Induction of Sustained Remissions Associated with Immune Activation by Idelalisib in Patients with Follicular Lymphoma
Abstract
1. Introduction
2. Results
2.1. Study Cohort
2.2. Response to Idelalisib
2.3. Role of Autoimmune Side Effects
2.4. Long-Term Response
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASCT | allogeneic stem cell transplantation |
BCR | B-cell receptor |
CD4 | cluster of differentiation 4 |
CD8 | cluster of differentiation 8 |
CLL | chronic lymphatic leucemia |
CR | complete remission |
Ctx | chemotherapy |
ECOG | Eastern Cooperative Oncology Group |
FL | follicular lymphoma |
18F-FDG | 18Fluoro-desoxyglocose |
GI | gastrointestinal |
OS | overall survival |
PET/CT | positron emission tomography-computed tomography |
PFS | progression free survival |
PI3K | Phosphatidylinositol-3-kinase |
PR | partial remission |
r/r | recurrent/refractory |
SUVmax | maximum standardized uptake value |
Tregs | regulatory T-cells |
References
- Madsen, R.R. Principles of PI3K biology and its role in lymphoma. In Targeting Oncogenic Drivers and Signaling Pathways in Hematologic Malignancies: From Concept to Practice; O’Conner, O.A., Ansell, S.M., Seymour, J.F., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2023. [Google Scholar]
- Yuan, T.L.; Cantley, L.C. PI3K pathway alterations in cancer: Variations on a theme. Oncogene 2008, 27, 5497–5510. [Google Scholar] [CrossRef]
- Martini, M.; De Santis, M.C.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT signaling pathway and cancer: An updated review. Ann. Med. 2014, 46, 372–383. [Google Scholar] [CrossRef]
- Tarantelli, C.; Argnani, L.; Zinzani, P.L.; Bertoni, F. PI3Kδ Inhibitors as Immunomodulatory Agents for the Treatment of Lymphoma Patients. Cancers 2021, 13, 5535. [Google Scholar] [CrossRef]
- Meadows, S.A.; Vega, F.; Kashishian, A.; Johnson, D.; Diehl, V.; Miller, L.L.; Younes, A.; Lannutti, B.J. PI3Kδ inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood 2012, 119, 1897–1900. [Google Scholar] [CrossRef]
- Gopal, A.; Graf, S. Idelalisib for the treatment of non-Hodgkin lymphoma. Expert Opin. Pharmacother. 2016, 17, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Davies, A. Idelalisib for relapsed/refractory indolent B-cell non-Hodgkin’s lymphoma: An overview of pharmacokinetics and clinical trial outcomes. Expert Rev. Hematol. 2015, 8, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Okkenhaug, K.; Bilancio, A.; Farjot, G.; Priddle, H.; Sancho, S.; Peskett, E.; Pearce, W.; Meek, S.E.; Salpekar, A.; Waterfield, M.D.; et al. Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 2002, 297, 1031–1034. [Google Scholar] [CrossRef]
- Patton, D.T.; Garden, O.A.; Pearce, W.P.; Clough, L.E.; Monk, C.R.; Leung, E.; Rowan, W.C.; Sancho, S.; Walker, L.S.K.; Vanhaesebroeck, B.; et al. Cutting edge: The phosphoinositide 3-kinase p110 delta is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J. Immunol. 2006, 177, 6598–6602. [Google Scholar] [CrossRef]
- Lampson, B.L.; Kasar, S.N.; Matos, T.R.; Morgan, E.A.; Rassenti, L.; Davids, M.S.; Fisher, D.C.; Freedman, A.S.; Jacobson, C.A.; Armand, P.; et al. Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood 2016, 128, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Weidner, A.S.; Panarelli, N.C.; Geyer, J.T.; Bhavsar, E.B.; Furman, R.R.; Leonard, J.P.; Jessurun, J.; Yantiss, R.K. Idelalisib-Associated Colitis: Histologic Findings in 14 Patients. Am. J. Surg. Pathol. 2015, 39, 1661–1667. [Google Scholar] [CrossRef]
- Cuneo, A.; Barosi, G.; Danesi, R.; Fagiuoli, S.; Ghia, P.; Marzano, A.; Montillo, M.; Poletti, V.; Viale, P.; Zinzani, P.L. Management of adverse events associated with idelalisib treatment in chronic lymphocytic leukemia and follicular lymphoma: A multidisciplinary position paper. Hematol. Oncol. 2019, 37, 3–14. [Google Scholar] [CrossRef]
- Furman, R.R.; Sharman, J.P.; Coutre, S.E.; Cheson, B.D.; Pagel, J.M.; Hillmen, P.; Barrientos, J.C.; Zelenetz, A.D.; Kipps, T.J.; Flinn, I.; et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2014, 370, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Gadi, D.; Griffith, A.; Wang, Z.; Tyekucheva, S.; Rai, V.; Fernandes, S.M.; Machado, J.; Munugalavadla, V.; Lederer, J.; Brown, J.R. Idelalisib reduces regulatory T cells and activates T helper 17 cell differentiation in relapsed refractory patients with chronic lymphocytic leukaemia. Br. J. Haematol. 2022, 197, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Handl, S.; von Heydebrand, F.; Voelkl, S.; Oostendorp, R.A.J.; Wilke, J.; Kremer, A.N.; Mackensen, A.; Lutzny-Geier, G. Immune modulatory effects of Idelalisib in stromal cells of chronic lymphocytic leukemia. Leuk. Lymphoma 2021, 62, 2679–2689. [Google Scholar] [CrossRef]
- Chellappa, S.; Kushekhar, K.; Munthe, L.A.; Tjønnfjord, G.E.; Aandahl, E.M.; Okkenhaug, K.; Taskén, K. The PI3K p110δ Isoform Inhibitor Idelalisib Preferentially Inhibits Human Regulatory T Cell Function. J. Immunol. 2019, 202, 1397–1405. [Google Scholar] [CrossRef]
- Ali, K.; Soond, D.R.; Piñeiro, R.; Hagemann, T.; Pearce, W.; Lim, E.L.; Bouabe, H.; Scudamore, C.L.; Hancox, T.; Maecker, H.; et al. Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 2014, 510, 407–411. [Google Scholar] [CrossRef]
- Abu Eid, R.; Ahmad, S.; Lin, Y.; Webb, M.; Berrong, Z.; Shrimali, R.; Kumai, T.; Ananth, S.; Rodriguez, P.C.; Celis, E.; et al. Enhanced Therapeutic Efficacy and Memory of Tumor-Specific CD8 T Cells by Ex Vivo PI3K-δ Inhibition. Cancer Res. 2017, 77, 4135–4145. [Google Scholar] [CrossRef] [PubMed]
- Preite, S.; Huang, B.; Cannons, J.L.; McGavern, D.B.; Schwartzberg, P.L. PI3K Orchestrates T Follicular Helper Cell Differentiation in a Context Dependent Manner: Implications for Autoimmunity. Front. Immunol. 2019, 9, 3079. [Google Scholar] [CrossRef]
- Das, S.; Johnson, D.B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer 2019, 7, 306. [Google Scholar] [CrossRef]
- Wagner-Johnston, N.D.; Sharman, J.; Furman, R.R.; Salles, G.; Brown, J.R.; Robak, T.; Gu, L.; Xing, G.; Chan, R.J.; Rajakumaraswamy, N.; et al. Idelalisib immune-related toxicity is associated with improved treatment response. Leuk. Lymphoma 2021, 62, 2915–2920. [Google Scholar] [CrossRef]
- Cheah, C.Y.; Fowler, N.H. Idelalisib in the management of lymphoma. Blood 2016, 128, 331–336. [Google Scholar] [CrossRef]
- Gopal, A.K.; Kahl, B.S.; Flowers, C.R.; Martin, P.; Ansell, S.M.; Abella-Dominicis, E.; Koh, B.; Ye, W.; Barr, P.M.; Salles, G.A.; et al. Idelalisib is effective in patients with high-risk follicular lymphoma and early relapse after initial chemoimmunotherapy. Blood 2017, 129, 3037–3039. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Delgado, A.; Magnano, L.; Moreno-Velázquez, M.; García, O.; Nadeu, F.; Mozas, P.; Dlouhy, I.; Baumann, T.; Rovira, J.; González-Farre, B.; et al. Response duration and survival shorten after each relapse in patients with follicular lymphoma treated in the rituximab era. Br. J. Haematol. 2019, 184, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Modi, P.; Newcomb, T.; Quéva, C.; Gandhi, V. Idelalisib: First-in-Class PI3K Delta Inhibitor for the Treatment of Chronic Lymphocytic Leukemia, Small Lymphocytic Leukemia, and Follicular Lymphoma. Clin. Cancer Res. 2015, 21, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Jiang, P.; Wei, S.; Xu, X.; Wang, J. Regulatory T cells in tumor microenvironment: New mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer 2020, 19, 116. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Abu-Eid, R.; Shrimali, R.; Webb, M.; Verma, V.; Doroodchi, A.; Berrong, Z.; Samara, R.; Rodriguez, P.C.; Mkrtichyan, M.; et al. Differential PI3Kδ Signaling in CD4+ T-cell Subsets Enables Selective Targeting of T Regulatory Cells to Enhance Cancer Immunotherapy. Cancer Res. 2017, 77, 1892–1904. [Google Scholar] [CrossRef]
- Lauder, S.N.; Smart, K.; Bart, V.M.T.; Pires, A.; Scott, J.; Milutinovic, S.; Godkin, A.; Vanhaesebroeck, B.; Gallimore, A. Treg-driven tumour control by PI3Kδ inhibition limits myeloid-derived suppressor cell expansion. Br. J. Cancer 2022, 127, 1595–1602. [Google Scholar] [CrossRef]
- Vardi, A.; Vlachonikola, E.; Papazoglou, D.; Psomopoulos, F.; Kotta, K.; Ioannou, N.; Galigalidou, C.; Gemenetzi, K.; Pasentsis, K.; Kotouza, M.; et al. T-Cell Dynamics in Chronic Lymphocytic Leukemia Under Different Treatment Modalities. Clin. Cancer Res. 2020, 26, 4958–4969. [Google Scholar] [CrossRef]
- Franke, F.C.; Damek, A.; Steglich, J.; Kurch, L.; Hasenclever, D.; Georgi, T.W.; Wohlgemuth, W.A.; Mauz-Körholz, C.; Körholz, D.; Kluge, R.; et al. Differentiation between rebound thymic hyperplasia and thymic relapse after chemotherapy in pediatric Hodgkin lymphoma. Pediatr. Blood Cancer 2023, 70, e30421. [Google Scholar] [CrossRef]
- Kissin, C.M.; Husband, J.E.; Nicholas, D.; Eversman, W. Benign thymic enlargement in adults after chemotherapy: CT demonstration. Radiology 1987, 163, 67–70. [Google Scholar] [CrossRef]
- Sun, D.-P.; Jin, H.; Ding, C.-Y.; Liang, J.-H.; Wang, L.; Fan, L.; Wu, Y.-J.; Xu, W.; Li, J.-Y. Thymic hyperplasia after chemotherapy in adults with mature B cell lymphoma and its influence on thymic output and CD4+ T cells repopulation. OncoImmunology 2016, 5, e1137417. [Google Scholar] [CrossRef]
- Nasseri, F.; Eftekhari, F. Clinical and Radiologic Review of the Normal and Abnormal Thymus: Pearls and Pitfalls. RadioGraphics 2010, 30, 413–428. [Google Scholar] [CrossRef]
- Araki, T.; Sholl, L.M.; Gerbaudo, V.H.; Hatabu, H.; Nishino, M. Imaging Characteristics of Pathologically Proven Thymic Hyperplasia: Identifying Features That Can Differentiate True from Lymphoid Hyperplasia. Am. J. Roentgenol. 2014, 202, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Nastoupil, L.J.; Neelapu, S.S. Novel immunologic approaches in lymphoma: Unleashing the brakes on the immune system. Curr. Oncol. Rep. 2015, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Stock, S.; Übelhart, R.; Schubert, M.-L.; Fan, F.; He, B.; Hoffmann, J.-M.; Wang, L.; Wang, S.; Gong, W.; Neuber, B.; et al. Idelalisib for optimized CD19-specific chimeric antigen receptor T cells in chronic lymphocytic leukemia patients. Int. J. Cancer 2019, 145, 1312–1324. [Google Scholar] [CrossRef] [PubMed]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J. Clin. Oncol. 2014, 32, 3059–3068. [Google Scholar] [CrossRef]
Responder | Non-Responder | All | |
---|---|---|---|
N | 11 | 6 | 17 |
Median age at ED (range) | 46 (33–60) | 67 (56–74) | 56 (33–74) |
Median age at start idelalisib (range) | 52 (42–72) | 68.5 (64–78) | 64 (42–78) |
Gender (f/m) | 7/4 | 2/4 | 9/8 |
FL grading 1,2 | 8 | 3 | 10 |
FL grading 3A | 3 | 3 | 6 |
Stage I, II (initial) | 5 | 2 | 7 |
Stage III, IV (initial) | 6 | 4 | 10 |
Prior lines CTX median (range) | 3.5 (2–5) | 3 (1–6) | 3.35 (1–6) |
Prior bendamustin | 5 | 4 | 9 |
Prior HD CTX/ASCT | 5 | 1 | 6 |
Prior response duration, median | 24 | 11 | 19 |
PD pre idelalisib | 9 | 6 | 15 |
Elevated LDH pre idelalisib | 5 | 3 | 8 |
Autoimmune AE | 8/11 | 0/6 | 8/17 |
Stop idelalisib | 11/11 | 6/6 | 17/17 |
Treatment duration, w pausing; median (range) | 15 (4–88) | 2 (2–7) | 6 (2–88) |
PFS; median, (range) | 22 (7–88) | 3 (2–7) | 12 (2–88) |
OS; median, (range) | 24 (10–96) | 10.5 (3–15) | 15 (3–96) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hund, A.-C.; Larsen, J.; Wulf, G.G. Induction of Sustained Remissions Associated with Immune Activation by Idelalisib in Patients with Follicular Lymphoma. Lymphatics 2025, 3, 22. https://doi.org/10.3390/lymphatics3030022
Hund A-C, Larsen J, Wulf GG. Induction of Sustained Remissions Associated with Immune Activation by Idelalisib in Patients with Follicular Lymphoma. Lymphatics. 2025; 3(3):22. https://doi.org/10.3390/lymphatics3030022
Chicago/Turabian StyleHund, Anna-Carina, Jörg Larsen, and Gerald G. Wulf. 2025. "Induction of Sustained Remissions Associated with Immune Activation by Idelalisib in Patients with Follicular Lymphoma" Lymphatics 3, no. 3: 22. https://doi.org/10.3390/lymphatics3030022
APA StyleHund, A.-C., Larsen, J., & Wulf, G. G. (2025). Induction of Sustained Remissions Associated with Immune Activation by Idelalisib in Patients with Follicular Lymphoma. Lymphatics, 3(3), 22. https://doi.org/10.3390/lymphatics3030022