Exploration of High-Nutritional-Quality Vegetable Oil Blend with Enhanced Oxidative Stability as a Frying Medium Substitute for Palm Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Vegetable Oil Sample Procurement
2.3. Blended Vegetable Oil Mixture Preparations and Thermal Treatment
2.4. Main Effects Screening Design
2.5. Oil Quality Tests
2.5.1. Accelerated Oxidation through Rancimat Apparatus
2.5.2. Determination of Antiradical Activity (AAR)
2.5.3. Conjugated Diene and Triene Determination
2.6. AΤR–FTIR Spectroscopy Acquisition
2.7. Statistical Analysis
3. Results and Discussion
3.1. Alterations in Antiradical Activity and Oxidative Stability
3.2. Generation of Oxidation By-Products Assessment
3.3. Impact of Variables on Oxidative Stability Assays through Pareto Plot Analysis
3.4. Multiple Factor Analysis (MFA)
3.5. Multivariate Correlation Analysis (MCA)
3.6. Optimal Blended Vegetable Oil Composition
3.7. ATR–FTIR Spectra Analysis
3.8. Limitations and Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorni, C.; Sharma, P.; Saikia, G.; Longvah, T. Fatty Acid Profile of Edible Oils and Fats Consumed in India. Food Chem. 2018, 238, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, A.; Lokesh, B.R. Interesterified Coconut Oil Blends with Groundnut Oil or Olive Oil Exhibit Greater Hypocholesterolemic Effects Compared with Their Respective Physical Blends in Rats. Nutr. Res. 2007, 27, 580–586. [Google Scholar] [CrossRef]
- Kumar, A.; Upadhyay, N.; Padghan, P.V.; Gandhi, K.; Lal, D.; Sharma, V. Detection of Vegetable Oil and Animal Depot Fat Adulteration in Anhydrous Milk Fat (Ghee) Using Fatty Acid Composition. MOJ Food Process. Technol. 2015, 1, 46–54. [Google Scholar] [CrossRef]
- Joris, P.J.; Mensink, R.P. Role of Cis-Monounsaturated Fatty Acids in the Prevention of Coronary Heart Disease. Curr. Atheroscler. Rep. 2016, 18, 38. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Bai, Y.; Tian, H.; Zhao, X. The Chemical Composition and Health-Promoting Benefits of Vegetable Oils—A Review. Molecules 2023, 28, 6393. [Google Scholar] [CrossRef] [PubMed]
- Lužaić, T.; Kravić, S.; Stojanović, Z.; Grahovac, N.; Jocić, S.; Cvejić, S.; Pezo, L.; Romanić, R. Investigation of Oxidative Characteristics, Fatty Acid Composition and Bioactive Compounds Content in Cold Pressed Oils of Sunflower Grown in Serbia and Argentina. Heliyon 2023, 9, e18201. [Google Scholar] [CrossRef] [PubMed]
- Oteng, A.-B.; Kersten, S. Mechanisms of Action of Trans Fatty Acids. Adv. Nutr. 2020, 11, 697–708. [Google Scholar] [CrossRef]
- Boateng, L.; Ansong, R.; Owusu, W.B.; Steiner-Asiedu, M. Coconut Oil and Palm Oil’s Role in Nutrition, Health and National Development: A Review. Ghana Med. J. 2016, 50, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Vijay, V.; Pimm, S.L.; Jenkins, C.N.; Smith, S.J. The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss. PLoS ONE 2016, 11, e0159668. [Google Scholar] [CrossRef]
- Absalome, M.A.; Massara, C.-C.; Alexandre, A.A.; Gervais, K.; Chantal, G.G.-A.; Ferdinand, D.; Rhedoor, A.J.; Coulibaly, I.; George, T.G.; Brigitte, T.; et al. Biochemical Properties, Nutritional Values, Health Benefits and Sustainability of Palm Oil. Biochimie 2020, 178, 81–95. [Google Scholar] [CrossRef]
- Hashempour-Baltork, F.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. Vegetable Oil Blending: A Review of Physicochemical, Nutritional and Health Effects. Trends Food Sci. Technol. 2016, 57, 52–58. [Google Scholar] [CrossRef]
- Ramroudi, F.; Yasini Ardakani, S.A.; Dehghani-tafti, A.; Khalili Sadrabad, E. Investigation of the Physicochemical Properties of Vegetable Oils Blended with Sesame Oil and Their Oxidative Stability during Frying. Int. J. Food Sci. 2022, 2022, 3165512. [Google Scholar] [CrossRef]
- Manzoor, S.; Masoodi, F.A.; Rashid, R. Influence of Food Type, Oil Type and Frying Frequency on the Formation of Trans-Fatty Acids during Repetitive Deep-Frying. Food Control 2023, 147, 109557. [Google Scholar] [CrossRef]
- Li, X.; Wu, G.; Yang, F.; Meng, L.; Huang, J.; Zhang, H.; Jin, Q.; Wang, X. Influence of Fried Food and Oil Type on the Distribution of Polar Compounds in Discarded Oil during Restaurant Deep Frying. Food Chem. 2019, 272, 12–17. [Google Scholar] [CrossRef]
- Sadoudi, R.; Ammouche, A.; Ali Ahmed, D. Thermal Oxidative Alteration of Sunflower Oil. Afr. J. Food Sci. 2014, 8, 116–121. [Google Scholar] [CrossRef]
- Sharma, K.; Kumar, M.; Lorenzo, J.M.; Guleria, S.; Saxena, S. Manoeuvring the Physicochemical and Nutritional Properties of Vegetable Oils through Blending. J. Am. Oil Chem. Soc. 2023, 100, 5–24. [Google Scholar] [CrossRef]
- Zbikowska, A.; Onacik-Gür, S.; Kowalska, M.; Zbikowska, K.; Feszterová, M. Trends in Fat Modifications Enabling Alternative Partially Hydrogenated Fat Products Proposed for Advanced Application. Gels 2023, 9, 453. [Google Scholar] [CrossRef]
- Matthäus, B. Use of Palm Oil for Frying in Comparison with Other High-stability Oils. Eur. J. Lipid Sci. Technol. 2007, 109, 400–409. [Google Scholar] [CrossRef]
- Mohamed, K.M.; Elsanhoty, R.M.; Hassanien, M.F.R. Improving Thermal Stability of High Linoleic Corn Oil by Blending with Black Cumin and Coriander Oils. Int. J. Food Prop. 2014, 17, 500–510. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Babalola, O.O. Oilseed Crop Sunflower (Helianthus annuus) as a Source of Food: Nutritional and Health Benefits. Food Sci. Nutr. 2020, 8, 4666–4684. [Google Scholar] [CrossRef]
- Kalompatsios, D.; Athanasiadis, V.; Chatzimitakos, T.; Palaiogiannis, D.; Lalas, S.I.; Makris, D.P. Sustainable Exploitation of Waste Orange Peels: Enrichment of Commercial Seed Oils and the Effect on Their Oxidative Stability. Waste 2023, 1, 761–774. [Google Scholar] [CrossRef]
- Pokhrel, K.; Kouřimská, L.; Rudolf, O.; Tilami, S.K. Oxidative Stability of Crude Oils Relative to Tocol Content from Eight Oat Cultivars: Comparing the Schaal Oven and Rancimat Tests. J. Food Compos. Anal. 2024, 126, 105918. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Zu, Y.; Chen, X.; Wang, F.; Liu, F. Oxidative Stability of Sunflower Oil Supplemented with Carnosic Acid Compared with Synthetic Antioxidants during Accelerated Storage. Food Chem. 2010, 118, 656–662. [Google Scholar] [CrossRef]
- Silva, L.; Pinto, J.; Carrola, J.; Paiva-Martins, F. Oxidative Stability of Olive Oil after Food Processing and Comparison with Other Vegetable Oils. Food Chem. 2010, 121, 1177–1187. [Google Scholar] [CrossRef]
- Yilmaz, C.; Krishna, A.S.; Memon, A.; Porter, A.; Schmidt, D.C.; Gokhale, A.; Natarajan, B. Main Effects Screening: A Distributed Continuous Quality Assurance Process for Monitoring Performance Degradation in Evolving Software Systems. In Proceedings of the 27th International Conference on Software Engineering—ICSE ’05, St. Louis, MO, USA, 15–21 May 2005; ACM Press: New York, NY, USA, 2005; p. 293. [Google Scholar]
- Lekivetz, R.; Sitter, R.; Bingham, D.; Hamada, M.S.; Moore, L.M.; Wendelberger, J.R. On Algorithms for Obtaining Orthogonal and Near-Orthogonal Arrays for Main-Effects Screening. J. Qual. Technol. 2015, 47, 2–13. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Palaiogiannis, D.; Makrygiannis, I.; Bozinou, E.; Lalas, S.I. Evaluation of the Efficacy and Synergistic Effect of α- and δ-Tocopherol as Natural Antioxidants in the Stabilization of Sunflower Oil and Olive Pomace Oil during Storage Conditions. Int. J. Mol. Sci. 2023, 24, 1113. [Google Scholar] [CrossRef]
- Kalompatsios, D.; Palaiogiannis, D.; Makris, D.P. Optimized Production of a Hesperidin-Enriched Extract with Enhanced Antioxidant Activity from Waste Orange Peels Using a Glycerol/Sodium Butyrate Deep Eutectic Solvent. Horticulturae 2024, 10, 208. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Utilization of Blackthorn Plums (Prunus spinosa) and Sweet Cherry (Prunus avium) Kernel Oil: Assessment of Chemical Composition, Antioxidant Activity, and Oxidative Stability. Biomass 2024, 4, 49–64. [Google Scholar] [CrossRef]
- De Marco, E.; Savarese, M.; Parisini, C.; Battimo, I.; Falco, S.; Sacchi, R. Frying Performance of a Sunflower/Palm Oil Blend in Comparison with Pure Palm Oil. Eur. J. Lipid Sci. Technol. 2007, 109, 237–246. [Google Scholar] [CrossRef]
- Siddique, B.M.; Ahmad, A.; Ibrahim, M.H.; Hena, S.; Rafatullah, M.; Mohd Omar, A.K. Physico-Chemical Properties of Blends of Palm Olein with Other Vegetable Oils. Grasas Aceites 2010, 61, 423–429. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Wahdan, K.M.M. Blending of Corn Oil with Black Cumin (Nigella sativa) and Coriander (Coriandrum sativum) Seed Oils: Impact on Functionality, Stability and Radical Scavenging Activity. Food Chem. 2012, 132, 873–879. [Google Scholar] [CrossRef]
- Kaseke, T.; Opara, U.L.; Fawole, O.A. Blending of Sunflower Oil with Pomegranate Seed Oil from Blanched Seeds: Impact on Functionality, Oxidative Stability, and Antioxidant Properties. Processes 2021, 9, 635. [Google Scholar] [CrossRef]
- Mitrea, L.; Teleky, B.-E.; Leopold, L.-F.; Nemes, S.-A.; Plamada, D.; Dulf, F.V.; Pop, I.-D.; Vodnar, D.C. The Physicochemical Properties of Five Vegetable Oils Exposed at High Temperature for a Short-Time-Interval. J. Food Compos. Anal. 2022, 106, 104305. [Google Scholar] [CrossRef]
- Castelo-Branco, V.N.; Santana, I.; Di-Sarli, V.O.; Freitas, S.P.; Torres, A.G. Antioxidant Capacity Is a Surrogate Measure of the Quality and Stability of Vegetable Oils. Eur. J. Lipid Sci. Technol. 2016, 118, 224–235. [Google Scholar] [CrossRef]
- Nayak, P.K.; Dash, U.; Rayaguru, K.; Krishnan, K.R. Physio-Chemical Changes During Repeated Frying of Cooked Oil: A Review. J. Food Biochem. 2016, 40, 371–390. [Google Scholar] [CrossRef]
- Smith, H.D.; Megahed, F.M.; Jones-Farmer, L.A.; Clark, M. Using Visual Data Mining to Enhance the Simple Tools in Statistical Process Control: A Case Study. Qual. Reliab. Eng. Int. 2014, 30, 905–917. [Google Scholar] [CrossRef]
- Abraham, Y.; Zhang, X.; Parker, C.N. Multiparametric Analysis of Screening Data: Growing Beyond the Single Dimension to Infinity and Beyond. J. Biomol. Screen. 2014, 19, 628–639. [Google Scholar] [CrossRef]
- Brühl, L. Fatty Acid Alterations in Oils and Fats during Heating and Frying. Eur. J. Lipid Sci. Technol. 2014, 116, 707–715. [Google Scholar] [CrossRef]
- Choudhary, M.; Grover, K.; Kaur, G. Development of Rice Bran Oil Blends for Quality Improvement. Food Chem. 2015, 173, 770–777. [Google Scholar] [CrossRef]
- Farag, R.S.; El-Agaimy, M.A.S.; Hakeem, B.S.A.E. Effects of Mixing Canola and Palm Oils with Sunflower Oil on the Formation of Trans Fatty Acids during Frying. Food Nutr. Sci. 2010, 1, 24–29. [Google Scholar] [CrossRef]
- Abdulkarim, S.M.; Myat, M.W.; Ghazali, H.M.; Roselina, K.; Abbas, K.A. Sensory and Physicochemical Qualities of Palm Olein and Sesame Seed Oil Blends during Frying of Banana Chips. J. Agric. Sci. 2010, 2, 18–29. [Google Scholar] [CrossRef]
- Naghshineh, M.; Ariffin, A.A.; Ghazali, H.M.; Mirhosseini, H.; Mohammad, A.S. Effect of Saturated/Unsaturated Fatty Acid Ratio on Physicochemical Properties of Palm Olein–Olive Oil Blend. J. Am. Oil Chem. Soc. 2010, 87, 255–262. [Google Scholar] [CrossRef]
- Aladedunye, F.; Przybylski, R. Frying Stability of High Oleic Sunflower Oils as Affected by Composition of Tocopherol Isomers and Linoleic Acid Content. Food Chem. 2013, 141, 2373–2378. [Google Scholar] [CrossRef]
- Sumara, A.; Stachniuk, A.; Olech, M.; Nowak, R.; Montowska, M.; Fornal, E. Identification of Sunflower, Rapeseed, Flaxseed and Sesame Seed Oil Metabolomic Markers as a Potential Tool for Oil Authentication and Detecting Adulterations. PLoS ONE 2023, 18, e0284599. [Google Scholar] [CrossRef]
- Yang, K.-M.; Chiang, P.-Y. Variation Quality and Kinetic Parameter of Commercial N-3 PUFA-Rich Oil during Oxidation via Rancimat. Mar. Drugs 2017, 15, 97. [Google Scholar] [CrossRef]
- Xu, Z.; Ye, Z.; Li, Y.; Li, J.; Liu, Y. Comparative Study of the Oxidation Stability of High Oleic Oils and Palm Oil during Thermal Treatment. J. Oleo Sci. 2020, 69, 573–584. [Google Scholar] [CrossRef]
- Sherazi, S.T.H.; Arain, S.; Mahesar, S.A.; Bhanger, M.I.; Khaskheli, A.R. Erucic Acid Evaluation in Rapeseed and Canola Oil by Fourier Transform-Infrared Spectroscopy. Eur. J. Lipid Sci. Technol. 2013, 115, 535–540. [Google Scholar] [CrossRef]
- Poiana, M.-A.; Alexa, E.; Munteanu, M.-F.; Gligor, R.; Moigradean, D.; Mateescu, C. Use of ATR-FTIR Spectroscopy to Detect the Changes in Extra Virgin Olive Oil by Adulteration Withsoybean Oil and High Temperature Heat Treatment. Open Chem. 2015, 13, 000010151520150110. [Google Scholar] [CrossRef]
Independent Variables | Code Units | Coded Variable Level | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Soybean oil | X1 | 0 | 1 | 2 | 3 | 4 |
Sunflower oil | X2 | 0 | 1 | 2 | 3 | 4 |
Rapeseed oil (canola oil) | X3 | 0 | 1 | 2 | 3 | 4 |
Cottonseed oil | X4 | 0 | 1 | 2 | 3 | 4 |
Corn oil | X5 | 0 | 1 | 2 | 3 | 4 |
Design Point | Independent Variables | Rancimat (Induction Period, h) | DPPH (μmol TEAC/kg Oil) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 (SBO) | X2 (SFO) | X3 (RSO) | X4 (CSO) | X5 (CO) | 0 d | 14 d | 28 d | %OS * | 0 d | 14 d | 28 d | %OS * | |
1 | 0 | 0 | 4 | 3 | 2 | 3.62 | 1.40 | 0.80 | 22.2 | 173.16 | 95.19 | 58.40 | 33.7 |
2 | 1 | 2 | 1 | 3 | 4 | 5.18 | 1.99 | 0.70 | 13.5 | 154.76 | 90.82 | 72.96 | 47.1 |
3 | 2 | 3 | 1 | 0 | 1 | 2.25 | 1.28 | 0.93 | 41.2 | 144.81 | 81.24 | 53.62 | 37.0 |
4 | 3 | 2 | 2 | 1 | 0 | 3.76 | 1.40 | 0.98 | 26.1 | 129.37 | 71.80 | 47.40 | 36.6 |
5 | 4 | 3 | 3 | 3 | 0 | 2.72 | 1.06 | 1.38 | 50.8 | 146.06 | 75.44 | 46.22 | 31.6 |
6 | 0 | 4 | 1 | 2 | 0 | 3.70 | 1.37 | 0.65 | 17.6 | 151.60 | 77.05 | 45.20 | 29.8 |
7 | 1 | 4 | 3 | 4 | 3 | 1.12 | 0.91 | 0.76 | 67.9 | 178.29 | 92.70 | 60.71 | 34.1 |
8 | 2 | 1 | 2 | 3 | 3 | 3.65 | 1.41 | 1.35 | 37.1 | 172.76 | 100.03 | 69.88 | 40.5 |
9 | 3 | 1 | 1 | 4 | 2 | 1.36 | 1.08 | 0.89 | 65.7 | 173.14 | 98.27 | 76.45 | 44.2 |
10 | 4 | 2 | 4 | 4 | 1 | 5.54 | 2.09 | 1.35 | 24.3 | 158.87 | 91.89 | 63.10 | 39.7 |
11 | 0 | 3 | 2 | 4 | 4 | 5.68 | 2.16 | 1.25 | 21.9 | 154.87 | 90.69 | 75.54 | 48.8 |
12 | 1 | 3 | 0 | 1 | 2 | 6.29 | 2.44 | 1.05 | 16.7 | 162.65 | 95.44 | 62.55 | 38.5 |
13 | 2 | 0 | 0 | 4 | 0 | 5.33 | 2.00 | 0.85 | 15.9 | 179.07 | 101.86 | 64.08 | 35.8 |
14 | 3 | 0 | 3 | 0 | 4 | 5.38 | 2.11 | 1.40 | 26.0 | 174.65 | 98.61 | 81.53 | 46.7 |
15 | 4 | 0 | 1 | 1 | 3 | 3.57 | 1.35 | 0.55 | 15.4 | 162.92 | 125.70 | 102.35 | 62.8 |
16 | 0 | 1 | 3 | 1 | 1 | 6.17 | 2.31 | 1.18 | 19.2 | 156.88 | 92.15 | 61.11 | 39.0 |
17 | 1 | 1 | 4 | 0 | 0 | 2.69 | 2.50 | 2.34 | 87.1 | 132.34 | 74.72 | 61.86 | 46.7 |
18 | 2 | 2 | 3 | 2 | 2 | 2.93 | 1.19 | 0.75 | 25.4 | 151.58 | 86.67 | 75.50 | 49.8 |
19 | 3 | 3 | 4 | 2 | 3 | 4.13 | 1.55 | 1.83 | 44.4 | 153.75 | 115.55 | 90.42 | 58.8 |
20 | 4 | 1 | 0 | 2 | 4 | 5.36 | 2.05 | 0.68 | 12.6 | 175.43 | 130.63 | 95.81 | 54.6 |
21 | 0 | 2 | 0 | 0 | 3 | 6.09 | 2.28 | 1.21 | 19.9 | 171.42 | 146.47 | 111.26 | 64.9 |
22 | 1 | 0 | 2 | 2 | 1 | 1.94 | 1.03 | 0.73 | 37.5 | 142.97 | 95.12 | 73.04 | 51.1 |
23 | 2 | 4 | 4 | 1 | 4 | 4.62 | 1.80 | 1.51 | 32.6 | 152.00 | 115.55 | 86.45 | 56.9 |
24 | 3 | 4 | 0 | 3 | 1 | 5.35 | 2.08 | 0.57 | 10.6 | 166.16 | 93.32 | 71.07 | 42.8 |
25 | 4 | 4 | 2 | 0 | 2 | 1.21 | 0.96 | 0.74 | 61.2 | 128.39 | 86.49 | 67.31 | 52.4 |
26 | 4 | 0 | 0 | 0 | 0 | 1.34 | 1.02 | 0.83 | 62.0 | 160.03 | 95.01 | 83.32 | 52.1 |
27 | 0 | 4 | 0 | 0 | 0 | 2.52 | 1.09 | 0.52 | 20.6 | 130.07 | 94.69 | 75.53 | 58.1 |
28 | 0 | 0 | 4 | 0 | 0 | 8.90 | 3.42 | 1.25 | 14.1 | 66.51 | 57.51 | 41.51 | 62.4 |
29 | 0 | 0 | 0 | 4 | 0 | 3.10 | 1.16 | 0.70 | 22.7 | 152.69 | 119.41 | 94.63 | 62.0 |
30 | 0 | 0 | 0 | 0 | 4 | 6.07 | 2.36 | 0.84 | 13.9 | 125.53 | 124.82 | 123.50 | 98.4 |
PO | 10.80 | 4.01 | 2.27 | 21.1 | 99.16 | 77.12 | 64.57 | 65.1 |
Design Point | Independent Variables | CD (mmol/kg Oil) | CT (mmol/kg Oil) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 (SBO) | X2 (SFO) | X3 (RSO) | X4 (CSO) | X5 (CO) | 0 d | 14 d | 28 d | %OP * | 0 d | 14 d | 28 d | %OP * | |
1 | 0 | 0 | 4 | 3 | 2 | 13.31 | 28.46 | 58.20 | 337.2 | 4.84 | 5.82 | 6.98 | 44.1 |
2 | 1 | 2 | 1 | 3 | 4 | 63.86 | 133.09 | 29.70 | −53.5 | 9.75 | 18.06 | 4.20 | −56.9 |
3 | 2 | 3 | 1 | 0 | 1 | 22.38 | 36.81 | 54.05 | 141.6 | 8.13 | 8.14 | 8.16 | 0.5 |
4 | 3 | 2 | 2 | 1 | 0 | 14.71 | 31.22 | 50.36 | 242.3 | 6.30 | 6.34 | 6.36 | 1.0 |
5 | 4 | 3 | 3 | 3 | 0 | 16.18 | 33.44 | 54.92 | 239.3 | 6.88 | 7.45 | 8.04 | 16.8 |
6 | 0 | 4 | 1 | 2 | 0 | 15.39 | 32.42 | 61.13 | 297.1 | 7.17 | 7.52 | 8.08 | 12.7 |
7 | 1 | 4 | 3 | 4 | 3 | 17.14 | 35.24 | 59.60 | 247.7 | 6.09 | 7.46 | 8.01 | 31.6 |
8 | 2 | 1 | 2 | 3 | 3 | 14.37 | 29.69 | 59.28 | 312.5 | 6.80 | 7.00 | 7.08 | 4.2 |
9 | 3 | 1 | 1 | 4 | 2 | 40.36 | 83.30 | 56.80 | 40.7 | 9.24 | 18.41 | 6.31 | −31.7 |
10 | 4 | 2 | 4 | 4 | 1 | 11.01 | 22.63 | 58.08 | 427.6 | 5.95 | 7.31 | 7.51 | 26.2 |
11 | 0 | 3 | 2 | 4 | 4 | 14.21 | 30.10 | 65.02 | 357.6 | 6.56 | 7.79 | 9.00 | 37.1 |
12 | 1 | 3 | 0 | 1 | 2 | 14.95 | 31.09 | 67.57 | 352.1 | 8.25 | 8.31 | 8.40 | 1.8 |
13 | 2 | 0 | 0 | 4 | 0 | 14.82 | 29.44 | 60.85 | 310.6 | 6.48 | 9.63 | 11.54 | 78.0 |
14 | 3 | 0 | 3 | 0 | 4 | 12.85 | 26.89 | 61.28 | 376.8 | 6.19 | 7.33 | 8.26 | 33.5 |
15 | 4 | 0 | 1 | 1 | 3 | 13.86 | 26.11 | 52.61 | 279.5 | 5.81 | 6.83 | 8.82 | 51.8 |
16 | 0 | 1 | 3 | 1 | 1 | 12.04 | 25.65 | 56.04 | 365.3 | 4.29 | 5.11 | 5.54 | 29.1 |
17 | 1 | 1 | 4 | 0 | 0 | 11.59 | 23.84 | 59.11 | 410.2 | 3.77 | 4.84 | 6.12 | 62.4 |
18 | 2 | 2 | 3 | 2 | 2 | 57.93 | 124.19 | 46.93 | −19.0 | 7.94 | 15.57 | 3.05 | −61.6 |
19 | 3 | 3 | 4 | 2 | 3 | 12.16 | 25.03 | 75.87 | 523.8 | 8.05 | 8.45 | 8.54 | 6.0 |
20 | 4 | 1 | 0 | 2 | 4 | 60.09 | 125.23 | 52.63 | −12.4 | 9.62 | 18.33 | 5.41 | −43.7 |
21 | 0 | 2 | 0 | 0 | 3 | 58.63 | 125.59 | 60.69 | 3.5 | 9.05 | 18.96 | 5.27 | −41.8 |
22 | 1 | 0 | 2 | 2 | 1 | 56.75 | 118.83 | 60.30 | 6.3 | 8.87 | 17.75 | 5.53 | −37.7 |
23 | 2 | 4 | 4 | 1 | 4 | 10.39 | 42.33 | 108.54 | 944.2 | 5.26 | 11.18 | 17.86 | 239.4 |
24 | 3 | 4 | 0 | 3 | 1 | 15.49 | 32.46 | 42.74 | 176.0 | 7.68 | 8.22 | 9.23 | 20.2 |
25 | 4 | 4 | 2 | 0 | 2 | 11.83 | 24.34 | 68.41 | 478.4 | 6.71 | 9.07 | 12.80 | 90.8 |
26 | 4 | 0 | 0 | 0 | 0 | 14.41 | 30.43 | 47.62 | 230.5 | 7.57 | 9.04 | 11.84 | 56.4 |
27 | 0 | 4 | 0 | 0 | 0 | 6.77 | 23.99 | 76.16 | 1025.7 | 4.01 | 7.75 | 11.78 | 193.5 |
28 | 0 | 0 | 4 | 0 | 0 | 8.37 | 17.79 | 38.61 | 361.5 | 1.28 | 4.59 | 9.65 | 651.1 |
29 | 0 | 0 | 0 | 4 | 0 | 20.66 | 42.14 | 62.55 | 202.8 | 8.31 | 8.77 | 9.08 | 9.3 |
30 | 0 | 0 | 0 | 0 | 4 | 11.31 | 23.11 | 57.68 | 410.2 | 7.42 | 8.06 | 9.01 | 21.4 |
PO | 15.18 | 31.96 | 44.90 | 195.9 | 8.48 | 9.16 | 9.77 | 15.2 |
Parameters | Palm Oil | Optimal |
---|---|---|
Rancimat (h) | 10.80 ± 0.72 a | 5.38 ± 0.29 b |
DPPH (μmol TEAC/kg oil) | 99.16 ± 2.28 b | 139.83 ± 6.43 a |
CD (mmol/kg oil) | 15.18 ± 1.01 b | 16.37 ± 0.41 a |
CT (mmol/kg oil) | 8.48 ± 0.48 a | 6.38 ± 0.37 b |
Samples | Quadratic Equation | R2 | RMSE | F-Test | p-Value |
---|---|---|---|---|---|
Palm oil | Y = 522.2 − 8.121X + 0.03169X2 | 0.99 | 2.56 | 111.15 | 0.0089 |
Optimal | Y = 201 − 3.172X + 0.01263X2 | 0.97 | 1.62 | 33.83 | 0.0287 |
Wavenumbers (cm−1) | Palm Oil | Optimal | Basic Information |
---|---|---|---|
3006 | 0.123 ± 0.008 b | 0.227 ± 0.017 a | C–H stretching symmetric vibration of the cis double bonds, =CH |
2922 | 1.421 ± 0.053 a | 1.276 ± 0.043 b | Asymmetric stretching vibration of C–H of aliphatic CH2 group |
2853 | 1.076 ± 0.052 a | 0.931 ± 0.020 b | Symmetric stretching vibration of C–H of aliphatic CH2 group |
1745 | 1.344 ± 0.066 a | 1.371 ± 0.078 a | Stretching vibration of the ester carbonyl functional groups of the triglycerides, C=O |
988 | 0.209 ± 0.010 a | 0.220 ± 0.005 a | trans-conjugated double bonds |
966 | 0.207 ± 0.008 b | 0.231 ± 0.006 a | trans-non-conjugated double bonds |
912 | 0.142 ± 0.008 b | 0.200 ± 0.013 a | Out-of-plane bending vibration of cis double bonds, –HC=CH– |
721 | 0.592 ± 0.024 b | 0.682 ± 0.025 a | Overlapping –CH2– rocking vibration of the cis group of disubstituted olefins, –HC=CH– |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Exploration of High-Nutritional-Quality Vegetable Oil Blend with Enhanced Oxidative Stability as a Frying Medium Substitute for Palm Oil. Lipidology 2024, 1, 75-91. https://doi.org/10.3390/lipidology1010006
Athanasiadis V, Chatzimitakos T, Kalompatsios D, Bozinou E, Lalas SI. Exploration of High-Nutritional-Quality Vegetable Oil Blend with Enhanced Oxidative Stability as a Frying Medium Substitute for Palm Oil. Lipidology. 2024; 1(1):75-91. https://doi.org/10.3390/lipidology1010006
Chicago/Turabian StyleAthanasiadis, Vassilis, Theodoros Chatzimitakos, Dimitrios Kalompatsios, Eleni Bozinou, and Stavros I. Lalas. 2024. "Exploration of High-Nutritional-Quality Vegetable Oil Blend with Enhanced Oxidative Stability as a Frying Medium Substitute for Palm Oil" Lipidology 1, no. 1: 75-91. https://doi.org/10.3390/lipidology1010006
APA StyleAthanasiadis, V., Chatzimitakos, T., Kalompatsios, D., Bozinou, E., & Lalas, S. I. (2024). Exploration of High-Nutritional-Quality Vegetable Oil Blend with Enhanced Oxidative Stability as a Frying Medium Substitute for Palm Oil. Lipidology, 1(1), 75-91. https://doi.org/10.3390/lipidology1010006