, M.; Michos, E.D. A Heart-Healthy Diet for Cardiovascular Disease Prevention: Where Are We Now? Vasc. Health Risk Manag. 2023, 19, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Wickman, B.E.; Enkhmaa, B.; Ridberg, R.; Romero, E.; Cadeiras, M.; Meyers, F.; Steinberg, F. Dietary Management of Heart Failure: DASH Diet and Precision Nutrition Perspectives. Nutrients 2021, 13, 4424. [Google Scholar] [CrossRef]
- Karpouzas, G.A.; Papotti, B.; Ormseth, S.R.; Palumbo, M.; Hernandez, E.; Adorni, M.P.; Zimetti, F.; Budoff, M.J.; Ronda, N. Statins Influence the Relationship between ATP-Binding Cassette A1 Membrane Transporter-Mediated Cholesterol Efflux Capacity and Coronary Atherosclerosis in Rheumatoid Arthritis. J. Transl. Autoimmun. 2023, 7, 100206. [Google Scholar] [CrossRef]
- Ferraz-Amaro, I.; Hernández-Hernández, M.V.; Armas-González, E.; Sánchez-Pérez, H.; Machado, J.D.; Díaz-González, F. HDL Cholesterol Efflux Capacity Is Related to Disease Activity in Psoriatic Arthritis Patients. Clin. Rheumatol. 2020, 39, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Narita, I.; Kotani, K. The Macrophage and Its Related Cholesterol Efflux as a HDL Function Index in Atherosclerosis. Clin. Chim. Acta 2016, 457, 117–122. [Google Scholar] [CrossRef]
- Le Sayec, M.; Xu, Y.; Laiola, M.; Gallego, F.A.; Katsikioti, D.; Durbidge, C.; Kivisild, U.; Armes, S.; Lecomte, M.; Fança-Berthon, P.; et al. The Effects of Aronia Berry (Poly)Phenol Supplementation on Arterial Function and the Gut Microbiome in Middle Aged Men and Women: Results from a Randomized Controlled Trial. Clin. Nutr. 2022, 41, 2549–2561. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, R.; Parandoosh, M.; Khorsandi, H.; Hosseinzadeh, N.; Madani Tonekaboni, M.; Saidpour, A.; Babaei, H.; Ghorbani, A. Grape Seed Extract Supplementation along with a Restricted-calorie Diet Improves Cardiovascular Risk Factors in Obese or Overweight Adult Individuals: A Randomized, Placebo-controlled Trial. Phytother. Res. 2021, 35, 987–995. [Google Scholar] [CrossRef]
- Nora, C.L.; Zhang, L.; Castro, R.J.; Marx, A.; Carman, H.B.; Lum, T.; Tsimikas, S.; Hong, M.Y. Effects of Mixed Nut Consumption on LDL Cholesterol, Lipoprotein(a), and Other Cardiometabolic Risk Factors in Overweight and Obese Adults. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Askari, M.; Daneshzad, E.; Jafari, A.; Bellissimo, N.; Azadbakht, L. Association of Nut and Legume Consumption with Framingham 10 Year Risk of General Cardiovascular Disease in Older Adult Men: A Cross-Sectional Study. Clin. Nutr. ESPEN 2021, 42, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Tani, S.; Matsuo, R.; Imatake, K.; Suzuki, Y.; Yagi, T.; Takahashi, A.; Matsumoto, N.; Okumura, Y. Gender Differences in the Associations among Fish Intake, Lifestyle, and Non-HDL-C Level in Japanese Subjects over the Age of 50 Years: Anti-Atherosclerotic Effect of Fish Consumption. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1434–1444. [Google Scholar] [CrossRef] [PubMed]
- Sarapis, K.; George, E.S.; Marx, W.; Mayr, H.L.; Willcox, J.; Powell, K.L.; Folasire, O.S.; Lohning, A.E.; Prendergast, L.A.; Itsiopoulos, C.; et al. Extra Virgin Olive Oil Improves HDL Lipid Fraction but Not HDL-Mediated Cholesterol Efflux Capacity: A Double-Blind, Randomised, Controlled, Cross-over Study (OLIVAUS). Br. J. Nutr. 2023, 130, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zeng, X.; Mahe, J.; Guo, K.; He, P.; Yang, Q.; Zhang, Z.; Li, Z.; Wang, D.; Zhang, Z.; et al. The Effect of Nattokinase-Monascus Supplements on Dyslipidemia: A Four-Month Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023, 15, 4239. [Google Scholar] [CrossRef] [PubMed]
- Sotoda, Y.; Hirooka, S.; Orita, H.; Wakabayashi, I. Associations of Habitual Alcohol Drinking with HDL Cholesterol and D-Dimer in Patients with Peripheral Arterial Disease. Clin. Chim. Acta 2023, 547, 117422. [Google Scholar] [CrossRef] [PubMed]
- Pavão, T.P.; Chemello, D.; Ferigollo, A.; Saffi, M.A.L.; Moresco, R.N.; dos Santos Stein, C.; Emanuelli, T.; Somacal, S.; Moriguchi, E.H.; Badimon, L.; et al. Acute Effect of Coffee on Arterial Stiffness and Endothelial Function in Overweight and Obese Individuals: A Randomized Clinical Trial. Clin. Nutr. ESPEN 2022, 50, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Amadi, P.U.; Agomuo, E.N.; Amadi, J.A.; Bob-Chile Agada, A.I.; Njoku, U.C.; Ogunwa, C.S.; Odika, P.C.; Osuoha, J.O.; Ogbolosingha, A.J.; Adumekwe, C.W.; et al. Efficacy of Using Walnuts as Statin Adjuvants in Hypertension Management. Clin. Exp. Hypertens. 2022, 44, 419–426. [Google Scholar] [CrossRef]
- Dusanov, S.; Svendsen, M.; Ruzzin, J.; Kiviranta, H.; Gulseth, H.L.; Klemsdal, T.O.; Tonstad, S. Effect of Fatty Fish or Nut Consumption on Concentrations of Persistent Organic Pollutants in Overweight or Obese Men and Women: A Randomized Controlled Clinical Trial. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Dikariyanto, V.; Smith, L.; Francis, L.; Robertson, M.; Kusaslan, E.; O’Callaghan-Latham, M.; Palanche, C.; D’Annibale, M.; Christodoulou, D.; Basty, N.; et al. Snacking on Whole Almonds for 6 Weeks Improves Endothelial Function and Lowers LDL Cholesterol but Does Not Affect Liver Fat and Other Cardiometabolic Risk Factors in Healthy Adults: The ATTIS Study, a Randomized Controlled Trial. Am. J. Clin. Nutr. 2020, 111, 1178–1189. [Google Scholar] [CrossRef]
- Guarneiri, L.L.; Paton, C.M.; Cooper, J.A. Pecan-Enriched Diets Alter Cholesterol Profiles and Triglycerides in Adults at Risk for Cardiovascular Disease in a Randomized, Controlled Trial. J. Nutr. 2021, 151, 3091–3101. [Google Scholar] [CrossRef] [PubMed]
- García-Cordero, J.; Mateos, R.; González-Rámila, S.; Seguido, M.A.; Sierra-Cinos, J.L.; Sarriá, B.; Bravo, L. Dietary Supplements Containing Oat Beta-Glucan and/or Green Coffee (Poly)Phenols Showed Limited Effect in Modulating Cardiometabolic Risk Biomarkers in Overweight/Obese Patients without a Lifestyle Intervention. Nutrients 2023, 15, 2223. [Google Scholar] [CrossRef]
- Nova, E.; San Mauro-Martín, I.; Díaz-Prieto, L.E.; Marcos, A. Wine and Beer within a Moderate Alcohol Intake Is Associated with Higher Levels of HDL-c and Adiponectin. Nutr. Res. 2019, 63, 42–50. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Millar, C.L.; Duclos, Q.; Blesso, C.N. Effects of Dietary Flavonoids on Reverse Cholesterol Transport, HDL Metabolism, and HDL Function. Adv. Nutr. 2017, 8, 226–239. [Google Scholar] [CrossRef]
- Istas, G.; Wood, E.; Le Sayec, M.; Rawlings, C.; Yoon, J.; Dandavate, V.; Cera, D.; Rampelli, S.; Costabile, A.; Fromentin, E.; et al. Effects of Aronia Berry (Poly)Phenols on Vascular Function and Gut Microbiota: A Double-Blind Randomized Controlled Trial in Adult Men. Am. J. Clin. Nutr. 2019, 110, 316–329. [Google Scholar] [CrossRef]
- Yang, J.; Kurnia, P.; Henning, S.M.; Lee, R.; Huang, J.; Garcia, M.C.; Surampudi, V.; Heber, D.; Li, Z. Effect of Standardized Grape Powder Consumption on the Gut Microbiome of Healthy Subjects: A Pilot Study. Nutrients 2021, 13, 3965. [Google Scholar] [CrossRef] [PubMed]
- Comak Gocer, E.M.; Koptagel, E. Production of Milks and Kefir Beverages from Nuts and Certain Physicochemical Analysis. Food Chem. 2023, 402, 134252. [Google Scholar] [CrossRef]
- Hernáez, Á.; Sanllorente, A.; Castañer, O.; Martínez-González, M.Á.; Ros, E.; Pintó, X.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Alonso-Gómez, Á.M.; et al. Increased Consumption of Virgin Olive Oil, Nuts, Legumes, Whole Grains, and Fish Promotes HDL Functions in Humans. Mol. Nutr. Food Res. 2019, 63, 1800847. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.V.; Guzzetti, L.; Panzeri, D.; De Giuseppe, R.; Coccetti, P.; Labra, M.; Cena, H. Bioactive Compounds in Legumes: Implications for Sustainable Nutrition and Health in the Elderly Population. Trends Food Sci. Technol. 2021, 117, 139–147. [Google Scholar] [CrossRef]
- Han, Y.; Kim, A.R.; Lee, J.H.; Kim, M. Adiponectin and 8-Epi-PGF2α as Intermediate Influencing Factors in Weight Reduction after Legume Consumption: A 12-Week Randomised Controlled Trial. Br. J. Nutr. 2022, 127, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.; Brummell, C.; Kealy, C.; Vitkaitis, K.; Redfern, S.; Zabetakis, I. Cardio-Protective Properties and Health Benefits of Fish Lipid Bioactives; The Effects of Thermal Processing. Mar. Drugs 2022, 20, 187. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, N.R.T.; Cartolano, F.D.C.; Dias, G.D.; Ventura, A.O.C.; Mello, A.P.D.Q. Can A Nutritional Factor Modulate The Hdl Functionality: Role Of Omega-3 Fatty Acid. Atherosclerosis 2019, 287, e226. [Google Scholar] [CrossRef]
- Tutor, A.; O’Keefe, E.L.; Lavie, C.J.; Elagizi, A.; Milani, R.; O’Keefe, J. Omega-3 Fatty Acids in Primary and Secondary Prevention of Cardiovascular Diseases. Prog. Cardiovasc. Dis. 2024, 84, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.B.; Reisdorph, R.M.; Rasolofomanana-Rajery, S.; Michel, C.; Khajeh-Sharafabadi, M.; Doenges, K.A.; Weaver, N.; Quinn, K.; Sutliff, A.K.; Tang, M.; et al. Salmon Food-Specific Compounds and Their Metabolites Increase in Human Plasma and Are Associated with Cardiometabolic Health Indicators Following a Mediterranean-Style Diet Intervention. J. Nutr. 2024, 154, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Tani, S.; Atsumi, W.; Imatake, K.; Suzuki, Y.; Yagi, T.; Takahashi, A.; Matsumoto, N.; Okumura, Y. Associations of Higher Fish Consumption and Lifestyle with Lower Monocyte/HDL-C Ratio in a Japanese Population: Implication for the Anti-Atherosclerotic Effect of Fish Consumption. J. Cardiol. 2022, 80, 402–409. [Google Scholar] [CrossRef]
- Albashr, T.K.; Khidhir, Z.K.; Namiq, K.; Hamadamin, A.; Alhabib, F.; Khalaf, W. Study on Chemical Composition and Physical Properties of the Hamri (Barbus luteus) and Balaout (Chondrostoma regium) Fish Meat, Oil and Impact of Its Oils on Cholesterol, Triglyceride, HDL and Blood Sugar of Laboratory Rats. Saudi J. Biol. Sci. 2022, 29, 261–265. [Google Scholar] [CrossRef]
- Sgroi, F.; Sciortino, C.; Giamporcaro, G.; Modica, F. Exploring the Impact of Beliefs and Experiential Factors on Extra Virgin Olive Oil Consumption. J. Agric. Food Res. 2024, 15, 101056. [Google Scholar] [CrossRef]
- Otrante, A.; Trigui, A.; Walha, R.; Berrougui, H.; Fulop, T.; Khalil, A. Extra Virgin Olive Oil Prevents the Age-Related Shifts of the Distribution of HDL Subclasses and Improves Their Functionality. Nutrients 2021, 13, 2235. [Google Scholar] [CrossRef]
- Pilafidis, S.; Tsouko, E.; Sougleri, G.; Diamantopoulou, P.; Gkatzionis, K.; Ioannou, Z.; Sarris, D. Submerged Cultivation of Selected Macro-Fungi to Produce Mycelia Rich in β-Glucans and Other Bioactive Compounds, Valorizing Side Streams of the Food Industry. Carbon Resour. Convers. 2024, 7, 100198. [Google Scholar] [CrossRef]
- Xu, Z.; Zheng, Z.; Cai, G.; Chen, B.; Yang, H. Improving the Hypoglycemic Activity of Phenolic Extracts from Dendrobium officinale Leaves Using the Solid-State Fermentation of Edible Fungi. Food Biosci. 2024, 58, 103828. [Google Scholar] [CrossRef]
- Wilkens, T.L.; Sørensen, H.; Jensen, M.K.; Furtado, J.D.; Dragsted, L.O.; Mukamal, K.J. Associations between Alcohol Consumption and HDL Subspecies Defined by ApoC3, ApoE and ApoJ: The Cardiovascular Health Study. Curr. Probl. Cardiol. 2023, 48, 101395. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Isath, A.; Rosenson, R.S.; Khawaja, M.; Wang, Z.; Fogg, S.E.; Virani, S.S.; Qi, L.; Cao, Y.; Long, M.T.; et al. Alcohol Consumption and Cardiovascular Health. Am. J. Med. 2022, 135, 1213–1230.e3. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Huang, C.; Li, J.; Liu, F.; Huang, K.; Liu, Z.; Yang, X.; Liu, X.; Cao, J.; Chen, S.; et al. Causal Associations of Alcohol Consumption with Cardiovascular Diseases and All-Cause Mortality among Chinese Males. Am. J. Clin. Nutr. 2022, 116, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Toma, A.; Paré, G.; Leong, D.P. Alcohol and Cardiovascular Disease: How Much Is Too Much? Curr. Atheroscler. Rep. 2017, 19, 13. [Google Scholar] [CrossRef] [PubMed]
- Medling, T.; Gobeil, K.; Sawalha, K.; Abozenah, M.; Tavares, P.; Friedmann, P.; Naimi, T.; Pack, Q. Relation of Patient’s Opinion of Alcohol’s Health Effects and Drinking Habits Among Hospitalized Patients with Cardiovascular Disease. Am. J. Cardiol. 2022, 179, 31–38. [Google Scholar] [CrossRef]
- Mandrekar, P.; Mandal, A. Pathogenesis of Alcohol-Associated Liver Disease. Clin. Liver Dis. 2024, in press. [Google Scholar] [CrossRef]
- Reile, R.; Innos, K. Alcohol-Related Cancer Risk Awareness and Support for Cancer Warning Labelling among Adults in Estonia. Public Health 2024, 236, 247–249. [Google Scholar] [CrossRef]
- Paul, P.; Campbell, G.; Zekeridou, A.; Mauermann, M.; Naddaf, E. Diagnosing Peripheral Neuropathy in Patients with Alcohol Use Disorder. Mayo Clin. Proc. 2024, 99, 1299–1305. [Google Scholar] [CrossRef]
- Sushma; Mishra, S.; Kanchan, S.; Divakar, A.; Jha, G.; Sharma, D.; Kapoor, R.; Rath, S.K. Alcohol Induces ER Stress and Apoptosis by Inducing Oxidative Stress and Disruption of Calcium Homeostasis in Glial Cells. Food Chem. Toxicol. 2023, 182, 114192. [Google Scholar] [CrossRef]
- Yeligar, S.M.; Harris, F.L.; Hart, C.M.; Brown, L.A.S. Ethanol Induces Oxidative Stress in Alveolar Macrophages via Upregulation of NADPH Oxidases. J. Immunol. 2012, 188, 3648–3657. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhai, Q.; Shi, X. Alcohol-Induced Oxidative Stress and Cell Responses. J. Gastroenterol. Hepatol. 2006, 21, S26–S29. [Google Scholar] [CrossRef] [PubMed]
- Magrone, T.; Russo, M.A.; Jirillo, E. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications. Front. Immunol. 2017, 8, 677. [Google Scholar] [CrossRef] [PubMed]
- Yun-Soo, S.; Ok-Hwa, K.; Sung-Bae, K.; Su-Hyun, M.; Da-Hye, K.; Da-Wun, Y.; Jang-Gi, C.; Young-Mi, L.; Dae-Kil, K.; Ho-Seog, L.; et al. Quercetin Prevents Adipogenesis by Regulation of Transcriptional Factors and Lipases in OP9 Cells. Int. J. Mol. Med. 2015, 35, 1779–1785. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.L.; Wang, X.; Zhang, L.; Qiu, M.H. The Sources and Mechanisms of Bioactive Ingredients in Coffee. Food Funct. 2019, 10, 3113–3126. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Quon, M.J.; Kim, J.-A. New Insights into the Mechanisms of Polyphenols beyond Antioxidant Properties; Lessons from the Green Tea Polyphenol, Epigallocatechin 3-Gallate. Redox Biol. 2014, 2, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hu, G.-L.; Qiu, M.-H.; Cao, J.; Xiong, W.-Y. Coffee, Tea, and Cocoa in Obesity Prevention: Mechanisms of Action and Future Prospects. Curr. Res. Food Sci. 2024, 8, 100741. [Google Scholar] [CrossRef]
- Munguia, L.; Rubio-Gayosso, I.; Ramirez-Sanchez, I.; Ortiz, A.; Hidalgo, I.; Gonzalez, C.; Meaney, E.; Villarreal, F.; Najera, N.; Ceballos, G. High Flavonoid Cocoa Supplement Ameliorates Plasma Oxidative Stress and Inflammation Levels While Improving Mobility and Quality of Life in Older Subjects: A Double-Blind Randomized Clinical Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1620–1627. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Li, D.; Hu, X. Effects of Coffee and Tea on Postprandial Cardiometabolic Risk Factors in Healthy Individuals: A Randomized Crossover Trial. Asia Pac. J. Clin. Nutr. 2024, 33, 102–110. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, Z.; Xu, Y. HDL and Oxidation. In HDL Metabolism and Diseases; Zheng, L., Ed.; Springer Nature: Singapore, 2022; pp. 63–77. ISBN 978-981-19159-2-5. [Google Scholar]
- Durrington, P.N.; Bashir, B.; Soran, H. Paraoxonase 1 and Atherosclerosis. Front. Cardiovasc. Med. 2023, 10, 1065967. [Google Scholar] [CrossRef]
- Ponce-Ruiz, N.; Murillo-González, F.E.; Rojas-García, A.E.; Bernal Hernández, Y.Y.; Mackness, M.; Ponce-Gallegos, J.; Barrón-Vivanco, B.S.; Hernández-Ochoa, I.; González-Arias, C.A.; Ortega Cervantes, L.; et al. Phenotypes and Concentration of PON1 in Cardiovascular Disease: The Role of Nutrient Intake. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Lou-Bonafonte, J.M.; Gabás-Rivera, C.; Navarro, M.A.; Osada, J. PON1 and Mediterranean Diet. Nutrients 2015, 7, 4068–4092. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, B.; Volkova, N.; Aviram, M. Postprandial Serum Triacylglycerols and Oxidative Stress in Mice after Consumption of Fish Oil, Soy Oil or Olive Oil: Possible Role for Paraoxonase-1 Triacylglycerol Lipase-like Activity. Nutrition 2006, 22, 922–930. [Google Scholar] [CrossRef] [PubMed]
- De Liz, S.; Cardoso, A.L.; Copetti, C.L.K.; Hinnig, P.D.F.; Vieira, F.G.K.; Da Silva, E.L.; Schulz, M.; Fett, R.; Micke, G.A.; Di Pietro, P.F. Açaí (Euterpe oleracea Mart.) and Juçara (Euterpe edulis Mart.) Juices Improved HDL-c Levels and Antioxidant Defense of Healthy Adults in a 4-Week Randomized Cross-over Study. Clin. Nutr. 2020, 39, 3629–3636. [Google Scholar] [CrossRef] [PubMed]
- Damavandi, R.D.; Mousavi, S.N.; Shidfar, F.; Mohammadi, V.; Rajab, A.; Hosseini, S.; Heshmati, J. Effects of Daily Consumption of Cashews on Oxidative Stress and Atherogenic Indices in Patients with Type 2 Diabetes: A Randomized, Controlled-Feeding Trial. Int. J. Endocrinol. Metab. 2019, 17, e70744. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.G.M.; Gomes, A.C.; Navarro, A.M.; da Cunha, L.C.; Silva, M.A.C.; Junior, F.B.; Mota, J.F. Baru Almonds Increase the Activity of Glutathione Peroxidase in Overweight and Obese Women: A Randomized, Placebo-Controlled Trial. Nutrients 2019, 11, 1750. [Google Scholar] [CrossRef]
- Katrenčíková, B.; Vaváková, M.; Waczulíková, I.; Oravec, S.; Garaiova, I.; Nagyová, Z.; Hlaváčová, N.; Ďuračková, Z.; Trebatická, J. Lipid Profile, Lipoprotein Subfractions, and Fluidity of Membranes in Children and Adolescents with Depressive Disorder: Effect of Omega-3 Fatty Acids in a Double-Blind Randomized Controlled Study. Biomolecules 2020, 10, 1427. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Soto, A.; Alejandra Chavez-Santoscoy, R.; Porras, O.; Hidalgo-Ledesma, M.; Serrano-Medina, A.; Alejandra Ramírez-Rodríguez, A.; Alejandra Castillo-Martinez, N. Epicatechin and Quercetin Exhibit in Vitro Antioxidant Effect, Improve Biochemical Parameters Related to Metabolic Syndrome, and Decrease Cellular Genotoxicity in Humans. Food Res. Int. 2021, 142, 110101. [Google Scholar] [CrossRef] [PubMed]
- Schincaglia, R.M.; Cuppari, L.; Neri, H.F.S.; Cintra, D.E.; Sant’Ana, M.R.; Mota, J.F. Effects of Baru Almond Oil (Dipteryx alata Vog.) Supplementation on Body Composition, Inflammation, Oxidative Stress, Lipid Profile, and Plasma Fatty Acids of Hemodialysis Patients: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Complement. Ther. Med. 2020, 52, 102479. [Google Scholar] [CrossRef]
- Boshagh, K.; Khorvash, F.; Sahebkar, A.; Majeed, M.; Bahreini, N.; Askari, G.; Bagherniya, M. The Effects of Curcumin-Piperine Supplementation on Inflammatory, Oxidative Stress and Metabolic Indices in Patients with Ischemic Stroke in the Rehabilitation Phase: A Randomized Controlled Trial. Nutr. J. 2023, 22, 69. [Google Scholar] [CrossRef]
- Desai, T.; Roberts, M.; Bottoms, L. Effects of Short-Term Continuous Montmorency Tart Cherry Juice Supplementation in Participants with Metabolic Syndrome. Eur. J. Nutr. 2021, 60, 1587–1603. [Google Scholar] [CrossRef]
- Farhangi, M.A.; Tajmiri, S. The Effects of Powdered Black Cumin Seeds on Markers of Oxidative Stress, Intracellular Adhesion Molecule (ICAM)-1 and Vascular Cell Adhesion Molecule (VCAM)-1 in Patients with Hashimoto’s Thyroiditis. Clin. Nutr. ESPEN 2020, 37, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Demirci-Çekiç, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of Oxidative Stress and Antioxidant Defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [Google Scholar] [CrossRef] [PubMed]
- Higgins, M.R.; Izadi, A.; Kaviani, M. Antioxidants and Exercise Performance: With a Focus on Vitamin E and C Supplementation. Int. J. Environ. Res. Public Health 2020, 17, 8452. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, N.; Ktenioudaki, A.; Smyth, T.P.; McLoughlin, P.; Doran, L.; Auty, M.A.E.; Arendt, E.; Gallagher, E. Physicochemical Assessment of Two Fruit By-Products as Functional Ingredients: Apple and Orange Pomace. J. Food Eng. 2015, 153, 89–95. [Google Scholar] [CrossRef]
- Kumar, H.; Guleria, S.; Kimta, N.; Nepovimova, E.; Dhalaria, R.; Dhanjal, D.S.; Sethi, N.; Alomar, S.Y.; Kuca, K. Selected Fruit Pomaces: Nutritional Profile, Health Benefits, and Applications in Functional Foods and Feeds. Curr. Res. Food Sci. 2024, 9, 100791. [Google Scholar] [CrossRef] [PubMed]
- Unveiling Novel Applications of Fruit Pomace for Sustainable Production of Value-Added Products and Health Benefits: A Review-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S2212429224009635 (accessed on 31 August 2024).
- Tsoupras, A.; Gkika, D.A.; Markopoulos, T.; Curran, R.; Scallon, C.; Karali, M.; Kyzas, G.Z. Apple Products (Apple Juice and Cider) and By-Products (Apple Pomace): Bioactive Compounds and Biological Properties. In Natural Products in Beverages: Botany, Phytochemistry, Pharmacology and Processing; Mérillon, J.-M., Riviere, C., Lefèvre, G., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–42. ISBN 978-3-031-04195-2. [Google Scholar]
- Marra, A.; Manousakis, V.; Zervas, G.P.; Koutis, N.; Finos, M.A.; Adamantidi, T.; Panoutsopoulou, E.; Ofrydopoulou, A.; Tsoupras, A. Avocado and Its By-Products as Natural Sources of Valuable Anti-Inflammatory and Antioxidant Bioactives for Functional Foods and Cosmetics with Health-Promoting Properties. Appl. Sci. 2024, 14, 5978. [Google Scholar] [CrossRef]
- Moysidou, A.M.; Cheimpeloglou, K.; Koutra, S.I.; Finos, M.A.; Ofrydopoulou, A.; Tsoupras, A. A Comprehensive Review on the Antioxidant and Anti-Inflammatory Bioactives of Kiwi and Its By-Products for Functional Foods and Cosmetics with Health-Promoting Properties. Appl. Sci. 2024, 14, 5990. [Google Scholar] [CrossRef]
- Meghwar, P.; Ghufran Saeed, S.M.; Ullah, A.; Nikolakakis, E.; Panagopoulou, E.; Tsoupras, A.; Smaoui, S.; Mousavi Khaneghah, A. Nutritional Benefits of Bioactive Compounds from Watermelon: A Comprehensive Review. Food Biosci. 2024, 61, 104609. [Google Scholar] [CrossRef]
- Sodhi, G.K.; Kaur, G.; George, N.; Walia, H.K.; Sillu, D.; Rath, S.K.; Saxena, S.; Rios-Solis, L.; Dwibedi, V. Waste to Wealth: Microbial-Based Valorization of Grape Pomace for Nutraceutical, Cosmetic, and Therapeutic Applications to Promote Circular Economy. Process Saf. Environ. Prot. 2024, 188, 1464–1478. [Google Scholar] [CrossRef]
- Phenolic and Nutritional Profiles, and Antioxidant Activity of Grape Pomaces and Seeds from Lacrima Di Morro d’Alba and Verdicchio Varieties-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S2212429223004595 (accessed on 31 August 2024).
- Dziedziński, M.; Stachowiak, B.; Kobus-Cisowska, J.; Kozłowski, R.; Stuper-Szablewska, K.; Szambelan, K.; Górna, B. Supplementation of Beer with Pinus sylvestris L. Shoots Extracts and Its Effect on Fermentation, Phenolic Content, Antioxidant Activity and Sensory Profiles. Electron. J. Biotechnol. 2023, 63, 10–17. [Google Scholar] [CrossRef]
- Tsoupras, A.; Ni, V.L.J.; O’Mahony, É.; Karali, M. Winemaking: “With One Stone, Two Birds”? A Holistic Review of the Bio-Functional Compounds, Applications and Health Benefits of Wine and Wineries’ By-Products. Fermentation 2023, 9, 838. [Google Scholar] [CrossRef]
- Muñoz-Bernal, Ó.A.; Coria-Oliveros, A.J.; de la Rosa, L.A.; Rodrigo-García, J.; del Rocío Martínez-Ruiz, N.; Sayago-Ayerdi, S.G.; Alvarez-Parrilla, E. Cardioprotective Effect of Red Wine and Grape Pomace. Food Res. Int. 2021, 140, 110069. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.; Panagopoulou, E.A.; Kyzas, G.Z. Anti-Inflammatory, Antithrombotic and Anti-Oxidant Bioactives of Beer and Brewery by-Products, as Ingredients of Bio-Functional Foods, Nutraceuticals, Cosmetics, Cosmeceuticals and Pharmaceuticals with Health Promoting Properties. AIMS Agric. Food 2024, 9, 568–606. [Google Scholar] [CrossRef]
- Bacchetti, T.; Turco, I.; Urbano, A.; Morresi, C.; Ferretti, G. Relationship of Fruit and Vegetable Intake to Dietary Antioxidant Capacity and Markers of Oxidative Stress: A Sex-Related Study. Nutrition 2019, 61, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H.-S. Therapeutic Potential of Quercetin as a Cardiovascular Agent. Eur. J. Med. Chem. 2018, 155, 889–904. [Google Scholar] [CrossRef] [PubMed]
- Terao, J. Factors Modulating Bioavailability of Quercetin-Related Flavonoids and the Consequences of Their Vascular Function. Biochem. Pharmacol. 2017, 139, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Pegg, R.B. Tree Nuts and Peanuts as a Source of Natural Antioxidants in Our Daily Diet. Curr. Pharm. Des. 2020, 26, 1898–1916. [Google Scholar] [CrossRef] [PubMed]
- Alcázar-Valle, M.; Lugo-Cervantes, E.; Mojica, L.; Morales-Hernández, N.; Reyes-Ramírez, H.; Enríquez-Vara, J.N.; García-Morales, S. Bioactive Compounds, Antioxidant Activity, and Antinutritional Content of Legumes: A Comparison between Four Phaseolus Species. Molecules 2020, 25, 3528. [Google Scholar] [CrossRef]
- Moreno-Valdespino, C.A.; Luna-Vital, D.; Camacho-Ruiz, R.M.; Mojica, L. Bioactive Proteins and Phytochemicals from Legumes: Mechanisms of Action Preventing Obesity and Type-2 Diabetes. Food Res. Int. 2020, 130, 108905. [Google Scholar] [CrossRef]
- Power, R.; Nolan, J.M.; Prado-Cabrero, A.; Roche, W.; Coen, R.; Power, T.; Mulcahy, R. Omega-3 Fatty Acid, Carotenoid and Vitamin E Supplementation Improves Working Memory in Older Adults: A Randomised Clinical Trial. Clin. Nutr. 2022, 41, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Head, B.; La Du, J.; Tanguay, R.L.; Kioussi, C.; Traber, M.G. Vitamin E Is Necessary for Zebrafish Nervous System Development. Sci. Rep. 2020, 10, 15028. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Jiménez, G.M.; López-Saiz, C.M.; Ramírez-Guerra, H.E.; Ezquerra-Brauer, J.M.; Ruiz-Cruz, S.; Torres-Arreola, W. Role of Endogenous and Exogenous Tocopherols in the Lipid Stability of Marine Oil Systems: A Review. Int. J. Mol. Sci. 2016, 17, 1968. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.F.S.; Nielsen, N.S.; Baron, C.P.; Jacobsen, C. Oxidative Stability of Marine Phospholipids. In Proceedings of the 10th ILPS Phospholipids Congress, Rotterdam, The Netherlands, 16–18 September 2011. [Google Scholar]
- Oxidation of LDL by Myeloperoxidase and Reactive Nitrogen Species | Arteriosclerosis, Thrombosis, and Vascular Biology. Available online: https://www.ahajournals.org/doi/full/10.1161/01.ATV.20.7.1716 (accessed on 30 August 2024).
- Nutrients | Free Full-Text | Micronutrients, Phytochemicals and Mediterranean Diet: A Potential Protective Role against COVID-19 through Modulation of PAF Actions and Metabolism. Available online: https://www.mdpi.com/2072-6643/13/2/462 (accessed on 30 August 2024).
- Associations of Fish Oil and Vitamin B and E Supplementation with Cardiovascular Outcomes and Mortality in People Receiving Haemodialysis: A Review-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/26283325/ (accessed on 30 August 2024).
- Sadeghi, N.; Paknezhad, F.; Rashidi Nooshabadi, M.; Kavianpour, M.; Jafari Rad, S.; Khadem Haghighian, H. Vitamin E and Fish Oil, Separately or in Combination, on Treatment of Primary Dysmenorrhea: A Double-Blind, Randomized Clinical Trial. Gynecol. Endocrinol. 2018, 34, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [PubMed]
- Prado, Y.; Aravena, D.; Gatica, S.; Llancalahuen, F.M.; Aravena, C.; Gutiérrez-Vera, C.; Carreño, L.J.; Cabello-Verrugio, C.; Simon, F. From Genes to Systems: The Role of Food Supplementation in the Regulation of Sepsis-Induced Inflammation. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2024, 1870, 166909. [Google Scholar] [CrossRef] [PubMed]
- Avery, J.C.; Hoffmann, P.R. Selenium, Selenoproteins, and Immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.V.; Edirisinghe, I.; Burton-Freeman, B.M. Berries: Anti-Inflammatory Effects in Humans. J. Agric. Food Chem. 2014, 62, 3886–3903. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.B.S.; Reis, B.Z.; Rogero, M.M.; Vargas-Mendez, E.; Júnior, F.B.; Cercato, C.; Cozzolino, S.M.F. Consumption of Brazil Nuts with High Selenium Levels Increased Inflammation Biomarkers in Obese Women: A Randomized Controlled Trial. Nutrition 2019, 63–64, 162–168. [Google Scholar] [CrossRef]
- Oh, E.S.; Petersen, K.S.; Kris-Etherton, P.M.; Rogers, C.J. Spices in a High-Saturated-Fat, High-Carbohydrate Meal Reduce Postprandial Proinflammatory Cytokine Secretion in Men with Overweight or Obesity: A 3-Period, Crossover, Randomized Controlled Trial. J. Nutr. 2020, 150, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-Inflammatory Effects of Flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef] [PubMed]
- Emamat, H.; Zahedmehr, A.; Asadian, S.; Nasrollahzadeh, J. The Effect of Barberry (Berberis integerrima) on Lipid Profile and Systemic Inflammation in Subjects with Cardiovascular Risk Factors: A Randomized Controlled Trial. BMC Complement. Med. Ther. 2022, 22, 59. [Google Scholar] [CrossRef]
- Christiansen, C.B.; Jeppesen, P.B.; Hermansen, K.; Gregersen, S. The Impact of an 8-Week Supplementation with Fermented and Non-Fermented Aronia Berry Pulp on Cardiovascular Risk Factors in Individuals with Type 2 Diabetes. Nutrients 2023, 15, 5094. [Google Scholar] [CrossRef]
- Clark, J.S.; Dyer, K.A.; Davis, C.R.; Shivappa, N.; Hébert, J.R.; Woodman, R.; Hodgson, J.M.; Murphy, K.J. Adherence to a Mediterranean Diet for 6 Months Improves the Dietary Inflammatory Index in a Western Population: Results from the MedLey Study. Nutrients 2023, 15, 366. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Composition, Antioxidant Potential and Health Benefits of Citrus Peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Huang, L.L.; Luo, H.L.; Huang, Y.C.; Huang, X.Y.; Chen, G.; Gui, J.; Liu, Z.L.; Yang, L.; Liu, X.Z. Passion Fruit Peel and Its Zymolyte Enhance Gut Function in Sanhuang Broilers by Improving Antioxidation and Short-Chain Fatty Acids and Decreasing Inflammatory Cytokines. Poult. Sci. 2023, 102, 102672. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, A.M.; John, K.A.; Emmanuel, I.B.; Chidebe, E.O.; Adedapo, A.D.A. High-Fat Diet-Induced Memory Impairment and Anxiety-like Behavior in Rats Attenuated by Peel Extract of Ananas comosus Fruit via Atheroprotective, Antioxidant and Anti-Inflammatory Actions. Metab. Open 2021, 9, 100077. [Google Scholar] [CrossRef]
- Mokhtari, I.; Moumou, M.; Harnafi, M.; Milenkovic, D.; Amrani, S.; Harnafi, H. Loquat Fruit Peel Extract Regulates Lipid Metabolism and Liver Oxidative Stress in Mice: In Vivo and in Silico Approaches. J. Ethnopharmacol. 2023, 310, 116376. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A. The Anti-Inflammatory and Antithrombotic Properties of Bioactives from Orange, Sanguine and Clementine Juices and from Their Remaining By-Products. Beverages 2022, 8, 39. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, Y.; Wang, Y.; Yu, Z.; Qin, H.; Zhao, L.; Cheng, J.; Shen, B.; Jin, M.; Feng, H. Total Flavonoids of Broussonetia papyrifera Alleviate Non-Alcohol Fatty Liver Disease via Regulating Nrf2/AMPK/mTOR Signaling Pathways. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2024, 1869, 159497. [Google Scholar] [CrossRef]
- Alcântara, D.B.; Dionísio, A.P.; Artur, A.G.; Silveira, B.K.S.; Lopes, A.F.; Guedes, J.A.C.; Luz, L.R.; Nascimento, R.F.; Lopes, G.S.; Hermsdorff, H.H.M.; et al. Selenium in Brazil Nuts: An Overview of Agronomical Aspects, Recent Trends in Analytical Chemistry, and Health Outcomes. Food Chem. 2022, 372, 131207. [Google Scholar] [CrossRef]
- Adam-Dima, E.I.; Balas, M.; Anastasescu, M.; Purdel, C.; Margină, D. Synthesis of Homogeneous Spherical Selenium Nanoparticles through a Chemical Method for Cancer Therapy Applications. Toxicol. In Vitro 2024, 95, 105765. [Google Scholar] [CrossRef] [PubMed]
- Giacconi, R.; Chiodi, L.; Boccoli, G.; Costarelli, L.; Piacenza, F.; Provinciali, M.; Malavolta, M. Reduced Levels of Plasma Selenium Are Associated with Increased Inflammation and Cardiovascular Disease in an Italian Elderly Population. Exp. Gerontol. 2021, 145, 111219. [Google Scholar] [CrossRef]
- Glenn-Davi, K.; Hurley, A.; Brennan, E.; Coughlan, J.; Shiels, K.; Moran, D.; Saha, S.K.; Zabetakis, I.; Tsoupras, A. Fermentation Enhances the Anti-Inflammatory and Anti-Platelet Properties of Both Bovine Dairy and Plant-Derived Dairy Alternatives. Fermentation 2022, 8, 292. [Google Scholar] [CrossRef]
- Chen, M.-F.; Hsu, H.-C.; Liau, C.-S.; Lee, Y.-T. The Role of Vitamin E on the Anti-Atherosclerotic Effect of Fish Oil in Diet-Induced Hypercholesterolemic Rabbits. Prostaglandins Other Lipid Mediat. 1999, 57, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Nestel, P.J. Fish Oil and Cardiovascular Disease: Lipids and Arterial Function12. Am. J. Clin. Nutr. 2000, 71, 228S–231S. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.B.; Fragopoulou, E.; Nomikos, T.; Iatrou, C.; Antonopoulou, S.; Demopoulos, C.A. Characterization of the de Novo Biosynthetic Enzyme of Platelet Activating Factor, DDT-Insensitive Cholinephosphotransferase, of Human Mesangial Cells. Mediat. Inflamm. 2007, 2007, 27683. [Google Scholar] [CrossRef] [PubMed]
- Nasopoulou, C.; Nomikos, T.; Demopoulos, C.A.; Zabetakis, I. Comparison of Antiatherogenic Properties of Lipids Obtained from Wild and Cultured Sea Bass (Dicentrarchus labrax) and Gilthead Sea Bream (Sparus aurata). Food Chem. 2007, 100, 560–567. [Google Scholar] [CrossRef]
- Tsoupras, A.; Iatrou, C.; Frangia, C.; Demopoulos, C. The Implication of Platelet Activating Factor in Cancer Growth and Metastasis: Potent Beneficial Role of PAF-Inhibitors and Antioxidants. Infect. Disord. Drug Targets 2009, 9, 390–399. [Google Scholar] [CrossRef]
- Hayashi, H.; Tanaka, Y.; Hibino, H.; Umeda, Y.; Kawamitsu, H.; Fujimoto, H.; Amakawa, T. Beneficial Effect of Salmon Roe Phosphatidylcholine in Chronic Liver Disease. Curr. Med. Res. Opin. 1999, 15, 177–184. [Google Scholar] [CrossRef]
- Conde, T.A.; Zabetakis, I.; Tsoupras, A.; Medina, I.; Costa, M.; Silva, J.; Neves, B.; Domingues, P.; Domingues, M.R. Microalgal Lipid Extracts Have Potential to Modulate the Inflammatory Response: A Critical Review. Int. J. Mol. Sci. 2021, 22, 9825. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.K.; Albarico, F.P.J.B.; Perumal, P.K.; Vadrale, A.P.; Nian, C.T.; Chau, H.T.B.; Anwar, C.; Wani, H.M.U.D.; Pal, A.; Saini, R.; et al. Algae as an Emerging Source of Bioactive Pigments. Bioresour. Technol. 2022, 351, 126910. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Dordevic, A.L.; Cox, K.; Scholey, A.; Ryan, L.; Bonham, M.P. Twelve Weeks’ Treatment with a Polyphenol-Rich Seaweed Extract Increased HDL Cholesterol with No Change in Other Biomarkers of Chronic Disease Risk in Overweight Adults: A Placebo-Controlled Randomized Trial. J. Nutr. Biochem. 2021, 96, 108777. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Carocho, M.; Barros, L.; Zabetakis, I.; Mocan, A.; Tsoupras, A.; Cruz, A.G.; Pimentel, T.C. Implementation of Sustainable Development Goals in the Dairy Sector: Perspectives on the Use of Agro-Industrial Side-Streams to Design Functional Foods. Trends Food Sci. Technol. 2022, 124, 128–139. [Google Scholar] [CrossRef]
- Tirosh, O.; Verman, M.; Ivancovsky-Wajcman, D.; Grinshpan, L.S.; Fliss-Isakov, N.; Webb, M.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Differential Effects of Low or High-Fat Dairy and Fat Derived from Dairy Products on MASLD. JHEP Rep. 2024, 101194, in press. [Google Scholar] [CrossRef]
Functional Foods and Their Part in CEC Regulation | Study Design/Parameters | Main Findings | Year | Ref. |
---|---|---|---|---|
Berries | Prohypertensive patients, 12-week study, aronia berries/placebo (maltodextrin) | Arterial function and FMD improvement, no noticeable influence on CEC | 2022 | [73] |
Grape seed extract (GSE) | Obese individuals, 12-week study, GSE/placebo, calorie-restricted diet | HDL-C levels and HDL-C/LDL-C ratio remarkably increased; LDL-C, total cholesterol, and triglycerides were reduced | 2021 | [74] |
Mixed nuts | Obese with high cardiovascular risk patients, 16-week study, mixed nuts/isocaloric pretzels | Body fat% reduction, no significant decrease in inflammation markers, no significant change in HDL-C | 2023 | [75] |
Legumes | Elderly participants (ages 60–70), nut- and legume-enriched diet | HDL-C increase, LDL-C decrease, and no correlation between nuts and legumes and FRS or CVD risk factors | 2021 | [76] |
Fish | Both genders participated, 11-month study, average weekly fish consumption frequency: 2.58 ± 1.39 days (men) and 2.42 ± 1.36 days (women) | Men (as the weekly fish intake frequency increased): significant decrease in serum non-HCL-C, serum LDL-C increased, HDL-C increased, and LDL-C/HLD-C ratio remarkably decreased | 2021 | [77] |
Extra virgin olive oil | Healthy Australian adults, 3-week study, daily doses of extra virgin HPOO 1/LPOO 2, oil switch after 2 weeks | Significant increase: Serum HDL-C No major differences: CEC and circulating lipids | 2023 | [78] |
Fungi | Dyslipidemic patients, 120-day study, Natokinase Monascus Supplements (NMS) | Decrease: Total cholesterol, LDL-C, non-HDL-C, and LDL-C/HDL-C ratio No major shifts: Triglycerides and HDL-C | 2023 | [79] |
Alcohol | Male patients with PAD 3, non-drinkers, occasional drinkers, regular drinkers | Increase (regular drinker’s group): HLD-C No significant difference: total cholesterol, LDL-C, and triglycerides | 2023 | [80] |
Cocoa, coffee, tea | Low or mediate cardiovascular risk participants, caffeinated and decaffeinated coffee, 1-week clearance and switch of coffee type | No influence of either coffee type on the lipid profiles Decaffeinated coffee: triglycerides decreased Caffeinated coffee: blood pressure increased and improvement of the hyperemia-induced endothelial function | 2022 | [81] |
Walnuts | 44 hypertensive patients under treatment aged 45–65, 3-month, placebo-controlled, randomized, blinded clinical trial, 7 g of boiled walnuts daily | Intervention group
| 2022 | [82] |
Fatty fish | 120 patients aged 39–69 with at least one component of metabolic syndrome, along with increased waist circumference | No change: weight, BMI, waist and hip circumferences, systolic and diastolic BP, and heart rate Increase: HDL-C and energy% from protein | 2020 | [83] |
Whole almonds | Adults aged 30–70, with an above-average risk of developing CVDs | Significant decrease: fasting non-HDL and plasma LDL-C Increase: plasma oleic acid concentrations | 2020 | [84] |
Pecans | 52 patients aged 30–75, 8-week study, 3 groups: control group, additional group, substitution group (isocaloric foods instead of pecans) | Significant decrease (AG and SG): TC, LDL-C, apoB, TG, non-HLD-C, and TC/HLL-C ratio No change in LDL: particle number, size, medium, large, peak size, lipoprotein (a), glucose, and insulin | 2021 | [85] |
Green coffee polyphenols (GCP), oat β-glucans (BGs) | 29 participants, 8.5-month randomized, crossover, tree-arm, blind clinical trial, GCP, BGs, or GCP/BG supplements, 4-week washout period between every 8-week intervention | No change: lipid profile, glucose, insulin, and leptin Significant decrease: VLDL-C levels Improvement: TG, TC, and HDL-C concentrations | 2023 | [86] |
Moderate alcohol intake | 143 patients, 3 groups: abstainers (ABS), beer consumers (BC), mixed beverage consumers (MBC) | MBC and BC: higher HDL-C → lower TC/HDL-C ratio MBC: higher plasma adiponectin | 2019 | [87] |
Functional Foods and Their Antioxidant Impact | Study Design/Parameters | Main Findings | Year | Ref. |
---|---|---|---|---|
Acai juice and Jucara juice | Healthy participants, 4-week study, 4-week washout time | Significant increase: HDL-C and total antioxidant capacity and CAT activity Decrease: oxidative stress Increase: HDL-C, CAT activity (less than the Acai juice) | 2020 | [129] |
Nuts | Type II diabetic patients, 8-week study, 10% of total daily calorie intake must be from cashews | Significant increase: PON1 activity Significant decrease: LDL-C/HDL-C ratio | 2019 | [130] |
Baru almonds | Obese women, 8-week study, 20 g of Baru almonds and determined diet | Increase: plasma copper concentration and glutathione peroxidase Potential contribution to oxidative stress reduction | 2019 | [131] |
Fish oil emulsion and sunflower emulsion | Children and teenagers suffering from DD and MADD, 12-week study, 4-week washout time | ω-3 FA group (fish oil emulsion): significant improvement in DD and MADD symptoms, increase in large HDL-C subfractions (anti-atherogenic), and decrease in small HDL-C subfractions (pro-atherogenic) No variation: PON1 arylesterase and PON1 lactonase | 2020 | [132] |
Bread with flavonoid mixture | Mexican adults with metabolic syndrome, 3-month study, 1-week washout time, blood samples at the end of every month | Decrease: total cholesterol and triglycerides, LDL-C, plasma glucose levels, and nuclear abnormalities in the epithelial tissue of the mouth | 2021 | [133] |
Baru almond oil | Brazilian adults aged 25–70 undergoing chronic hemodialysis, daily capsule intake containing mineral oil (placebo group, PG) or Baru almond oil (BG) | No change: body composition or physical activity level, urea, urea reduction rate, potassium, phosphorus, lipid profile, plasma fatty acid composition, activity of SOD 1, and MDA 2 concentration Significant decrease: ultra-sensitive C-reactive protein’s concentration in the BG | 2020 | [134] |
Curcumin-piperine tablets | Patients aged 20–65, who had ischemic stroke and were in rehabilitation 3–6 months after the stroke, and were diagnosed with thrombotic or embolic stroke, 12-week study | Significant decrease:
| 2023 | [135] |
Montmorency tart cherry juice (MTCJ) | 12 patients aged 28–62 (6 men, 6 postmenopausal women) with metabolic syndrome (MetS), 6-week study, 14-day washout period between placebo and MTCJ | Decrease: fasting glucose levels, fasting insulin, total cholesterol, and LDL levels Increase: pancreatic beta-cell function, HDL concentration, and TC:HDL ratio | 2021 | [136] |
Nigella sativa powdered seeds | 40 patients with Hashimoto’s thyroiditis aged 20–50, randomized, double-blind, placebo-controlled trial | Significant decrease (N. sativa group): weight, BMI, MDA 2, TSH levels, serum LDL, and triglyceride levels Significant increase (N. sativa group): oxidative stress, TAC 3, SOD 1, T3 levels, and serum HDL | 2020 | [137] |
Functional Foods and Their Anti-Inflammatory Impact | Study Design/Parameters | Main Findings | Year | Ref. |
---|---|---|---|---|
Blueberry powder (daily amount equivalent to 2 cups of fresh fruit) | Double-blinded, parallel-arm intervention, 32 obese men and women with insulin resistance, blueberry powder or placebo dose | Blueberry group: no differences in changes in circulating hs-CRP, TNF-αor, or CP-1 | 2014 | [170] |
Brazilian nuts | Obese women, two-month study, one Brazilian Nut (BN) per day | Significant increase: selenium biomarkers Positive association: selenium–gene expression of some pro-inflammation biomarkers (including IL-6 and IFN-γ) | 2019 | [171] |
Spices | Obese men, 3 diets (3 g, 6 g, and no spices), 3-day washout time in between the diets | Decrease (6 g of the spice mixture): postprandial cytokines IL-β, IL-6, and IL-8 | 2020 | [172] |
Flavonoids | Randomized 5-year follow-up study, 1069 adult women, high or low flavonoid intake | High flavonoid intake: lower risk of all-cause, cancer, and CVD mortality Low flavonoid intake: higher risk of all-cause, cancer, and CVD mortality | 2019 | [173] |
Barberry | Hypertensive patients aged 20–65, with at least one other classic CVD risk factor, 8-week, randomized controlled clinical trial, single-blind, parallel allocation, barberry group (BG), placebo group (PG) | No change: weight, BMI 1, physical activity, DII 2, baseline TG 3 levels, TC 4 levels, LDL-C, HDL-C, and sd-LDL-C 5 Significant decrease (BG): TG, TC, LDL-C, sdLDL-C, non-HDL-C, and TC/HDL-C | 2022 | [174] |
Aronia extract (AE) and fermented aronia extract | 23 patients aged 30–80 diagnosed with T2D, aronia intake before and during trial only through supplements | Decrease: hs-CRP levels and adiponectin levels Increase (AEG): HDL-C and TG levels Increase (PG): HDL-C, LDL-C, and total cholesterol | 2023 | [175] |
Mediterranean Diet (MedDiet) in DII2 levels | Australian adults aged over 65, 6-month randomized, controlled, parallel-group dietary intervention study, based on the Cretan MedDiet | MedDiet: significant improvements in inflammatory markers, TG levels, systolic BP, enhanced endothelial function, and anti-inflammatory diet HabDiet 6: pro-inflammatory diet | 2023 | [176] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velissaridou, A.; Panoutsopoulou, E.; Prokopiou, V.; Tsoupras, A. Cardio-Protective-Promoting Properties of Functional Foods Inducing HDL-Cholesterol Levels and Functionality. Nutraceuticals 2024, 4, 469-502. https://doi.org/10.3390/nutraceuticals4040028
Velissaridou A, Panoutsopoulou E, Prokopiou V, Tsoupras A. Cardio-Protective-Promoting Properties of Functional Foods Inducing HDL-Cholesterol Levels and Functionality. Nutraceuticals. 2024; 4(4):469-502. https://doi.org/10.3390/nutraceuticals4040028
Chicago/Turabian StyleVelissaridou, Athina, Ellie Panoutsopoulou, Vasileios Prokopiou, and Alexandros Tsoupras. 2024. "Cardio-Protective-Promoting Properties of Functional Foods Inducing HDL-Cholesterol Levels and Functionality" Nutraceuticals 4, no. 4: 469-502. https://doi.org/10.3390/nutraceuticals4040028
APA StyleVelissaridou, A., Panoutsopoulou, E., Prokopiou, V., & Tsoupras, A. (2024). Cardio-Protective-Promoting Properties of Functional Foods Inducing HDL-Cholesterol Levels and Functionality. Nutraceuticals, 4(4), 469-502. https://doi.org/10.3390/nutraceuticals4040028