Next Issue
Volume 1, December
 
 

Lipidology, Volume 1, Issue 1 (September 2024) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 2941 KiB  
Article
Exploration of High-Nutritional-Quality Vegetable Oil Blend with Enhanced Oxidative Stability as a Frying Medium Substitute for Palm Oil
by Vassilis Athanasiadis, Theodoros Chatzimitakos, Dimitrios Kalompatsios, Eleni Bozinou and Stavros I. Lalas
Lipidology 2024, 1(1), 75-91; https://doi.org/10.3390/lipidology1010006 - 1 Aug 2024
Viewed by 1316
Abstract
Blending is a commonly utilized technique for enhancing the oxidative stability, nutritional quality, and physicochemical properties of vegetable oils. This study explored the potential of a vegetable oil blend consisting of common seed oils (sunflower, soybean, rapeseed, cottonseed, and corn oils), through partial [...] Read more.
Blending is a commonly utilized technique for enhancing the oxidative stability, nutritional quality, and physicochemical properties of vegetable oils. This study explored the potential of a vegetable oil blend consisting of common seed oils (sunflower, soybean, rapeseed, cottonseed, and corn oils), through partial least squares analysis, as a substitute for palm oil in the food preparation sector. Oxidative stability assays were conducted initially and after 14 and 28 days of incubation at 60 °C. These assays included radical inhibition activities between the optimal blended oil and palm oil through DPPH inhibition activity and thermal stability via accelerated oxidation conditions with Rancimat (110 °C, 15 L/h) and conjugated diene and triene formation. The impact of each oil was assessed through correlation analyses and Pareto plots. The optimal blended oil consisted of soybean/sunflower/cottonseed/corn oils at a ratio of 2:1:4:4. It had an induction period (i.e., full rancidity) vastly enhanced to 5.38 h but was statistically significantly lower than the stable palm oil by ~50%. Prior to thermal incubation, the blended oil was more potent in inhibiting DPPH, as it recorded 139.83 μmol of Trolox equivalents per kg of oil, ~53% more than palm oil. The conjugated diene and triene concentrations were similar for both oils at ~15 and ~7 mmol/kg oil, respectively. The Fourier-Transform Infrared spectra revealed the prevalence of cis fatty acids in the optimal oil blend and trans fatty acids in palm oil, indicating an enhancement in the nutritional quality of the vegetable oil blend. The results of the study could provide a nutritional oil blend that could be used as a substitute for palm oil in the food industry. Full article
(This article belongs to the Special Issue Technologies and Quality Control of Lipid-Based Foods)
Show Figures

Figure 1

23 pages, 4540 KiB  
Article
Identification of Lipid Droplet-Associated Genes in Breast Cancer Patients
by Senol Dogan, Jenny Leopold, Daniel T. Hoffmann, Hans Kubitschke, Eliane Blauth, Carlotta Ficorella, Amelie Zschau, Jürgen Schiller and Josef A. Käs
Lipidology 2024, 1(1), 52-74; https://doi.org/10.3390/lipidology1010005 - 11 Jul 2024
Viewed by 1212
Abstract
Lipid droplets (LDs) are known to be involved in the invasion and migration of breast cancer (BC) cells. This study aimed to identify LD-associated genes as prognostic markers in BC through comprehensive literature research and integration with lipid composition studies in BC cell [...] Read more.
Lipid droplets (LDs) are known to be involved in the invasion and migration of breast cancer (BC) cells. This study aimed to identify LD-associated genes as prognostic markers in BC through comprehensive literature research and integration with lipid composition studies in BC cell lines. The GEPIA platform was used to analyze the differential expression of LD-associated genes in BC. The lipid composition of cell lines (MCF-10A, MDA-MB 436 and 231) was obtained by extraction and thin-layer chromatography coupled with mass spectrometry (MS). Additionally, cell lines were co-cultured with fatty tissue and analyzed by confocal fluorescence microscopy. A total of 143 genes were identified as LD-associated genes through literature research and were subsequently analyzed using GEPIA. Among these, three genes were found to be over-expressed and 45 under-expressed in BC. Notably, FABP7 showed a statistically significant rank for all bioinformatics criteria as a prognostic factor. Experimental results showed only minor changes from MCF-10A to both MDA-MB cell lines for apolar lipids (triacylglycerols and cholesteryl esters) compared to phospholipids (PLs). Microscopic analyses showed that MDA-MB-231 had larger LDs compared to MCF-10A after 10 days of cultivation. Our bioinformatics analysis identified 26 genes that play important roles in metastatic transition in BC via LD-related mechanisms, though these findings could be only partially confirmed by experimental lipid compositional analyses, so far. Full article
Show Figures

Figure 1

22 pages, 2578 KiB  
Article
Impact of Endogenous Lipids on Mechanical Properties of Wheat Gluten Fractions, Gliadin and Glutenin, under Small, Medium, and Large Deformations
by Gamze Yazar, Jozef L. Kokini and Brennan Smith
Lipidology 2024, 1(1), 30-51; https://doi.org/10.3390/lipidology1010004 - 16 Apr 2024
Cited by 1 | Viewed by 992
Abstract
The individual viscoelastic responses of gluten proteins and their lipid-removed counterparts were studied under mixing deformations and small, medium, and large deformations selected in the Large Amplitude Oscillatory Shear (LAOS) sweeps. During Farinograph mixing, gliadin reached the 500 BU consistency line after 3.6 [...] Read more.
The individual viscoelastic responses of gluten proteins and their lipid-removed counterparts were studied under mixing deformations and small, medium, and large deformations selected in the Large Amplitude Oscillatory Shear (LAOS) sweeps. During Farinograph mixing, gliadin reached the 500 BU consistency line after 3.6 ± 0.4 min, while the highest consistency recorded for lipid-removed gliadin was 268 ± 8.4 BU, suggesting a reduction in the water absorption of gliadin in the absence of lipids. The affinity of glutenin to water increased in the absence of lipids, as development time was reached 11 min earlier for lipid-removed glutenin. Under small LAOS strains, tanδ of gliadin remained constant with the removal of lipids, while glutenin’s elasticity decreased (tanδ increased) in the absence of lipids at high frequencies. Intracycle strain-stiffening behavior (e3/e1 > 0) of gliadin increased under medium deformations with high frequency and decreased under low-frequency large deformations as lipids were removed, while this response decreased for glutenin with the removal of lipids only under high-frequency medium and large deformations. Under large LAOS strains, the clockwise rotation of the Lissajous–Bowditch curves for gliadin in the absence of lipids suggested higher intercycle strain-softening and shear-thinning, while the counter-clockwise rotation of the curves for glutenin in the absence of lipids suggested lower intercycle strain-softening and shear-thinning. These results revealed the influence of endogenous lipids on the viscous-dominated response of gliadin and to the elastic-dominated response of glutenin, while balancing the intracycle strain-stiffening behaviors of these gluten proteins especially under large deformations. Full article
(This article belongs to the Special Issue Technologies and Quality Control of Lipid-Based Foods)
Show Figures

Figure 1

12 pages, 1746 KiB  
Article
1H Nuclear Magnetic Resonance, Infrared, and Chemometrics in Lipid Analysis of Brazilian Edible-Oil-Based Nutraceuticals
by Igor S. Flores, Daniel L. R. Annunciação, Vinícius S. Pinto and Luciano M. Lião
Lipidology 2024, 1(1), 18-29; https://doi.org/10.3390/lipidology1010003 - 2 Apr 2024
Cited by 1 | Viewed by 1345
Abstract
Edible oils have commercial and nutritional value due to the presence of essential fatty acids. They can be consumed fresh in the form of capsules known as nutraceuticals. The quality of such products is of interest to the consumer. In this context, this [...] Read more.
Edible oils have commercial and nutritional value due to the presence of essential fatty acids. They can be consumed fresh in the form of capsules known as nutraceuticals. The quality of such products is of interest to the consumer. In this context, this study describes a method based on high-resolution nuclear magnetic resonance (NMR) and Fourier-transform mid-infrared spectroscopic analysis (FTIR), combined with statistical analyses, to differentiate different edible oils used as nutraceuticals in Brazil by fatty acid content. Through the analysis of 1H NMR spectra, the levels of saturated and unsaturated fatty acids in edible oils were characterized and quantified. Statistical analysis of the data confirmed the real distinctions between nutraceutical raw materials, with emphasis on ω-9, ω-6, and ω-3 fatty acids. The analytical approach presented also demonstrates the potential to identify the origin (animal or vegetable) of edible oils used as nutraceuticals. Full article
(This article belongs to the Special Issue Technologies and Quality Control of Lipid-Based Foods)
Show Figures

Graphical abstract

15 pages, 1877 KiB  
Article
Comparison of In Silico Signal Sequence-Phospholipid Results with Described In Vitro and In Vivo Protein Translocation Studies Seems to Underscore the Significance of Phospholipids
by Rob C. A. Keller
Lipidology 2024, 1(1), 3-17; https://doi.org/10.3390/lipidology1010002 - 25 Mar 2024
Viewed by 1177
Abstract
The precise role of protein–lipid interactions in protein translocation is, after almost four decades of research, still a matter of debate. The experimental evidence, as described in the literature, indicates that (anionic) phospholipids play a role in numerous events in protein translocation; however, [...] Read more.
The precise role of protein–lipid interactions in protein translocation is, after almost four decades of research, still a matter of debate. The experimental evidence, as described in the literature, indicates that (anionic) phospholipids play a role in numerous events in protein translocation; however, its meaning and relevance are still a matter of debate. This study tries to fill some missing links in the experimental evidence by means of in silico experiments. The study presented here indicates not only that there is a direct signal sequence–phospholipid interaction but also that the corresponding signal peptides can translocate additional amino acids across a pure lipid membrane. Furthermore, results are presented when it comes to the extent of anionic phospholipids’ dependence on this process. The correlations between the in silico results of pure signal peptide–phospholipid interactions and the observed experimental trends in the overall protein translocation effects are at least remarkable. The results emphasize that new models for protein translocation will have to be developed to take all these and previous experimental data into account. Full article
Show Figures

Graphical abstract

2 pages, 648 KiB  
Editorial
Lipidology: A New Open Access Journal
by Nicola Ferri
Lipidology 2024, 1(1), 1-2; https://doi.org/10.3390/lipidology1010001 - 1 Mar 2024
Viewed by 1177
Abstract
On behalf of all the Editorial Board members and MDPI staff, I am pleased to announce the publication of the inaugural issue of the Lipidology journal [...] Full article
Show Figures

Figure 1

Next Issue
Back to TopTop