What Is New about Parsley, a Potential Source of Cardioprotective Therapeutic Substances?
Abstract
:1. Introduction
2. Chemical Composition of Parsley Extracts
3. Parsley and Cardiovascular Health
3.1. Antithrombotic Activity
3.2. Antihypertensive Activity
3.3. Hypolipidemic Activity
4. Toxicity of Parsley
5. New Parsley-Based Nutraceuticals and Food Products: Cultivation Conditions, Applications, Patents, and Technological Aspects
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Cardiovascular Diseases (CVDs)—Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 15 October 2023).
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef]
- Li, H.; Ghorbani, S.; Ling, C.-C.; Yong, V.W.; Xue, M. The Extracellular Matrix as Modifier of Neuroinflammation and Recovery in Ischemic Stroke and Intracerebral Hemorrhage. Neurobiol. Dis. 2023, 186, 106282. [Google Scholar] [CrossRef]
- Leja, K.B.; Czaczyk, K. The Industrial Potential of Herbs and Spices: A Mini Review. Acta Sci. Pol. Technol. Aliment. 2016, 15, 353–368. [Google Scholar] [CrossRef]
- Gupta, K.; Testa, H.; Greenwood, T.; Kostek, M.; Haushalter, K.; Kris-Etherton, P.M.; Petersen, K.S. The Effect of Herbs and Spices on Risk Factors for Cardiometabolic Diseases: A Review of Human Clinical Trials. Nutr. Rev. 2022, 80, 400–427. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, S.; Eltablawy, N.A.; Hamed, M.S. Parsley: A Review of Habitat, Phytochemistry, Ethnopharmacology and Biological Activities. J. Med. Plants Stud. 2016, 9, 49–55. [Google Scholar]
- Craig, W.J. Health-Promoting Properties of Common Herbs. Am. J. Clin. Nutr. 1999, 70, 491S–499S. [Google Scholar] [CrossRef] [PubMed]
- Albadwawi, M.A.O.K.; Ahmed, Z.F.R.; Kurup, S.S.; Alyafei, M.A.; Jaleel, A. A Comparative Evaluation of Aquaponic and Soil Systems on Yield and Antioxidant Levels in Basil, an Important Food Plant in Lamiaceae. Agronomy 2022, 12, 3007. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Ichwan, S.J.A.; Soundharrajan, I.; Govindan, N. Nutraceuticals as Potential Therapeutic Agents for Colon Cancer: A Review. Acta Pharm. Sin. B 2014, 4, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Roviello, G.N. Exploring the Protective Effect of Food Drugs against Viral Diseases: Interaction of Functional Food Ingredients and SARS-CoV-2, Influenza Virus, and HSV. Life 2023, 13, 402. [Google Scholar] [CrossRef] [PubMed]
- Carrizzo, A.; Izzo, C.; Forte, M.; Sommella, E.; Di Pietro, P.; Venturini, E.; Ciccarelli, M.; Galasso, G.; Rubattu, S.; Campiglia, P.; et al. A Novel Promising Frontier for Human Health: The Beneficial Effects of Nutraceuticals in Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 8706. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Freedman, J.E. Review: Nutriceuticals as Antithrombotic Agents. Cardiovasc. Ther. 2010, 28, 227–235. [Google Scholar] [CrossRef]
- Tohti, I.; Tursun, M.; Umar, A.; Turdi, S.; Imin, H.; Moore, N. Aqueous Extracts of Ocimum basilicum L. (sweet basil) Decrease Platelet Aggregation Induced by ADP and Thrombin in Vitro and Rats Arterio–Venous Shunt Thrombosis in Vivo. Thromb. Res. 2006, 118, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Mahleyuddin, N.N.; Moshawih, S.; Ming, L.C.; Zulkifly, H.H.; Kifli, N.; Loy, M.J.; Sarker, M.M.R.; Al-Worafi, Y.M.; Goh, B.H.; Thuraisingam, S.; et al. Coriandrum Sativum L.: A Review on Ethnopharmacology, Phytochemistry, and Cardiovascular Benefits. Molecules 2021, 27, 209. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Berkay Yılmaz, Y.; Antika, G.; Salehi, B.; Tumer, T.B.; Kulandaisamy Venil, C.; Das, G.; Patra, J.K.; Karazhan, N.; Akram, M.; et al. Phytochemical Constituents, Biological Activities, and Health-promoting Effects of the Genus Origanum. Phytother. Res. 2021, 35, 95–121. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, E.S.; Aishwaya, J. Nutraceuticals Potential of Petroselinum crispum: A Review. J. Complement. Med. Altern. Healthc. 2018, 7, 555707. [Google Scholar] [CrossRef]
- Farzaei, M.H.; Abbasabadi, Z.; Ardekani, M.R.S.; Rahimi, R.; Farzaei, F. Parsley: A Review of Ethnopharmacology, Phytochemistry and Biological Activities. J. Tradit. Chin. Med. 2013, 33, 815–826. [Google Scholar] [CrossRef]
- Dobričević, N.; Šic Žlabur, J.; Voća, S.; Pliestić, S.; Galić, A.; Delić, A.; Fabek Uher, S. Bioactive Compounds Content and Nutritional Potential of Different Parsley Parts (Petroselinum crispum Mill.). J. Cent. Eur. Agric. 2019, 20, 900–910. [Google Scholar] [CrossRef]
- Missouri Botanical Garden—Petroselinum crispum. Available online: https://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?taxonid=276060 (accessed on 18 November 2023).
- Santos, J.; Herrero, M.; Mendiola, J.A.; Oliva-Teles, M.T.; Ibáñez, E.; Delerue-Matos, C.; Oliveira, M.B.P.P. Fresh-Cut Aromatic Herbs: Nutritional Quality Stability during Shelf-Life. LWT—Food Sci. Technol. 2014, 59, 101–107. [Google Scholar] [CrossRef]
- dos Santos Franciscato, L.M.S.; Mendes, S.S.; Frederico, C.; Goncalves, J.E.; Faria, M.G.I.; Gazim, Z.C.; Ruiz, S.P. Parsley (Petroselinum crispum): Chemical Composition and Antibacterial Activity of Essential Oil from Organic against Foodborne Pathogens. Aust. J. Crop Sci. 2022, 16, 605–611. [Google Scholar] [CrossRef]
- Seasoning & Spices Market Size, Share & Trends Analysis Report By Product (Spices, Herbs, Salt & Salts Substitutes) Report ID: GVR-2-68038-639-4. Available online: https://www.grandviewresearch.com/industry-analysis/seasonings-spices-market (accessed on 23 September 2023).
- Parsley Market by Product, Distribution Channel, and Geography—Forecast and Analysis 2023–2027. Available online: https://www.technavio.com/report/parsley-market-industry-analysis (accessed on 23 September 2023).
- Patrício, K.P.; Minato, A.C.D.S.; Brolio, A.F.; Lopes, M.A.; Barros, G.R.D.; Moraes, V.; Barbosa, G.C. O Uso de Plantas Medicinais Na Atenção Primária à Saúde: Revisão Integrativa. Ciênc. Saúde Coletiva 2022, 27, 677–686. [Google Scholar] [CrossRef]
- Noureddine, B.; Mostafa, E.; Mandal, S.C. Ethnobotanical, Pharmacological, Phytochemical, and Clinical Investigations on Moroccan Medicinal Plants Traditionally Used for the Management of Renal Dysfunctions. J. Ethnopharmacol. 2022, 292, 115178. [Google Scholar] [CrossRef]
- Ziyyat, A.; Legssyer, A.; Mekhfi, H.; Dassouli, A.; Serhrouchni, M.; Benjelloun, W. Phytotherapy of Hypertension and Diabetes in Oriental Morocco. J. Ethnopharmacol. 1997, 58, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Mootoosamy, A.; Fawzi Mahomoodally, M. Ethnomedicinal Application of Native Remedies Used against Diabetes and Related Complications in Mauritius. J. Ethnopharmacol. 2014, 151, 413–444. [Google Scholar] [CrossRef]
- Ajebli, M.; Eddouks, M. Antihypertensive Activity of Petroselinum crispum through Inhibition of Vascular Calcium Channels in Rats. J. Ethnopharmacol. 2019, 242, 112039. [Google Scholar] [CrossRef] [PubMed]
- Soliman, H.A.; Eltablawy, N.A.; Hamed, M.S. The Ameliorative Effect of Petroselinum crispum (Parsley) on Some Diabetes Complications. J. Med. Plants Stud. 2015, 3, 92–100. [Google Scholar]
- Kreydiyyeh, S.I.; Usta, J. Diuretic Effect and Mechanism of Action of Parsley. J. Ethnopharmacol. 2002, 79, 353–357. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, T.; Zhang, W.; Zhao, Z.; Sun, J. Natural Drugs as a Treatment Strategy for Cardiovascular Disease through the Regulation of Oxidative Stress. Oxid. Med. Cell. Longev. 2020, 2020, 5430407. [Google Scholar] [CrossRef] [PubMed]
- Soltani, D.; Azizi, B.; Rahimi, R.; Talasaz, A.H.; Rezaeizadeh, H.; Vasheghani-Farahani, A. Mechanism-Based Targeting of Cardiac Arrhythmias by Phytochemicals and Medicinal Herbs: A Comprehensive Review of Preclinical and Clinical Evidence. Front. Cardiovasc. Med. 2022, 9, 990063. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Li, C.; Lu, L.; Zhang, Q.; Zhu, R.; Wang, W. A Review of Chinese Herbal Medicine for the Treatment of Chronic Heart Failure. Curr. Pharm. Des. 2018, 23, 5115–5124. [Google Scholar] [CrossRef]
- Justesen, U.; Knuthsen, P.; Leth, T. Quantitative Analysis of Flavonols, Flavones, and Flavanones in Fruits, Vegetables and Beverages by High-Performance Liquid Chromatography with Photo-Diode Array and Mass Spectrometric Detection. J. Chromatogr. A 1998, 799, 101–110. [Google Scholar] [CrossRef]
- Liberal, Â.; Fernandes, Â.; Polyzos, N.; Petropoulos, S.A.; Dias, M.I.; Pinela, J.; Petrović, J.; Soković, M.; Ferreira, I.C.F.R.; Barros, L. Bioactive Properties and Phenolic Compound Profiles of Turnip-Rooted, Plain-Leafed and Curly-Leafed Parsley Cultivars. Molecules 2020, 25, 5606. [Google Scholar] [CrossRef]
- Kaiser, A.; Carle, R.; Kammerer, D.R. Effects of Blanching on Polyphenol Stability of Innovative Paste-like Parsley (Petroselinum crispum (Mill.) Nym Ex A. W. Hill) and Marjoram (Origanum majorana L.) Products. Food Chem. 2013, 138, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Luthria, D.L.; Mukhopadhyay, S.; Kwansa, A.L. A Systematic Approach for Extraction of Phenolic Compounds Using Parsley (Petroselinum crispum) Flakes as a Model Substrate. J. Sci. Food Agric. 2006, 86, 1350–1358. [Google Scholar] [CrossRef]
- Epifanio, N.M.D.M.; Cavalcanti, L.R.I.; Dos Santos, K.F.; Duarte, P.S.C.; Kachlicki, P.; Ożarowski, M.; Riger, C.J.; Chaves, D.S.D.A. Chemical Characterization and in Vivo Antioxidant Activity of Parsley (Petroselinum crispum) Aqueous Extract. Food Funct. 2020, 11, 5346–5356. [Google Scholar] [CrossRef] [PubMed]
- Lechtenberg, M.; Zumdick, S.; Engelshowe, R.; Gerhards, C.; Schmidt, T.; Hensel, A. Evaluation of Analytical Markers Characterising Different Drying Methods of Parsley Leaves (Petroselinum crispum L.). Planta Med. 2006, 72, s-2006-950027. [Google Scholar] [CrossRef]
- Chaves, D.S.A.; Frattani, F.S.; Assafim, M.; de Almeida, A.P.; Zingali, R.B.; Costa, S.S. Phenolic Chemical Composition of Petroselinum crispum Extract and Its Effect on Haemostasis. Nat. Prod. Commun. 2011, 6, 1934578X1100600. [Google Scholar] [CrossRef]
- Frattani, F.S.; Assafim, M.; Casanova, L.M.; de Souza, J.E.; Chaves, D.S.D.A.; Costa, S.S.; Zingali, R.B. Oral Treatment with a Chemically Characterized Parsley (Petroselinum crispum Var. neapolitanum Danert) Aqueous Extract Reduces Thrombi Formation in Rats. J. Tradit. Complement. Med. 2021, 11, 287–291. [Google Scholar] [CrossRef]
- Nielsen, S.E.; Young, J.F.; Daneshvar, B.; Lauridsen, S.T.; Knuthsen, P.; Sandström, B.; Dragsted, L.O. Effect of Parsley (Petroselinum crispum) Intake on Urinary Apigenin Excretion, Blood Antioxidant Enzymes and Biomarkers for Oxidative Stress in Human Subjects. Br. J. Nutr. 1999, 81, 447–455. [Google Scholar] [CrossRef]
- Meyer, H.; Bolarinwa, A.; Wolfram, G.; Linseisen, J. Bioavailability of Apigenin from Apiin-Rich Parsley in Humans. Ann. Nutr. Metab. 2006, 50, 167–172. [Google Scholar] [CrossRef]
- Naeem, A.; Ming, Y.; Pengyi, H.; Jie, K.Y.; Yali, L.; Haiyan, Z.; Shuai, X.; Wenjing, L.; Ling, W.; Xia, Z.M.; et al. The Fate of Flavonoids after Oral Administration: A Comprehensive Overview of Its Bioavailability. Crit. Rev. Food Sci. Nutr. 2022, 62, 6169–6186. [Google Scholar] [CrossRef]
- Borges, G.; Fong, R.Y.; Ensunsa, J.L.; Kimball, J.; Medici, V.; Ottaviani, J.I.; Crozier, A. Absorption, Distribution, Metabolism and Excretion of Apigenin and Its Glycosides in Healthy Male Adults. Free Radic. Biol. Med. 2022, 185, 90–96. [Google Scholar] [CrossRef]
- Proz, M.D.L.Á.; Da Silva, M.A.S.; Rodrigues, E.; Bender, R.J.; Rios, A.D.O. Effects of Indoor, Greenhouse, and Field Cultivation on Bioactive Compounds from Parsley and Basil. J. Sci. Food Agric. 2021, 101, 6320–6330. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Uemura, T.; Shimoda, H.; Kishi, A.; Kawahara, Y.; Matsuda, H. Medicinal Foodstuffs. XVIII. Phytoestrogens from the Aerial Part of Petroselinum crispum MILL. (PARSLEY) and Structures of 6”-Acetylapiin and a New Monoterpene Glycoside, Petroside. Chem. Pharm. Bull. 2000, 48, 1039–1044. [Google Scholar] [CrossRef]
- Sbai, H.; Saad, I.; Ghezal, N.; Greca, M.D.; Haouala, R. Bioactive Compounds Isolated from Petroselinum crispum L. Leaves Using Bioguided Fractionation. Ind. Crops Prod. 2016, 89, 207–214. [Google Scholar] [CrossRef]
- Staropoli, A.; Vassetti, A.; Salvatore, M.M.; Andolfi, A.; Prigigallo, M.I.; Bubici, G.; Scagliola, M.; Salerno, P.; Vinale, F. Improvement of Nutraceutical Value of Parsley Leaves (Petroselinum crispum) upon Field Applications of Beneficial Microorganisms. Horticulturae 2021, 7, 281. [Google Scholar] [CrossRef]
- Derouich, M.; Bouhlali, E.D.T.; Bammou, M.; Hmidani, A.; Sellam, K.; Alem, C. Bioactive Compounds and Antioxidant, Antiperoxidative, and Antihemolytic Properties Investigation of Three Apiaceae Species Grown in the Southeast of Morocco. Scientifica 2020, 2020, 3971041. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, M.A.; Prado, J.M. Natural Product Extraction: Principles and Applications; The Royal Society of Chemistry: Cambridge, UK, 2013. [Google Scholar]
- Gupta, S.R.; Sechsadri, F.A.S. A Study of Apiin from the Parsley Seeds and Plant. Proc. Indian Acad. Sci.—Sect. A 1952, 35, 242–248. [Google Scholar] [CrossRef]
- Piras, A.; Porcedda, S.; Falconieri, D.; Fais, A.; Era, B.; Carta, G.; Rosa, A. Supercritical Extraction of Volatile and Fixed Oils from Petroselinum crispum L. Seeds: Chemical Composition and Biological Activity. Nat. Prod. Res. 2022, 36, 1883–1888. [Google Scholar] [CrossRef]
- Herrera-Calderon, O.; Saleh, A.M.; Mahmood, A.A.R.; Khalaf, M.A.; Calva, J.; Loyola-Gonzales, E.; Tataje-Napuri, F.E.; Chávez, H.; Almeida-Galindo, J.S.; Chavez-Espinoza, J.H.; et al. The Essential Oil of Petroselinum crispum (Mill) Fuss Seeds from Peru: Phytotoxic Activity and In Silico Evaluation on the Target Enzyme of the Glyphosate Herbicide. Plants 2023, 12, 2288. [Google Scholar] [CrossRef] [PubMed]
- Mekhfi, H.; Haouari, M.E.; Legssyer, A.; Bnouham, M.; Aziz, M.; Atmani, F.; Remmal, A.; Ziyyat, A. Platelet Anti-Aggregant Property of Some Moroccan Medicinal Plants. J. Ethnopharmacol. 2004, 94, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Gadi, D.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Legssyer, A.; Legrand, C.; Lafeve, F.F.; Mekhfi, H. Parsley Extract Inhibits in Vitro and Ex Vivo Platelet Aggregation and Prolongs Bleeding Time in Rats. J. Ethnopharmacol. 2009, 125, 170–174. [Google Scholar] [CrossRef]
- Gadi, D.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Legssyer, A.; Bruel, A.; Berrabah, M.; Legrand, C.; Fauvel-Lafeve, F.; Mekhfi, H. Flavonoids Purified from Parsley Inhibit Human Blood Platelet Aggregation and Adhesion to Collagen under Flow. J. Complement. Integr. Med. 2012, 9. [Google Scholar] [CrossRef]
- Campos, K.E.D.; Balbi, A.P.C.; Alves, M.J.Q.D.F. Diuretic and Hipotensive Activity of Aqueous Extract of Parsley Seeds (Petroselinum sativum Hoffm.) in Rats. Rev. Bras. Farmacogn. 2009, 19, 41–45. [Google Scholar] [CrossRef]
- El Rabey, H.A.; Al-Seeni, M.N.; Al-Ghamdi, H.B. Comparison between the Hypolipidemic Activity of Parsley and Carob in Hypercholesterolemic Male Rats. BioMed Res. Int. 2017, 2017, 3098745. [Google Scholar] [CrossRef]
- Ashorobi, D.; Ameer, M.A.; Fernandez, R. Thrombosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Wendelboe, A.M.; Raskob, G.E. Global Burden of Thrombosis: Epidemiologic Aspects. Circ. Res. 2016, 118, 1340–1347. [Google Scholar] [CrossRef]
- Delluc, A.; Lacut, K.; Rodger, M.A. Arterial and Venous Thrombosis: What’s the Link? A Narrative Review. Thromb. Res. 2020, 191, 97–102. [Google Scholar] [CrossRef]
- Thachil, J. Deep Vein Thrombosis. Hematology 2014, 19, 309–310. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Favaloro, E. Venous and Arterial Thromboses: Two Sides of the Same Coin? Semin. Thromb. Hemost. 2018, 44, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Núñez, L.; Lozano, M.L.; Palomo, M.; Martínez, C.; Vicente, V.; Castillo, J.; Benavente-García, O.; Diaz-Ricart, M.; Escolar, G.; Rivera, J. Apigenin Inhibits Platelet Adhesion and Thrombus Formation and Synergizes with Aspirin in the Suppression of the Arachidonic Acid Pathway. J. Agric. Food Chem. 2008, 56, 2970–2976. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, J.A.; Lozano, M.L.; Castillo, J.; Benavente-García, O.; Vicente, V.; Rivera, J. Flavonoids Inhibit Platelet Function through Binding to the Thromboxane A2 Receptor. J. Thromb. Haemost. 2005, 3, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Núñez, L.; Rivera, J.; Guerrero, J.; Martínez, C.; Vicente, V.; Lozano, M. Differential Effects of Quercetin, Apigenin and Genistein on Signalling Pathways of Protease-Activated Receptors PAR1 and PAR4 in Platelets: Flavonoids Inhibit PAR1 and PAR4 Signalling Cascades. Br. J. Pharmacol. 2009, 158, 1548–1556. [Google Scholar] [CrossRef]
- Tsiailanis, A.D.; Tellis, C.C.; Papakyriakopoulou, P.; Kostagianni, A.D.; Gkalpinos, V.; Chatzigiannis, C.M.; Kostomitsopoulos, N.; Valsami, G.; Tselepis, A.D.; Tzakos, A.G. Development of a Novel Apigenin Dosage Form as a Substitute for the Modern Triple Antithrombotic Regimen. Molecules 2023, 28, 2311. [Google Scholar] [CrossRef]
- Fuchs, F.D.; Whelton, P.K. High Blood Pressure and Cardiovascular Disease. Hypertension 2020, 75, 285–292. [Google Scholar] [CrossRef]
- World Health Organization Hypertension—Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 4 September 2023).
- Ozemek, C.; Laddu, D.R.; Arena, R.; Lavie, C.J. The Role of Diet for Prevention and Management of Hypertension. Curr. Opin. Cardiol. 2018, 33, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.R.; McCormack, T.; Constanti, M.; McManus, R.J. Diagnosis and Management of Hypertension in Adults: NICE Guideline Update 2019. Br. J. Gen. Pract. 2020, 70, 90–91. [Google Scholar] [CrossRef] [PubMed]
- Burnier, M.; Bakris, G.; Williams, B. Redefining Diuretics Use in Hypertension: Why Select a Thiazide-like Diuretic? J. Hypertens. 2019, 37, 1574–1586. [Google Scholar] [CrossRef] [PubMed]
- Vranješ, M.; Popović, B.M.; Štajner, D.; Ivetić, V.; Mandić, A.; Vranješ, D. Effects of Bearberry, Parsley and Corn Silk Extracts on Diuresis, Electrolytes Composition, Antioxidant Capacity and Histopathological Features in Mice Kidneys. J. Funct. Foods 2016, 21, 272–282. [Google Scholar] [CrossRef]
- Je, H.D.; Kim, H.-D.; La, H.-O. The Inhibitory Effect of Apigenin on the Agonist-Induced Regulation of Vascular Contractility via Calcium Desensitization-Related Pathways. Biomol. Ther. 2014, 22, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.-Y.; Gao, T.; Huang, Y.; Xue, J.; Xie, M.-L. Apigenin Ameliorates Hypertension-Induced Cardiac Hypertrophy and down-Regulates Cardiac Hypoxia Inducible Factor-Lα in Rats. Food Funct. 2016, 7, 1992–1998. [Google Scholar] [CrossRef] [PubMed]
- Paredes, M.; Romecín, P.; Atucha, N.; O’Valle, F.; Castillo, J.; Ortiz, M.; García-Estañ, J. Beneficial Effects of Different Flavonoids on Vascular and Renal Function in L-NAME Hypertensive Rats. Nutrients 2018, 10, 484. [Google Scholar] [CrossRef]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric Oxide and Endothelial Dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef]
- Paredes, M.; Romecín, P.; Atucha, N.; O’Valle, F.; Castillo, J.; Ortiz, M.; García-Estañ, J. Moderate Effect of Flavonoids on Vascular and Renal Function in Spontaneously Hypertensive Rats. Nutrients 2018, 10, 1107. [Google Scholar] [CrossRef] [PubMed]
- Pirillo, A.; Casula, M.; Olmastroni, E.; Norata, G.D.; Catapano, A.L. Global Epidemiology of Dyslipidaemias. Nat. Rev. Cardiol. 2021, 18, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Kopin, L.; Lowenstein, C.J. Dyslipidemia. Ann. Intern. Med. 2017, 167, ITC81. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Fogacci, F.; Stoian, A.P.; Vrablik, M.; Al Rasadi, K.; Banach, M.; Toth, P.P.; Rizzo, M. Nutraceuticals in the Management of Dyslipidemia: Which, When, and for Whom? Could Nutraceuticals Help Low-Risk Individuals with Non-Optimal Lipid Levels? Curr. Atheroscler. Rep. 2021, 23, 57. [Google Scholar] [CrossRef] [PubMed]
- Bahiru, E.; Hsiao, R.; Phillipson, D.; Watson, K.E. Mechanisms and Treatment of Dyslipidemia in Diabetes. Curr. Cardiol. Rep. 2021, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R. Dyslipidemia in Diabetes; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Jung, U.; Cho, Y.-Y.; Choi, M.-S. Apigenin Ameliorates Dyslipidemia, Hepatic Steatosis and Insulin Resistance by Modulating Metabolic and Transcriptional Profiles in the Liver of High-Fat Diet-Induced Obese Mice. Nutrients 2016, 8, 305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, L.; Cheng, Q.; Ji, B.; Yang, M.; Sanidad, K.Z.; Wang, C.; Zhou, F. Structurally Different Flavonoid Subclasses Attenuate High-Fat and High-Fructose Diet Induced Metabolic Syndrome in Rats. J. Agric. Food Chem. 2018, 66, 12412–12420. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Tan, Y.Q.; Lin, S.; Leung, L.K. Co-Administrating Apigenin in a High-Cholesterol Diet Prevents Hypercholesterolaemia in Golden Hamsters. J. Pharm. Pharmacol. 2018, 70, 1253–1261. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Y.; Du, C.; Wang, L.; Xiao, Y. Effects of Apigenin on the Expression of LOX-1, Bcl-2, and Bax in Hyperlipidemia Rats. Chem. Biodivers. 2021, 18, e2100049. [Google Scholar] [CrossRef]
- Kharchoufa, L.; Bouhrim, M.; Bencheikh, N.; Addi, M.; Hano, C.; Mechchate, H.; Elachouri, M. Potential Toxicity of Medicinal Plants Inventoried in Northeastern Morocco: An Ethnobotanical Approach. Plants 2021, 10, 1108. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, N.; Scognamiglio, M.; Pacifico, S.; Mekhoukhe, A.; Madani, K.; Fiorentino, A.; Monaco, P. 1 H NMR Based Metabolic Profiling of Eleven Algerian Aromatic Plants and Evaluation of Their Antioxidant and Cytotoxic Properties. Food Res. Int. 2015, 76, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.J.D.; Lantto, T.A.; Raasmaja, A.; Hiltunen, R. Antioxidant, pro-Oxidant and Cytotoxic Properties of Parsley. Food Funct. 2011, 2, 328. [Google Scholar] [CrossRef] [PubMed]
- Tang, E.L.; Rajarajeswaran, J.; Fung, S.; Kanthimathi, M. Petroselinum crispum Has Antioxidant Properties, Protects against DNA Damage and Inhibits Proliferation and Migration of Cancer Cells. J. Sci. Food Agric. 2015, 95, 2763–2771. [Google Scholar] [CrossRef] [PubMed]
- Farshori, N.N.; Al-Sheddi, E.S.; Al-Oqail, M.M.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Cytotoxicity Assessments of Portulaca Oleracea and Petroselinum Sativum Seed Extracts on Human Hepatocellular Carcinoma Cells (HepG2). Asian Pac. J. Cancer Prev. 2014, 15, 6633–6638. [Google Scholar] [CrossRef] [PubMed]
- Al-Oqail, M.M.; Farshori, N.N.; Al-Sheddi, E.S.; Al-Massarani, S.M.; Siddiqui, M.A.; Al-Khedhairy, A.A. Petroselinum Sativum Protects HepG2 Cells from Cytotoxicity and Oxidative Stress Induced by Hydrogen Peroxide. Mol. Biol. Rep. 2020, 47, 2771–2780. [Google Scholar] [CrossRef] [PubMed]
- Farshori, N.N.; Al-Sheddi, E.S.; Al-Oqail, M.M.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Anticancer Activity of Petroselinum Sativum Seed Extracts on MCF-7 Human Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2013, 14, 5719–5723. [Google Scholar] [CrossRef]
- Abu-Serie, M.M.; Habashy, N.H.; Maher, A.M. In Vitro Anti-Nephrotoxic Potential of Ammi Visnaga, Petroselinum crispum, Hordeum Vulgare, and Cymbopogon Schoenanthus Seed or Leaf Extracts by Suppressing the Necrotic Mediators, Oxidative Stress and Inflammation. BMC Complement. Altern. Med. 2019, 19, 149. [Google Scholar] [CrossRef]
- Awe, E.O.; Banjoko, S.O. Biochemical and Haematological Assessment of Toxic Effects of the Leaf Ethanol Extract of Petroselinum crispum (Mill) Nyman Ex A.W. Hill (Parsley) in Rats. BMC Complement. Altern. Med. 2013, 13, 75. [Google Scholar] [CrossRef]
- Slighoua, M.; Mahdi, I.; Amrati, F.E.-Z.; Di Cristo, F.; Amaghnouje, A.; Grafov, A.; Boucetta, N.; Bari, A.; Bousta, D. Assessment of in Vivo Estrogenic and Anti-Inflammatory Activities of the Hydro-Ethanolic Extract and Polyphenolic Fraction of Parsley (Petroselinum Sativum Hoffm.). J. Ethnopharmacol. 2021, 265, 113290. [Google Scholar] [CrossRef]
- Alajlouni, A.M.; Al-Malahmeh, A.J.; Isnaeni, F.N.; Wesseling, S.; Vervoort, J.; Rietjens, I.M.C.M. Level of Alkenylbenzenes in Parsley and Dill Based Teas and Associated Risk Assessment Using the Margin of Exposure Approach. J. Agric. Food Chem. 2016, 64, 8640–8646. [Google Scholar] [CrossRef]
- Alajlouni, A.M.; Al-Malahmeh, A.J.; Wesseling, S.; Kalli, M.; Vervoort, J.; Rietjens, I.M.C.M. Risk Assessment of Combined Exposure to Alkenylbenzenes through Consumption of Plant Food Supplements Containing Parsley and Dill. Food Addit. Contam. Part A 2017, 34, 2201–2211. [Google Scholar] [CrossRef]
- Ciganda, C.; Laborde, A. Herbal Infusions Used for Induced Abortion: ARTICLE. J. Toxicol. Clin. Toxicol. 2003, 41, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Walters, K.J.; Lopez, R.G. Modeling Growth and Development of Hydroponically Grown Dill, Parsley, and Watercress in Response to Photosynthetic Daily Light Integral and Mean Daily Temperature. PLoS ONE 2021, 16, e0248662. [Google Scholar] [CrossRef] [PubMed]
- Samuolienė, G.; Viršilė, A.; Brazaitytė, A.; Jankauskienė, J.; Sakalauskienė, S.; Vaštakaitė, V.; Novičkovas, A.; Viškelienė, A.; Sasnauskas, A.; Duchovskis, P. Blue Light Dosage Affects Carotenoids and Tocopherols in Microgreens. Food Chem. 2017, 228, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Samuolienė, G.; Brazaitytė, A.; Viršilė, A.; Jankauskienė, J.; Sakalauskienė, S.; Duchovskis, P. Red Light-Dose or Wavelength-Dependent Photoresponse of Antioxidants in Herb Microgreens. PLoS ONE 2016, 11, e0163405. [Google Scholar] [CrossRef] [PubMed]
- Carillo, P.; El-Nakhel, C.; De Micco, V.; Giordano, M.; Pannico, A.; De Pascale, S.; Graziani, G.; Ritieni, A.; Soteriou, G.A.; Kyriacou, M.C.; et al. Morpho-Metric and Specialized Metabolites Modulation of Parsley Microgreens through Selective LED Wavebands. Agronomy 2022, 12, 1502. [Google Scholar] [CrossRef]
- Ferreira, F.S.; De Oliveira, V.S.; Chávez, D.W.H.; Chaves, D.S.; Riger, C.J.; Sawaya, A.C.H.F.; Guizellini, G.M.; Sampaio, G.R.; Torres, E.A.F.D.S.; Saldanha, T. Bioactive Compounds of Parsley (Petroselinum crispum), Chives (Allium schoenoprasum L.) and Their Mixture (Brazilian cheiro-verde) as Promising Antioxidant and Anti-Cholesterol Oxidation Agents in a Food System. Food Res. Int. 2022, 151, 110864. [Google Scholar] [CrossRef]
- De Oliveira, V.S.; Chávez, D.W.H.; Paiva, P.R.F.; Gamallo, O.D.; Castro, R.N.; Sawaya, A.C.H.F.; Sampaio, G.R.; Torres, E.A.F.D.S.; Saldanha, T. Parsley (Petroselinum crispum Mill.): A Source of Bioactive Compounds as a Domestic Strategy to Minimize Cholesterol Oxidation during the Thermal Preparation of Omelets. Food Res. Int. 2022, 156, 111199. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Świeca, M.; Gawlik-Dziki, U.; Luty, M.; Czyż, J. Effect of Fortification with Parsley (Petroselinum crispum Mill.) Leaves on the Nutraceutical and Nutritional Quality of Wheat Pasta. Food Chem. 2016, 190, 419–428. [Google Scholar] [CrossRef]
- Dziki, D.; Hassoon, W.H.; Biernacka, B.; Gawlik-Dziki, U. Dried and Powdered Leaves of Parsley as a Functional Additive to Wheat Bread. Appl. Sci. 2022, 12, 7930. [Google Scholar] [CrossRef]
- Bouasla, A.; Gassi, H.E.; Lisiecka, K.; Wójtowicz, A. Application of Parsley Leaf Powder as Functional Ingredient in Fortified Wheat Pasta: Nutraceutical, Physical and Organoleptic Characteristics. Int. Agrophysics 2022, 36, 37–45. [Google Scholar] [CrossRef]
- Hnin, K.K.; Zhang, M.; Ju, R.; Wang, B. A Novel Infrared Pulse-Spouted Freeze Drying on the Drying Kinetics, Energy Consumption and Quality of Edible Rose Flowers. LWT 2021, 136, 110318. [Google Scholar] [CrossRef]
- Mouhoubi, K.; Boulekbache-Makhlouf, L.; Madani, K.; Palatzidi, A.; Perez-Jimenez, J.; Mateos-Aparicio, I.; Garcia-Alonso, A. Phenolic Compounds and Antioxidant Activity Are Differentially Affected by Drying Processes in Celery, Coriander and Parsley Leaves. Int. J. Food Sci. Technol. 2022, 57, 3467–3476. [Google Scholar] [CrossRef]
- Kamel, S.M. Effect of Microwave Treatments on Some Bioactive Compounds of Parsley (Petroselinum crispum) and Dill (Anethum graveolens) Leaves. J. Food Process. Technol. 2013, 4, 1000233. [Google Scholar] [CrossRef]
- Kaiser, A.; Brinkmann, M.; Carle, R.; Kammerer, D.R. Influence of Thermal Treatment on Color, Enzyme Activities, and Antioxidant Capacity of Innovative Pastelike Parsley Products. J. Agric. Food Chem. 2012, 60, 3291–3301. [Google Scholar] [CrossRef] [PubMed]
- Helal, N.A.; Eassa, H.A.; Amer, A.M.; Eltokhy, M.A.; Edafiogho, I.; Nounou, M.I. Nutraceuticals’ Novel Formulations: The Good, the Bad, the Unknown and Patents Involved. Recent Pat. Drug Deliv. Formul. 2019, 13, 105–156. [Google Scholar] [CrossRef] [PubMed]
- Helmy, A.; El-Shazly, M.; Seleem, A.; Abdelmohsen, U.; Salem, M.A.; Samir, A.; Rabeh, M.; Elshamy, A.; Singab, A.N.B. The Synergistic Effect of Biosynthesized Silver Nanoparticles from a Combined Extract of Parsley, Corn Silk, and Gum Arabic: In Vivo Antioxidant, Anti-Inflammatory and Antimicrobial Activities. Mater. Res. Express 2020, 7, 025002. [Google Scholar] [CrossRef]
- Rai, M.; Kon, K.; Ingle, A.; Duran, N.; Galdiero, S.; Galdiero, M. Broad-Spectrum Bioactivities of Silver Nanoparticles: The Emerging Trends and Future Prospects. Appl. Microbiol. Biotechnol. 2014, 98, 1951–1961. [Google Scholar] [CrossRef]
- World Intellectual Property Organization (WIPO) World Intellectual Property Indicators Report: Record Number of Patent Applications Filed Worldwide in 2022. Available online: https://www.wipo.int/pressroom/en/articles/2023/article_0013.html#:~:text=Registrations%20in%20force%20in%20China,)%20and%20Japan%20(270%2C073) (accessed on 8 December 2023).
- Optimal Health StemSation StemRCM. Available online: https://optimal-health.uk/stemsation-stemrcm (accessed on 8 December 2023).
Chemical Class | Compound | Plant Part | Ref. |
---|---|---|---|
Coumarins | Cnidilin | Aerial parts | [47] |
Isoimperatorin | Aerial parts | [47] | |
Oxypeucedanin | Leaves | [48] | |
Oxypeucedanin hydrate | Leaves | [40,48] | |
Pabulenol | Leaves | [48] | |
Xantothoxin/bergapten * | Leaves | [49] | |
Xantothoxol/bergaptol * | Leaves | [49] | |
Flavonoids (flavones) | Apigenin | Aerial parts; leaves | [40,47] |
Apigenin-7-O-apiosylglucoside (apiin) | Aerial parts; leaves | [36,37,38,40,41,46,47] | |
Apigenin acetylapiosylglucoside | Aerial parts; leaves | [37,38,46,47] | |
Apigenin acetylglycosides | Leaves | [35] | |
Apigenin-6,8-di-C-glucoside (vicenin-2) | Leaves | [38] | |
Apigenin-7-O-glucoside (cosmosiin) | Aerial parts; leaves | [38,40,47] | |
Apigenin C-glycosides | Leaves | [38] | |
Apigenin O-glycosides | Leaves | [35] | |
Apigenin-7-O-malonyl-apiosylglucoside (malonylapiin) | Leaves | [36,46] | |
Apigenin malonylglycosides | Aerial parts; leaves | [37,38] | |
Chrysoeriol-7-O-glucoside | Leaves | [38] | |
Chrysoeriol O-glycosides | Leaves | [38] | |
Chrysoeriol-7-O-6″-malonylapiosylglucoside | Leaves | [38] | |
Chrysoeriol malonylglycosides | Leaves | [38] | |
Diosmetin | Aerial parts | [47] | |
Diosmetin apiosylglycosides | Aerial parts | [36,37] | |
Diosmetin-7-O-apiosylglucoside | Leaves | [46] | |
Diosmetin acetylapiosylglucoside | Leaves | [46] | |
Disometin-7-O-glucoside | Aerial parts | [47] | |
Diosmetin malonylapiosylglucoside | Aerial parts | [37] | |
Luteolin | Aerial parts | [50] | |
| Leaves | [38] | |
| Leaves | [38] | |
| Leaves | [38] | |
Flavonoids (flavonols) | Isorhamnetin-3-O-glucoside | Leaves | [38] |
Isorhamnetin-3,7-di-O-glucoside | Leaves | [49] | |
Isorhamnetin 3-O-(6-O-malonyldiglucoside) | Leaves | [38] | |
Isorhamnetin-dimalonyl-diglucoside | Leaves | [38] | |
Isorhamnetin O-glycosides | Aerial parts, leaves | [36,38,41] | |
Kaempferol | Aerial parts | [47] | |
Kaempferol-3-O-[6″- malonyl-apiosyl-(1→2)-glucoside] | Leaves | [46] | |
Kaempferol O-glycosides | Leaves | [35] | |
Kaempferol-3-O-glucoside | Aerial parts | [47] | |
Kaempferol-3-O-rutinoside | Leaves | [35] | |
Quercetin | Aerial parts | [50] | |
Quercetin O-glycosides | Leaves | [38] | |
Quercetin-O-malonylhexoside | Leaves | [38] | |
Rutin | Aerial parts | [50] | |
Phenolic acids and derivatives | Caffeic acid | Aerial parts | [50] |
Chlorogenic acid | Aerial parts | [50] | |
p-Coumaric acid | Aerial parts | [50] | |
p-Coumaric acid 4-O-hexoside | Aerial parts | [36] | |
p-coumaric acid derivatives | Aerial parts, leaves | [36,41,46] | |
Vanillic acid | Aerial parts | [50] | |
Gallic acid | Aerial parts | [50] | |
Ferulic acid | Aerial parts | [50] | |
Syringic acid | Aerial parts | [50] | |
Miscellaneous | Apiole (phenylpropanoid) | Aerial parts | [47] |
Capsanthone (carotenoid) | Leaves | [49] | |
Icariside F2 | Aerial parts | [47] | |
Myristicin (phenylpropanoid) | Aerial parts | [47] | |
Petranol (monoterpene) | Aerial parts | [47] | |
Petroselinic acid (fatty acid) | Leaves | [49] | |
Petroside (monoterpene glycoside) | Aerial parts | [47] | |
Piperochromanoic acid (terpenoid) | Leaves | [49] |
Activity | Plant Part | Type of Extract | Type of Study | Main Outcomes | Ref. |
---|---|---|---|---|---|
Antithrombotic | Aerial parts | Infusion (5.5 g in 100 mL); 30 min | In vitro | Inhibition of thrombin and ADP-induced platelet aggregation (IC50 6.4 and 6.7 mg/mL, respectively). | [55] |
Leaves | Decoction (10% w/v); 30 min | In vivo and ex vivo (rats) | A 2-fold increase in bleeding time after a single oral dose (3 g/kg) increase of approx. 20% in thrombin, ADP, and collagen-induced platelet aggregation in blood collected from treated rats. | [56] | |
Leaves | Decoction (10% w/v); 10 min | In vitro | Inhibition of ADP-induced platelet aggregation (IC50 1.81 mg/mL); apigenin and cosmosiin isolated from the extract also inhibited ADP-induced aggregation (IC50 0.036 and 0.18 mg/mL, respectively). | [40] | |
Leaves | Fraction enriched in aglycone flavonoids | In vitro | Inhibition of thrombin, ADP, and collagen-induced platelet aggregation (IC50 0.16; 0.28 and 0.08, respectively). | [57] | |
Aerial parts | Decoction (30% w/v); 10 min | In vivo and ex vivo (rats) | An oral dose (125 mg/kg) 60 min before venous induction inhibited thrombus formation by 76.2%. In an arterial thrombosis model, oral doses of 15 or 25 mg/kg 60 min before induction increased the carotid artery occlusion time by 150% and 240%, respectively. The treatments produced antiplatelet (recalcification time ex vivo assay) but not anticoagulant activity (PT and aPTT ex vivo assays). | [41] | |
Antihypertensive | Seeds | Infusion (20% w/v); 5 min | In vivo (rats) | Treatment with 1 mL extract orally resulted in approx. 20% lower blood pressure after 90 min (in comparison with control). Effect related to diuretic activity. | [58] |
Leaves | Decoction (1% w/v); 10 min | In vivo (rats) | A single oral dose (160 mg/kg) reduced systolic and diastolic pressure of hypertensive rats by approx. 20%, while daily treatment for seven days (160 mg/kg) resulted in approx. 30% decrease on the 7th day. Effects possibly related to vasodilatory activity. | [28] | |
Hypolipidemic | Leaves | Decoction (10% w/v); 30 min | In vivo (rats) | Diabetic rats orally treated with a daily dose (2g/kg b.wt.) of extract for 45 days showed levels of TC, TG, LDL, and HDL that were similar to untreated normal rats. | [29] |
Seeds | Methanol extract (20% w/v); 5 days in low temperature | In vivo (rats) | Oral administration of extract partially prevented the effects of a hypercholesterolemic diet. Treated rats showed 20–30% lower levels of TC, TG, LDL, and VLDL and approx. 20% higher HDL. * | [59] |
Patent Number | Year | Status | Type of Product | Application | Plant Use | Plant Part |
---|---|---|---|---|---|---|
WO22079063 | 2020 | Not granted | Extract | Food emulsifiers | Extract | Leaves |
WO18172998 | 2017 | Granted/not granted | Composition | Dietary supplement | Extract | Plant |
WO18083115 | 2016 | Granted/not granted | Herbal composition | Food supplement, nutraceutical | Dry plant | Fruits |
CN105942235 | 2016 | Refused | Composition | Appetite promoter | 1–2 parts of plant | Leaves |
KR20180067916 | 2016 | Not granted | Herbal composition | Functional food | Fresh plant | Leaves |
US2016242440 | 2015 | Cancelled | Food additive composition | Food enhancer | 5–15% of plant | Not described |
US2016166602 | 2014 | Cancelled | Composition | Dietary supplement | 0.1–0.8% of plant | Not described |
US2016015763 | 2011 | Cancelled | Nutraceutical formula | Nutraceutical | Extract | Root |
US2008219964 | 2006 | Inactive, suspended | Ingestible product | Nutraceutical | Fresh plant | Leaves |
EP1616489 | 2004 | Cancelled | Composition | Food supplement/additive | Extract | Not described |
EP1602364 | 2004 | Cancelled | Microcapsules | Food supplement | Extract | Not described |
WO9850054 | 1997 | Expired, inactive | Nutritional composition | Nutraceutical | Extract | Plant |
EP0799579 | 1996 | Expired | Composition | Food supplement | Extract | Not described |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casanova, L.M.; dos Santos Nascimento, L.B.; Costa, S.S. What Is New about Parsley, a Potential Source of Cardioprotective Therapeutic Substances? Nutraceuticals 2024, 4, 104-126. https://doi.org/10.3390/nutraceuticals4010008
Casanova LM, dos Santos Nascimento LB, Costa SS. What Is New about Parsley, a Potential Source of Cardioprotective Therapeutic Substances? Nutraceuticals. 2024; 4(1):104-126. https://doi.org/10.3390/nutraceuticals4010008
Chicago/Turabian StyleCasanova, Livia Marques, Luana Beatriz dos Santos Nascimento, and Sônia Soares Costa. 2024. "What Is New about Parsley, a Potential Source of Cardioprotective Therapeutic Substances?" Nutraceuticals 4, no. 1: 104-126. https://doi.org/10.3390/nutraceuticals4010008
APA StyleCasanova, L. M., dos Santos Nascimento, L. B., & Costa, S. S. (2024). What Is New about Parsley, a Potential Source of Cardioprotective Therapeutic Substances? Nutraceuticals, 4(1), 104-126. https://doi.org/10.3390/nutraceuticals4010008