Evaluation of the Effects of Demineralization and Decellularization for the Development of a Decellularized Bone Matrix from Tuna (Thunnus albacares) Bone
Abstract
1. Introduction
2. Materials and Methods
2.1. Bone Demineralization
2.2. Bone Decellularization
2.3. X-Ray Fluorescence (XRF)
2.4. Demineralization Kinetics
2.5. Protein Content Quantification
2.6. Attenuated Total Reflectance—Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.7. Thermogravimetric Analysis (TGA)
2.8. Differential Scanning Calorimetry
2.9. Mechanical Strength
2.10. Scanning Electron Microscopy
2.11. Histological Staining
2.12. Double-Stranded DNA (dsDNA) Quantification
2.13. Amino Acid Analysis
2.14. Residual Detergent Concentration Determination
2.15. Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.16. Soluble Collagen Assay
2.17. Statistical Analysis
3. Results and Discussion
3.1. Characterization of dBM
3.1.1. Demineralization Kinetics
3.1.2. Protein Content Quantification
3.1.3. Attenuated Total Reflectance—Fourier Transform Infrared Spectroscopy (ATR-FTIR)
3.1.4. Thermogravimetric Analysis (TGA)
3.1.5. Differential Scanning Calorimetry (DSC)
3.1.6. Mechanical Strength
3.1.7. Scanning Electron Microscopy (SEM)
3.2. Characterization of dEBM
3.2.1. Attenuated Total Reflectance—Fourier Transform Infrared Spectroscopy (ATR-FTIR)
3.2.2. Histological Staining
3.2.3. Double-Stranded DNA (dsDNA) Quantification
3.2.4. Residual Detergent Concentrations
3.2.5. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS-PAGE)
3.2.6. Soluble Collagen Assay
3.2.7. Amino Acid Analysis
3.2.8. Total Collagen Content Quantification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karsdal, M.; Cox, T.R.; Parker, A.L.; Willumsen, N.; Sand, J.M.B.; Jenkins, G.; Hansen, H.H.; Oldenburger, A.; Geillinger-Kaestle, K.E.; Larsen, A.T.; et al. Advances in Extracellular Matrix-Associated Diagnostics and Therapeutics. J. Clin. Med. 2025, 14, 1856. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Park, S.S.; Tripathi, G.; Lee, B.T. Injectable Demineralized Bone Matrix Particles and Their Hydrogel Bone Grafts Loaded with β-Tricalcium Phosphate Powder and Granules: A Comparative Study. Mater. Today Bio 2022, 16, 100422. [Google Scholar] [CrossRef] [PubMed]
- Neto, I.V.d.S.; Durigan, J.L.Q.; da Silva, A.S.R.; Marqueti, R.d.C. Adipose Tissue Extracellular Matrix Remodeling in Response to Dietary Patterns and Exercise: Molecular Landscape, Mechanistic Insights, and Therapeutic Approaches. Biology 2022, 11, 765. [Google Scholar] [CrossRef]
- Bual, R.; Labares, M.; Valle, K.D.D.; Pague, J.; Bantilan, Z.C.; Ducao, P.G.; Alimasag, J.; Acibar, C. Characterization of Decellularized Extracellular Matrix from Milkfish (Chanos chanos) Skin. Biomimetics 2022, 7, 213. [Google Scholar] [CrossRef] [PubMed]
- Mir, T.A.; Alzhrani, A.; Nakamura, M.; Iwanaga, S.; Wani, S.I.; Altuhami, A.; Kazmi, S.; Arai, K.; Shamma, T.; Obeid, D.A.; et al. Whole Liver Derived Acellular Extracellular Matrix for Bioengineering of Liver Constructs: An Updated Review. Bioengineering 2023, 10, 1126. [Google Scholar] [CrossRef]
- Chameettachal, S.; Venuganti, A.; Parekh, Y.; Prasad, D.; Joshi, V.P.; Vashishtha, A.; Basu, S.; Singh, V.; Bokara, K.K.; Pati, F. Human Cornea-Derived Extracellular Matrix Hydrogel for Prevention of Post-Traumatic Corneal Scarring: A Translational Approach. Acta Biomater. 2023, 171, 289–307. [Google Scholar] [CrossRef]
- Zhou, H.; Li, W.; Pan, L.; Zhu, T.; Zhou, T.; Xiao, E.; Wei, Q. Human Extracellular Matrix (ECM)-like Collagen and Its Bioactivity. Regen. Biomater. 2024, 11, rbae008. [Google Scholar] [CrossRef]
- Chen, Z.; Du, C.; Liu, S.; Liu, J.; Yang, Y.; Dong, L.; Zhao, W.; Huang, W.; Lei, Y. Progress in Biomaterials Inspired by the Extracellular Matrix. Giant 2024, 19, 100323. [Google Scholar] [CrossRef]
- Bual, R.P.; Ijima, H. Intact Extracellular Matrix Component Promotes Maintenance of Liver-Specific Functions and Larger Aggregates Formation of Primary Rat Hepatocytes. Regen. Ther. 2019, 11, 258–268. [Google Scholar] [CrossRef]
- Ijima, H.; Nakamura, S.; Bual, R.; Shirakigawa, N.; Tanoue, S. Physical Properties of the Extracellular Matrix of Decellularized Porcine Liver. Gels 2018, 4, gels4020039. [Google Scholar] [CrossRef]
- Kjartansson, H.; Olafsson, I.H.; Karason, S.; Thorisson, H.; Baldursson, B.T.; Gunnarsson, E.; Jorundsson, E.; Sigurjonsson, G.F. Use of Acellular Fish Skin for Dura Repair in an Ovine Model: A Pilot Study. Open J. Mod. Neurosurg. 2015, 5, 124–136. [Google Scholar] [CrossRef]
- Kamalvand, M.; Biazar, E.; Daliri-Joupari, M.; Montazer, F.; Rezaei-Tavirani, M.; Heidari-Keshel, S. Design of a Decellularized Fish Skin as a Biological Scaffold for Skin Tissue Regeneration. Tissue Cell 2021, 71, 101509. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, A.; Burcharth, J.; Rosenberg, J. Animal Derived Products May Conflict with Religious Patients’ Beliefs. BMC Med. Ethics 2013, 14, 48. [Google Scholar] [CrossRef]
- Fu, Y.; Li, C.; Wang, Q.; Gao, R.; Cai, X.; Wang, S.; Zhang, Y. The Protective Effect of Collagen Peptides from Bigeye Tuna (Thunnus obesus) Skin and Bone to Attenuate UVB-Induced Photoaging via MAPK and TGF-β Signaling Pathways. J. Funct. Foods 2022, 93, 105101. [Google Scholar] [CrossRef]
- Abejón, R.; Abejón, A.; Garea, A.; Tsuru, T.; Irabien, A.; Belleville, M.P.; Sanchez-Marcano, J. In Silico Evaluation of Ultrafiltration and Nanofiltration Membrane Cascades for Continuous Fractionation of Protein Hydrolysate from Tuna Processing Byproduct. Ind. Eng. Chem. Res. 2016, 55, 7493–7504. [Google Scholar] [CrossRef]
- Nurilmala, M.; Hizbullah, H.H.; Karnia, E.; Kusumaningtyas, E.; Ochiai, Y. Characterization and Antioxidant Activity of Collagen, Gelatin, and the Derived Peptides from Yellowfin Tuna (Thunnus albacares) Skin. Mar. Drugs 2020, 18, 98. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Pedreira, A.; Durán, S.; Cabanelas, D.; Souto-Montero, P.; Martínez, P.; Mulet, M.; Pérez-Martín, R.I.; Valcarcel, J. Biorefinery for Tuna Head Wastes: Production of Protein Hydrolysates, High-Quality Oils, Minerals and Bacterial Peptones. J. Clean. Prod. 2022, 357, 131909. [Google Scholar] [CrossRef]
- Jafari, H.; Lista, A.; Siekapen, M.M.; Ghaffari-Bohlouli, P.; Nie, L.; Alimoradi, H.; Shavandi, A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers 2020, 12, 2230. [Google Scholar] [CrossRef] [PubMed]
- Toppe, J.; Albrektsen, S.; Hope, B.; Aksnes, A. Chemical Composition, Mineral Content and Amino Acid and Lipid Profiles in Bones from Various Fish Species. Comp. Biochem. Physiol.-B Biochem. Mol. Biol. 2007, 146, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Gruskin, E.; Doll, B.A.; Futrell, F.W.; Schmitz, J.P.; Hollinger, J.O. Demineralized Bone Matrix in Bone Repair: History and Use. Adv. Drug Deliv. Rev. 2012, 64, 1063–1077. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, X.; Wang, K.; Zhou, Y.; Li, T.; Gao, J.; Wang, L. Preparation of Fish Decalcified Bone Matrix and Its Bone Repair Effect in Rats. Front. Bioeng. Biotechnol. 2023, 11, 1134992. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Su, F.Y.; Green, A.; Salim, J.; McKittrick, J.; Jasiuk, I. Comparison of Different Protocols for Demineralization of Cortical Bone. Sci. Rep. 2021, 11, 7012. [Google Scholar] [CrossRef]
- Neishabouri, A.; Soltani Khaboushan, A.; Daghigh, F.; Kajbafzadeh, A.M.; Majidi Zolbin, M. Decellularization in Tissue Engineering and Regenerative Medicine: Evaluation, Modification, and Application Methods. Front. Bioeng. Biotechnol. 2022, 10, 805299. [Google Scholar] [CrossRef]
- Kasravi, M.; Ahmadi, A.; Babajani, A.; Mazloomnejad, R.; Hatamnejad, M.R.; Shariatzadeh, S.; Bahrami, S.; Niknejad, H. Immunogenicity of Decellularized Extracellular Matrix Scaffolds: A Bottleneck in Tissue Engineering and Regenerative Medicine. Biomater. Res. 2023, 27, 10. [Google Scholar] [CrossRef]
- Allu, I.; Sahi, A.K.; Koppadi, M.; Gundu, S.; Sionkowska, A. Decellularization Techniques for Tissue Engineering: Towards Replicating Native Extracellular Matrix Architecture in Liver Regeneration. J. Funct. Biomater. 2023, 14, 518. [Google Scholar] [CrossRef]
- Li, P.; Feng, M.; Hu, X.; Zhang, C.; Zhu, J.; Xu, G.; Li, L.; Zhao, Y. Biological Evaluation of Acellular Bovine Bone Matrix Treated with NaOH. J. Mater. Sci. Mater. Med. 2022, 33, 58. [Google Scholar] [CrossRef]
- de Sousa Lopes, M.; Gomes, M.J.P.; de Souza, F.F.P.; Castro-Silva, I.I.; Mattos, A.L.A. Influence of Hydrogen Peroxide on Composition, Thermostability, Porosity and Swelling of Collagen Matrices of Demineralized Porcine Cortical Bone. Brazilian Arch. Biol. Technol. 2024, 67, e24230742. [Google Scholar] [CrossRef]
- Arellano, F.M.; Bual, R.; Bantilan, Z.C.; Alimasag, J.; Aron, J.; Baclayon, L.; Nisperos, M.J.; Valle, K.D.D.; Ducao, P.G.; Lumancas, G.; et al. Upcycling Waste Tilapia (Oreochromis niloticus) Scales through a Decellularization Process for Extracellular Matrix Extraction. Mater. Res. Express 2024, 11, 025101. [Google Scholar] [CrossRef]
- Massaro, M.S.; Pálek, R.; Rosendorf, J.; Červenková, L.; Liška, V.; Moulisová, V. Decellularized Xenogeneic Scaffolds in Transplantation and Tissue Engineering: Immunogenicity versus Positive Cell Stimulation. Mater. Sci. Eng. C 2021, 127, 112203. [Google Scholar] [CrossRef] [PubMed]
- Aron, J.; Bual, R.; Alimasag, J.; Arellano, F.; Baclayon, L.; Bantilan, Z.C.; Lumancas, G.; Nisperos, M.J.; Labares, M.; Valle, K.D.D.; et al. Effects of Various Decellularization Methods for the Development of Decellularized Extracellular Matrix from Tilapia (Oreochromis Niloticus) Viscera. Int. J. Biomater. 2024, 2024, 6148496. [Google Scholar] [CrossRef] [PubMed]
- Emami, A.; Talaei-Khozani, T.; Vojdani, Z.; Zarei Fard, N. Comparative Assessment of the Efficiency of Various Decellularization Agents for Bone Tissue Engineering. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2021, 109, 19–32. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, B.; Li, J.; Cen, L.; Zhao, L.; Xi, Z. Preparation of Extracellular Matrix of Fish Swim Bladders by Decellularization with Supercritical Carbon Dioxide. Bioresour. Bioprocess. 2023, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Z.; Qiu, L.H.; Xiong, S.H.; Dang, J.L.; Rong, X.K.; Hou, M.M.; Wang, K.; Yu, Z.; Yi, C.G. Decellularized Adipose Matrix Provides an Inductive Microenvironment for Stem Cells in Tissue Regeneration. World J. Stem Cells 2020, 12, 585–603. [Google Scholar] [CrossRef]
- AAT Bioquest, Inc. PBS (Phosphate Buffered Saline) (1X, pH 7.4). Available online: https://www.aatbio.com/resources/buffer-preparations-and-recipes/pbs-phosphate-buffered-saline (accessed on 15 August 2025).
- Levenspiel, O. Chemical Reaction Engineering. Ind. Eng. Chem. Res. 1999, 38, 4140–4143. [Google Scholar] [CrossRef]
- Ijima, H.; Nakamura, S.; Bual, R.P.; Yoshida, K. Liver-Specific Extracellular Matrix Hydrogel Promotes Liver-Specific Functions of Hepatocytes in Vitro and Survival of Transplanted Hepatocytes in Vivo. J. Biosci. Bioeng. 2019, 128, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Pavlović, B.; Cvijetić, N.; Dragačević, L.; Ivković, B.; Vujić, Z.; Kuntić, V. Direct UV Spectrophotometry and HPLC Determination of Triton X-100 in Split Virus Influenza Vaccine. J. AOAC Int. 2016, 99, 396–400. [Google Scholar] [CrossRef]
- Alizadeh, M.; Rezakhani, L.; Soleimannejad, M.; Sharifi, E.; Anjomshoa, M.; Alizadeh, A. Evaluation of Vacuum Washing in the Removal of SDS from Decellularized Bovine Pericardium: Method and Device Description. Heliyon 2019, 5, e02253. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, A.; Li, Z.; He, S.; Shao, L. Preparation and Characterisation of Collagen from Freshwater Fish Scales. Food Nutr. Sci. 2011, 2, 818–823. [Google Scholar] [CrossRef]
- Nisperos, M.J.; Bacosa, H.; Lumancas, G.; Arellano, F.; Aron, J.; Baclayon, L.; Bantilan, Z.C.; Labares, M.; Bual, R. Time-Dependent Demineralization of Tilapia (Oreochromis niloticus) Bones Using Hydrochloric Acid for Extracellular Matrix Extraction. Biomimetics 2023, 8, 217. [Google Scholar] [CrossRef]
- Chang, R.; Overby, J. (Role) Aut Chemistry, 14th ed.; McGrawHill Book Company: New York, NY, USA; London, UK, 2022; ISBN 9781260784473. [Google Scholar]
- Bigi, A.; Ripamonti, A.; Cojazzi, G.; Pizzuto, G.; Roveri, N.; Koch, M.H.J. Structural Analysis of Turkey Tendon Collagen upon Removal of the Inorganic Phase. Int. J. Biol. Macromol. 1991, 13, 110–114. [Google Scholar] [CrossRef]
- Ariffin, A.F.; Yusof, N.; Mohd, S.; Rahman, S.A.; Ramalingam, S.; Mansor, A.; Min, N.G. Verifying Measurements of Residual Calcium Content in Demineralised Cortical Bone. Cell Tissue Bank. 2019, 20, 527–534. [Google Scholar] [CrossRef]
- Eagle, M.J.; Rooney, P.; Kearney, J.N. Development of an Improved Bone Washing and Demineralisation Process to Produce Large Demineralised Human Cancellous Bone Sponges. Cell Tissue Bank. 2015, 16, 569–578. [Google Scholar] [CrossRef]
- Anastassopoulou, J.; Kolovou, P.; Papagelopoulos, P.; Theophanides, T. The Role of β-Antagonists on the Structure of Human Bone-A Spectroscopic Study. Life Biomed. Sci. 2012, 25, 259–271. [Google Scholar]
- Rabotyagova, O.S.; Cebe, P.; Kaplan, D.L. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation. Mater. Sci. Eng. C 2008, 28, 1420–1429. [Google Scholar] [CrossRef] [PubMed]
- Dixon, D.T.; Landree, E.N.; Gomillion, C.T. 3D-Printed Demineralized Bone Matrix-Based Conductive Scaffolds Combined with Electrical Stimulation for Bone Tissue Engineering Applications. ACS Appl. Bio Mater. 2024, 7, 4366–4378. [Google Scholar] [CrossRef]
- Abedin, E.; Lari, R.; Mahdavi Shahri, N.; Fereidoni, M. Development of a Demineralized and Decellularized Human Epiphyseal Bone Scaffold for Tissue Engineering: A Histological Study. Tissue Cell 2018, 55, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Mkukuma, L.D.; Skakle, J.M.S.; Gibson, I.R.; Imrie, C.T.; Aspden, R.M.; Hukins, D.W.L. Effect of the Proportion of Organic Material in Bone on Thermal Decomposition of Bone Mineral: An Investigation of a Variety of Bones from Different Species Using Thermogravimetric Analysis Coupled to Mass Spectrometry, High-Temperature X-Ray Diffraction. Calcif. Tissue Int. 2004, 75, 321–328. [Google Scholar] [CrossRef]
- Modolon, H.B.; Inocente, J.; Bernardin, A.M.; Klegues Montedo, O.R.; Arcaro, S. Nanostructured Biological Hydroxyapatite from Tilapia Bone: A Pathway to Control Crystallite Size and Crystallinity. Ceram. Int. 2021, 47, 27685–27693. [Google Scholar] [CrossRef]
- Vaissier Welborn, V. Environment-Controlled Water Adsorption at Hydroxyapatite/Collagen Interfaces. Phys. Chem. Chem. Phys. 2021, 23, 13789–13796. [Google Scholar] [CrossRef]
- Blanco, I.; Siracusa, V. The Use of Thermal Techniques in the Characterization of Bio-Sourced Polymers. Materials 2021, 14, 1686. [Google Scholar] [CrossRef]
- Samouillan, V.; Delaunay, F.; Dandurand, J.; Merbahi, N.; Gardou, J.-P.; Yousfi, M.; Gandaglia, A.; Spina, M.; Lacabanne, C. The Use of Thermal Techniques for the Characterization and Selection of Natural Biomaterials. J. Funct. Biomater. 2011, 2, 230–248. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Roy, M.; Bandyopadhyay, A. Recent Advances in Bone Tissue Engineering Scaffolds. Trends Biotechnol. 2012, 30, 546–554. [Google Scholar] [CrossRef]
- Yu, B.; Pacureanu, A.; Olivier, C.; Cloetens, P.; Peyrin, F. Assessment of the Human Bone Lacuno-Canalicular Network at the Nanoscale and Impact of Spatial Resolution. Sci. Rep. 2020, 10, 4567. [Google Scholar] [CrossRef]
- Lin, C.H.; Hsia, K.; Su, C.K.; Chen, C.C.; Yeh, C.C.; Ma, H.; Lu, J.H. Sonication-Assisted Method for Decellularization of Human Umbilical Artery for Small-Caliber Vascular Tissue Engineering. Polymers 2021, 13, 1699. [Google Scholar] [CrossRef]
- Moffat, D.; Ye, K.; Jin, S. Decellularization for the Retention of Tissue Niches. J. Tissue Eng. 2022, 13, 20417314221101151. [Google Scholar] [CrossRef]
- Solarte David, V.A.; Güiza-Argüello, V.R.; Arango-Rodríguez, M.L.; Sossa, C.L.; Becerra-Bayona, S.M. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Front. Bioeng. Biotechnol. 2022, 10, 821852. [Google Scholar] [CrossRef]
- McInnes, A.D.; Moser, M.A.J.; Chen, X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J. Funct. Biomater. 2022, 13, 240. [Google Scholar] [CrossRef]
- Koley, D.; Bard, A.J. Triton X-100 Concentration Effects on Membrane Permeability of a Single HeLa Cell by Scanning Electrochemical Microscopy (SECM). Proc. Natl. Acad. Sci. USA 2010, 107, 16783–16787. [Google Scholar] [CrossRef] [PubMed]
- Keane, T.J.; Swinehart, I.T.; Badylak, S.F. Methods of Tissue Decellularization Used for Preparation of Biologic Scaffolds and in Vivo Relevance. Methods 2015, 84, 25–34. [Google Scholar] [CrossRef]
- Amirrah, I.N.; Lokanathan, Y.; Zulkiflee, I.; Wee, M.F.M.R.; Motta, A.; Fauzi, M.B. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022, 10, 2307. [Google Scholar] [CrossRef] [PubMed]
- Berisio, R.; Granata, V.; Vitagliano, L.; Zagari, A. Imino Acids and Collagen Triple Helix Stability: Characterization of Collagen-like Polypeptides Containing Hyp-Hyp-Gly Sequence Repeats. J. Am. Chem. Soc. 2004, 126, 11402–11403. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Zharif, Z.; Nur Azira, T.; Muhamad Shirwan, A.S.; Azilawati, M.I. Recent Advanced Techniques in Cysteine Determination: A Review. Food Res. 2020, 4, 2336–2346. [Google Scholar] [CrossRef] [PubMed]
- Taga, Y.; Tanaka, K.; Hattori, S.; Mizuno, K. In-Depth Correlation Analysis Demonstrates That 4-Hydroxyproline at the Yaa Position of Gly-Xaa-Yaa Repeats Dominantly Stabilizes Collagen Triple Helix. Matrix Biol. Plus 2021, 10, 100067. [Google Scholar] [CrossRef]
- Zhai, X.; Geng, X.; Li, W.; Cui, H.; Wang, Y.; Qin, S. Comprehensive Review on Application Progress of Marine Collagen Cross-Linking Modification in Bone Repairs. Mar. Drugs 2025, 23, 151. [Google Scholar] [CrossRef] [PubMed]
Zero Order | First Order | Second Order | ||||
---|---|---|---|---|---|---|
[HCl] (mol/L) | k (%/min) | R2 | k (min−1) | R2 | k (min−1·%−1) | R2 |
0.5 M | 0.0228 | 0.8516 | 0.0039 | 0.9641 | 0.001 | 0.9941 |
1.0 M | 0.0426 | 0.6496 | 0.0096 | 0.9465 | 0.0054 | 0.9939 |
Peak 1 | Peak 2 | Peak 3 | Peak 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
Conditions | T1, °C | % Loss, | T2, °C | % Loss, | T3 °C | % Loss | T4, °C | % Loss | |
Control | 102.43 | 10.71 | 350.55 | 20.30 | 414.47 | 12.26 | 515.19 | 19.94 | |
0.5 M HCl | 1 h | 79.44 | 11.41 | 331.42 | 34.72 | 409.22 | 16.58 | 578.67 | 27.29 |
6 h | 81.45 | 7.75 | 332.09 | 38.92 | 404.33 | 23.84 | 586.04 | 29.94 | |
12 h | 82.83 | 9.94 | 328.46 | 38.73 | 404.64 | 19.30 | 577.70 | 31.18 | |
24 h | 88.03 | 6.82 | 331.47 | 38.01 | 397.22 | 22.25 | 588.45 | 31.45 | |
1.0 M HCl | 1 h | 86.10 | 7.75 | 328.26 | 39.66 | 404.64 | 14.03 | 577.70 | 29.87 |
6 h | 82.83 | 10.86 | 331.68 | 39.74 | 402.73 | 16.51 | 578.67 | 32.54 | |
12 h | 87.15 | 9.74 | 332.09 | 37.66 | 402.39 | 19.61 | 586.04 | 32.54 | |
24 h | 81.45 | 6.67 | 332.15 | 39.10 | 391.37 | 20.31 | 602.58 | 32.35 |
Amino Acids | Control | 0.1% SDS | 0.5% SDS | 1.0% SDS | 0.1% TX100 | 0.5% TX100 | 1.0% TX100 |
---|---|---|---|---|---|---|---|
Alanine | 9.72 | 9.69 | 10.09 | 10.53 | 9.50 | 9.94 | 9.88 |
Arginine | 8.04 | 8.27 | 8.33 | 7.99 | 8.26 | 8.94 | 7.91 |
Asparagine a | 3.34 | 4.09 | 4.00 | 3.50 | 3.73 | 3.80 | 3.58 |
Glutamic Acid b | 11.01 | 12.34 | 12.12 | 11.51 | 12.42 | 12.58 | 11.86 |
Glycine | 16.52 | 18.14 | 17.90 | 17.32 | 18.20 | 18.59 | 17.40 |
Histidine | 1.43 | 0.99 | 1.01 | 0.35 | 0.93 | 1.01 | 1.11 |
Hydroxyproline | 5.64 | 7.08 | 7.81 | 8.62 | 6.66 | 6.90 | 10.13 |
Isoleucine | 2.13 | 2.56 | 2.52 | 2.32 | 2.45 | 2.50 | 2.48 |
Leucine | 4.26 | 4.89 | 4.78 | 4.51 | 4.75 | 4.83 | 4.72 |
Lysine | 5.42 | 6.34 | 6.88 | 7.08 | 5.58 | 6.66 | 6.96 |
Methionine | 2.29 | 2.48 | 2.50 | 2.39 | 2.56 | 2.64 | 2.42 |
Phenylalanine | 2.62 | 3.02 | 2.93 | 2.80 | 2.97 | 3.04 | 2.87 |
Proline | 15.92 | 7.67 | 7.01 | 8.87 | 9.55 | 6.14 | 6.87 |
Serine | 6.66 | 7.20 | 7.04 | 7.39 | 7.38 | 7.32 | 6.79 |
Tyrosine | 0.71 | 0.76 | 0.69 | 0.63 | 0.64 | 0.70 | 0.74 |
Valine | 4.28 | 4.50 | 4.38 | 4.19 | 4.40 | 4.42 | 4.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bantilan, Z.C.; Labares, M., Jr.; Alimasag, J.; Valle, K.D.D.; Barlisan, C.L.; Eleccion, E.; Bual, R. Evaluation of the Effects of Demineralization and Decellularization for the Development of a Decellularized Bone Matrix from Tuna (Thunnus albacares) Bone. Appl. Biosci. 2025, 4, 43. https://doi.org/10.3390/applbiosci4030043
Bantilan ZC, Labares M Jr., Alimasag J, Valle KDD, Barlisan CL, Eleccion E, Bual R. Evaluation of the Effects of Demineralization and Decellularization for the Development of a Decellularized Bone Matrix from Tuna (Thunnus albacares) Bone. Applied Biosciences. 2025; 4(3):43. https://doi.org/10.3390/applbiosci4030043
Chicago/Turabian StyleBantilan, Zesreal Cain, Marionilo Labares, Jr., Johnel Alimasag, Kit Dominick Don Valle, Chancy Louisse Barlisan, Elizer Eleccion, and Ronald Bual. 2025. "Evaluation of the Effects of Demineralization and Decellularization for the Development of a Decellularized Bone Matrix from Tuna (Thunnus albacares) Bone" Applied Biosciences 4, no. 3: 43. https://doi.org/10.3390/applbiosci4030043
APA StyleBantilan, Z. C., Labares, M., Jr., Alimasag, J., Valle, K. D. D., Barlisan, C. L., Eleccion, E., & Bual, R. (2025). Evaluation of the Effects of Demineralization and Decellularization for the Development of a Decellularized Bone Matrix from Tuna (Thunnus albacares) Bone. Applied Biosciences, 4(3), 43. https://doi.org/10.3390/applbiosci4030043