Comparative Analysis of Bioactive Phenolic Compounds and Fatty Acids in Seeds and Seedlings of Canadian Alfalfa, Sainfoin, and Fenugreek
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seeds and Seedlings Growth
2.2. Sample Analysis for Phenolic Compounds and Fatty Acids
2.2.1. Extraction of Phenolic Acids and Flavonoids
2.2.2. Liquid Chromatography–Mass Spectrometric Analysis of Extracts for Phenolic Compounds
2.2.3. Fatty Acid Composition Analysis
2.3. Statistical Analysis
3. Results
3.1. Comparison of Bioactive Phenolic Compounds in Three Forage Crop Cultivars
3.2. Fatty Acid Composition in Seeds and Seedling Growth Stages of Three Forage Crops
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahbandeh, M. Size of the Canadian Functional Foods Market 2014–2025. 2022. Available online: https://www.statista.com/statistics/1040741/functional-foods-market-size-canada/ (accessed on 23 March 2023).
- Dini, C.; García, M.A.; Viña, S.Z. Non-traditional flours: Frontiers between ancestral heritage and innovation. Food Funct. 2012, 3, 606–620. [Google Scholar] [CrossRef] [PubMed]
- Capstaff, N.M.; Miller, A.J. Improving the Yield and Nutritional Quality of Forage Crops. Front. Plant Sci. 2018, 9, 535. [Google Scholar] [CrossRef] [PubMed]
- Iannetta, P.P.; Young, M.; Bachinger, J.; Bergkvist, G.; Doltra, J.; Lopez-Bellido, R.J.; Monti, M.; Pappa, V.A.; Reckling, M.; Topp, C.F.; et al. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation. Front. Plant Sci. 2016, 7, 1700. [Google Scholar] [CrossRef]
- Acharya, S.N.; Thomas, J.E.; Basu, S.K. Fenugreek (Trigonella foenum-graecum L.): An “old world” crop for the “New World”. Biodiversity 2011, 7, 27–30. [Google Scholar] [CrossRef]
- Sheppard, S.C.; Cattani, D.J.; Ominski, K.H.; Biligetu, B.; Bittman, S.; McGeough, E.J. Sainfoin production in western Canada: A review of agronomic potential and environmental benefits. Grass Forage Sci. 2019, 74, 6–18. [Google Scholar] [CrossRef]
- Anderson, C. Alternative Forage; Sainfoin, Fenugreek: Not Your Everyday Feed. 2016. Available online: https://www.dtnpf.com/agriculture/web/ag/news/article/2016/03/23/sainfoin-fenugreek-everyday-feed (accessed on 24 May 2023).
- Kumar, A.; Mosa, K.A.; Ji, L.; Kage, U.; Dhokane, D.; Karre, S.; Madalageri, D.; Pathania, N. Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Crit. Rev. Food Sci. Nutr. 2018, 58, 1791–1807. [Google Scholar] [CrossRef]
- Thomas, J.E.; Bandara, M.; Dridger, D.; Lee, E.L. Fenugreek in Western Canada. Am. J. Plant Sci. Biotechnol. 2011, 5, 32–44. [Google Scholar]
- Shah, M.A.; Mir, P.S. Effect of dietary fenugreek seed on dairy cow performance and milk characteristics. Can. J. Anim. Sci. 2004, 84, 725–729. [Google Scholar] [CrossRef]
- Wang, Y.; McAllister, T.A.; Acharya, S. Condensed Tannins in Sainfoin: Composition, Concentration, and Effects on Nutritive and Feeding Value of Sainfoin Forage. Crop Sci. 2015, 55, 13–22. [Google Scholar] [CrossRef]
- Wijekoon, C.; Acharya, S.N.; Siow, Y.L.; Sura, S.; Thandapilly, S.; Sabra, A. Canadian sainfoin and fenugreek as forage and functional foods. Crop Sci. 2021, 61, 1–20. [Google Scholar] [CrossRef]
- Acharya, S.N. AAC Mountainview sainfoin (Onobrychis viciifoila subsp. Viciifolia). Can. J. Plant Sci. 2015, 95, 603–607. [Google Scholar] [CrossRef]
- Cao, Y.C.; Yang, H.J. Ruminal digestibility and fermentation characteristics in vitro of fenugreek and alfalfa hay combination with or without the inoculation of Neocallimastix sp. YAK11. Anim. Feed. Sci. Technol. 2011, 169, 53–60. [Google Scholar] [CrossRef]
- Chung, Y.H.; Mc Geough, E.J.; Acharya, S.; McAllister, T.A.; McGinn, S.M.; Harstad, O.M.; Beauchemin, K.A. Enteric methane emission, diet digestibility, and nitrogen excretion from beef heifers fed sainfoin or alfalfa. J. Anim. Sci. 2013, 91, 4861–4874. [Google Scholar] [CrossRef]
- Koivisto, J.M.; Lane, G.P.F. Sainfoin: Worth Another Look; Royal Agricultural College on behalf of the BGS Forage Legumes Special Interest Group: Cirencester, UK, 2001. [Google Scholar]
- Butkute, B.; Padarauskas, A.; Ceseviciene, J.; Pavilonis, A.; Taujenis, L.; Lemeziene, N. Perennial legumes as a source of ingredients for healthy food: Proximate, mineral and phytoestrogen composition and antibacterial activity. J. Food Sci. Technol. 2017, 54, 2661–2669. [Google Scholar] [CrossRef] [PubMed]
- Butkute, B.; Taujenis, L.; Norkeviciene, E. Small-Seeded Legumes as a Novel Food Source. Variation of Nutritional, Mineral and Phytochemical Profiles in the Chain: Raw Seeds-Sprouted Seeds-Microgreens. Molecules 2018, 24, 133. [Google Scholar] [CrossRef]
- Tarasenko, N.A.; Butina, E.A.; Gerasimenko, E.O. Peculiarities of chemical composition of sainfoin seeds powder. Orient. J. Chem. 2015, 31, 1673–1682. [Google Scholar] [CrossRef]
- Broca, C.; Breil, V.; Cruciani-Guglielmacci, C.; Manteghetti, M.; Rouault, C.; Derouet, M.; Rizkalla, S.; Pau, B.; Petit, P.; Ribes, G.; et al. Insulinotropic agent ID-1101 (4-hydroxyisoleucine) activates insulin signaling in rat. Am. J. Physiol.-Endocrinol. Metab. 2004, 287, E463–E471. [Google Scholar] [CrossRef]
- Khan, T.M.; Wu, D.B.; Dolzhenko, A.V. Effectiveness of fenugreek as a galactagogue: A network meta-analysis. Phytother. Res. 2018, 32, 402–412. [Google Scholar] [CrossRef]
- Amini, M.R.; Payandeh, N.; Sheikhhossein, F.; Pourreza, S.; Ghalandari, H.; Askarpour, M.; Hekmatdoost, A. The Effects of Fenugreek Seed Consumption on Blood Pressure: A Systematic Review and Meta-analysis of Randomized Controlled Trials. High. Blood Press. Cardiovasc. Prev. 2023, 30, 123–133. [Google Scholar] [CrossRef]
- Baba, W.N.; Tabasum, Q.; Muzzaffar, S.; Masoodi, F.A.; Wani, I.; Ganie, S.A.; Bhat, M.M. Some nutraceutical properties of fenugreek seeds and shoots (Trigonella foenum-graecum L.) from the high Himalayan region. Food Biosci. 2018, 23, 31–37. [Google Scholar] [CrossRef]
- Sabra, A.; Netticadan, T.; Wijekoon, C. Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chem. X 2021, 12, 100149. [Google Scholar] [CrossRef] [PubMed]
- Horvat, D.; Viljevac Vuletić, M.; Andrić, L.; Baličević, R.; Kovačević Babić, M.; Tucak, M. Characterization of Forage Quality, Phenolic Profiles, and Antioxidant Activity in Alfalfa (Medicago sativa L.). Plants 2022, 11, 2735. [Google Scholar] [CrossRef] [PubMed]
- Khole, S.; Chatterjee, S.; Variyar, P.; Sharma, A.; Devasagayam, T.P.A.; Ghaskadbi, S. Bioactive constituents of germinated fenugreek seeds with strong antioxidant potential. J. Funct. Foods 2014, 6, 270–279. [Google Scholar] [CrossRef]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kregiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed]
- Wijekoon, C.P.; Singer, S.D.; Weselake, R.J.; Petrie, J.R.; Singh, S.; Jayawardhane, K.N.; Shah, S.; Chen, G.; Eastmond, P.J.; Acharya, S.N. Enhancement of total lipid production in vegetative tissues of alfalfa and sainfoin using chemical mutagenesis. Crop Sci. 2020, 60, 2990–3003. [Google Scholar] [CrossRef]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef]
- Piluzza, G.; Sulas, L.; Bullitta, S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: A review. Grass Forage Sci. 2014, 69, 32–48. [Google Scholar] [CrossRef]
- Ghaffari, S.; Roshanravan, N. The role of nutraceuticals in prevention and treatment of hypertension: An updated review of the literature. Food Res. Int. 2020, 128, 108749. [Google Scholar] [CrossRef]
- Haghi, G.; Hatami, A. Simultaneous quantification of flavonoids and phenolic acids in plant materials by a newly developed isocratic high-performance liquid chromatography approach. J. Agric. Food Chem. 2010, 58, 10812–10816. [Google Scholar] [CrossRef]
- Vichapong, J.; Sookserm, M.; Srijesdaruk, V.; Swatsitang, P.; Srijaranai, S. High performance liquid chromatographic analysis of phenolic compounds and their antioxidant activities in rice varieties. LWT—Food Sci. Technol. 2010, 43, 1325–1330. [Google Scholar] [CrossRef]
- Carvalho, I.S.; Teixeira, M.C.; Brodelius, M. Fatty acids profile of selected Artemisia spp. plants: Health promotion. LWT—Food Sci. Technol. 2011, 44, 293–298. [Google Scholar] [CrossRef]
- Vrinten, P.; Hu, Z.; Munchinsky, M.A.; Rowland, G.; Qiu, X. Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol. 2005, 139, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Wenzl, T.; Haedrich, J.; Schaechtele, A.; Robouch, P.; Stroka, J. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Rizvi, A.; Sharma, M.; Saxena, S. Microgreens: A Next Generation Nutraceutical for Multiple Disease Management and Health Promotion. Genet. Resour. Crop Evol. 2023, 70, 311–332. [Google Scholar] [CrossRef]
- Yadav, L.P.; Koley, T.K.; Tripathi, A.; Singh, S. Antioxidant Potentiality and Mineral Content of Summer Season Leafy Greens: Comparison at Mature and Microgreen Stages Using Chemometric. Agric. Res. 2019, 8, 165–175. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, X.; Xiao, Z.; Yu, L.; Pham, Q.; Sun, J.; Chen, P.; Yokoyama, W.; Yu, L.L.; Luo, Y.S.; et al. Red Cabbage Microgreens Lower Circulating Low-Density Lipoprotein (LDL), Liver Cholesterol, and Inflammatory Cytokines in Mice Fed a High-Fat Diet. J. Agric. Food Chem. 2016, 64, 9161–9171. [Google Scholar] [CrossRef]
- Li, S.; Jiang, M.; Wang, L.; Yu, S. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement. Biomed. Pharmacother. 2020, 129, 110389. [Google Scholar] [CrossRef]
- Melim, C.; Lauro, M.R.; Pires, I.M.; Oliveira, P.J.; Cabral, C. The Role of Glucosinolates from Cruciferous Vegetables (Brassicaceae) in Gastrointestinal Cancers: From Prevention to Therapeutics. Pharmaceutics 2022, 14, 190. [Google Scholar] [CrossRef]
- Tucak, M.; Horvat, D.; Cupic, T.; Krizmanic, G.; Tomas, V.; Ravlic, M.; Popovic, S. Forage Legumes as Sources of Bioactive Phytoestrogens for Use in Pharmaceutics: A Review. Curr. Pharm. Biotechnol. 2018, 19, 537–544. [Google Scholar] [CrossRef]
- Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the Flavonoid C-glycosides and Health Benefits. Crit. Rev. Food Sci. Nutr. 2016, 56 (Suppl. S1), S29–S45. [Google Scholar] [CrossRef]
- Ayvazyan, A.; Stegemann, T.; Galarza Pérez, M.; Pramsohler, M.; Çiçek, S.S. Phytochemical Profile of Trigonella caerulea (Blue Fenugreek) Herb and Quantification of Aroma-Determining Constituents. Plants 2023, 12, 1154. [Google Scholar] [CrossRef]
- Salam, S.G.A.; Rashed, M.M.; Ibrahim, N.A.; Rahim, E.A.A.; Aly, T.A.A.; Al-Farga, A. Phytochemical screening and in-vitro biological properties of unprocessed and household processed fenugreek (Trigonella foenum-graecum Linn.) seeds and leaves. Sci. Rep. 2023, 13, 7032. [Google Scholar] [CrossRef]
- Hafeez, J.; Naeem, M.; Ali, T.; Sultan, B.; Hussain, F.; Ur Rashid, H.; Nadeem, M.; Shirzad, I. Comparative Study of Antioxidant, Antidiabetic, Cytotoxic Potentials, and Phytochemicals of Fenugreek (Trigonella foenum-graecum) and Ginger (Zingiber officinale). J. Chem. 2023, 2023, 3469727. [Google Scholar] [CrossRef]
- Clapham, W.M.; Foster, J.G.; Neel, J.P.S.; Fedders, J.M. Fatty Acid Composition of Traditional and Novel Forages. J. Agric. Food Chem. 2005, 53, 10068–10073. [Google Scholar] [CrossRef] [PubMed]
- Rufino-Moya, P.J.; Bertolín, J.R.; Blanco, M.; Lobón, S.; Joy, M. Fatty acid profile, secondary compounds and antioxidant activities in the fresh forage, hay and silage of sainfoin (Onobrychis viciifolia) and sulla (Hedysarum coronarium). J. Sci. Food Agric. 2022, 102, 4736–4743. [Google Scholar] [CrossRef] [PubMed]
Phenolic Compound | m/z of Precursor & Product Ions | Retention Time (min) | LOD 1 (ng·mL−1) | LOQ 2 (ng·mL−1) | Calibration Curve Range (ng·mL−1) | Linearity (R2) |
---|---|---|---|---|---|---|
Apigenin 3 | 269.0456 > 225.0553 269.0456 > 201.0551 | 10.2 | 1.4 | 4.2 | 0.5–250 | 0.9987 |
Caffeic acid | 179.0347 > 135.0449 | 3.80 | 2.1 | 6.4 | 0.5–250 | 0.9981 |
Catechin | 289.0708 > 245.0811 289.0708 > 205.0499 289.0708 > 179.0343 | 5.21 | 1.1 | 3.4 | 0.5–250 | 0.9977 |
Chlorogenic acid | 353.0872 > 191.0559 | 4.59 | 1.7 | 5.2 | 0.5–250 | 0.9969 |
Epicatechin | 289.0708 > 245.0811 289.0708 > 205.0499 289.0708 > 173.4917 | 5.44 | 1.0 | 2.9 | 0.5–250 | 0.9997 |
Epicatechin gallate | 441.0817 > 289.0712 441.0817 > 169.0138 | 7.13 | 2.5 | 7.5 | 0.5–250 | 0.9997 |
Epigallocatechin | 305.0662 > 221.0453 305.0662 > 179.0347 | 3.98 | 41.9 | 127 | 0.5–250 | 0.9996 |
Ferulic acid | 193.0504 > 149.0603 | 6.80 | 49.6 | 150 | 0.5–250 | 0.9906 |
Gallic acid | 169.014 > 125.0241 | 1.98 | 3.3 | 10 | 0.5–250 | 0.9973 |
Genistein 3 | 269.0449 > 159.0446 269.0449 > 133.0291 | 10.1 | 2.9 | 8.8 | 0.5–250 | 0.9973 |
Iso-vitexin | 431.0972 > 311.0552 | 6.55 | 1.0 | 3.0 | 0.5–250 | 0.9991 |
Resveratrol | 227.0711 > 185.0605 | 6.61 | 9.7 | 29.4 | 0.5–250 | 0.9981 |
Rutin | 609.1450 > 301.0349 | 6.26 | 2.1 | 6.3 | 0.5–250 | 0.9969 |
Sinapic acid | 223.0609 > 179.0711 223.0609 > 164.0475 | 6.92 | 33.0 | 99.9 | 0.5–250 | 0.9938 |
Vitexin | 431.0972 > 311.0552 | 8.09 | 1.0 | 3 | 0.5–250 | 0.9991 |
Forage Crop (Cultivar) | Seedling Growth Stage | Apigenin + Genistein 1 | Caffeic Acid | Catechin | Chlorogenic Acid | Epi-Catechin | Epicatechin Gallate | Epigallocatechin | Ferulic Acid | Gallic Acid | Iso-Vitexin | Sinapic Acid | Resveratrol | Rutin | Vitexin |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<µg g−1 dry wt.> | |||||||||||||||
Alfalfa (Bridgeview) | Seed | 0.85 | 0.11 | 4.98 | ND 2 | 5.00 | ND | 0.24 | 6.11 | ND | 1.27 | 0.32 | ND | 0.27 | 1.27 |
Day 7 | 12.56 | 0.01 | 0.01 | ND | 0.01 | ND | <LOQ 3 | <LOQ | ND | <LOQ | 0.25 | <LOQ | 0.02 | <LOQ | |
Day 14 | 11.64 | 0.01 | ND | ND | ND | ND | <LOQ | <LOQ | ND | 0.02 | ND | <LOQ | 0.01 | 0.02 | |
1 Month | 27.14 | ND | 0.003 | ND | 0.003 | ND | <LOQ | <LOQ | ND | 0.01 | ND | <LOQ | 0.01 | 0.02 | |
Sainfoin (Melrose) | Seed | 0.14 | 0.27 | 1.38 | 56.57 | 1.39 | 0.05 | 86.77 | 4.89 | 64.73 | ND | 0.39 | 1.39 | 7.05 | 0.04 |
Day 7 | 0.03 | 0.89 | 0.01 | 0.34 | 0.01 | ND | ND | 1.88 | 0.16 | ND | 0.10 | <LOQ | 1.37 | <LOQ | |
Day 14 | 0.01 | 0.12 | ND | 0.32 | ND | ND | ND | 0.65 | 0.14 | ND | ND | <LOQ | 0.05 | ND | |
1 Month | 0.08 | 0.18 | ND | 0.66 | ND | ND | <LOQ | 3.27 | 0.04 | ND | 0.57 | <LOQ | 25.79 | ND | |
Fenugreek (Amber) | Seed | 0.17 | 0.02 | 0.003 | 0.04 | 0.01 | 0.01 | 0.13 | 0.17 | 0.30 | 0.78 | 0.09 | 14.01 | 0.20 | 1.80 |
Day 7 | 0.34 | 0.01 | 0.003 | ND | 0.01 | ND | 0.15 | ND | ND | 0.13 | ND | 0.28 | 0.12 | ND | |
Day 14 | 0.02 | 0.01 | ND | ND | ND | ND | <LOQ | ND | ND | 0.01 | 0.18 | <LOQ | 0.36 | ND | |
1 Month | 0.39 | 0.08 | ND | ND | ND | ND | ND | 2.24 | ND | 0.03 | ND | 0.03 | 28.05 | ND |
Fatty Acid 1 | Seeds | Seedlings Day 7 | Seedlings Day 14 | Seedlings 1 Month | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alfalfa Bridgeview | Fenugreek Amber | Sainfoin Melrose | Alfalfa Bridgeview | Fenugreek Amber | Sainfoin Melrose | Alfalfa Bridgeview | Fenugreek Amber | Sainfoin Melrose | Alfalfa Bridgeview | Fenugreek Amber | Sainfoin Melrose | |
C14:0 | 0.26 ± 0.04 b | 0.18 ± 0.00 e | 0.24 ± 0.01 c | 0.31 ± 0.01 a | 0.23 ± 0.01 d | ND 1 | ND | ND | ND | ND | ND | ND |
C15:0 | 0.19 ± 0.03 d | 0.23 ± 0.01 c | 0.17 ± 0.01 e | 0.3 ± 0.02 a | 0.29 ± 0.00 b | ND | ND | ND | ND | ND | ND | ND |
C16:0 | 14.9 ± 2.33 b–d | 16.2 ± 0.55 a–c | 11.4 ± 0.22 e | 16.9 ± 0.53 ab | 15.9 ± 0.41 a–d | 13.5 ± 0.34 c–e | 15.9 ± 0.50 a–d | 15.7 ± 0.54 a–d | 18.3 ± 0.61 a | 15.4 ± 0.30 b–d | 13.9 ± 1.82 c–e | 13.3 ± 0.35 de |
C16:1 | 0.0.09 ± 0.02 e | 0.07 ± 0.00 f | 0.1 ± 0.00 d | 0.3 ± 0.04 c | 0.6 ± 0.06 a | 0.4 ± 0.01 b | ND | ND | ND | ND | ND | ND |
C18:0 | 2.4 ± 0.38 e | 3.9 ± 0.07 a–c | 2.9 ± 0.03 de | 3.2 ± 0.11 b–e | 4.2 ± 0.36 a | 3.3 ± 0.10 a–e | 3.1 ± 0.03 c–e | 4.2 ± 0.06 a | 4.1 ± 0.22 ab | 2.6 ± 0.04 de | 3.4 ± 0.39 a–d | 2.8 ± 0.83 de |
C18:1 n9 | 8.0 ± 0.73 e | 14.9 ± 0.41 c | 25.7 ± 0.48 a | 7.8 ± 0.08 e | 10.6 ± 0.89 d | 20.4 ± 0.70 b | 3.9 ± 0.20 f | 3.4 ± 0.19 f | 6.9 ± 0.65 e | 2.9 ± 0.14 f | 3.6 ± 0.51 f | 2.9 ± 0.87 f |
C18:2 | 34.8 ± 4.07 a | 38.3 ± 0.26 a | 17.4 ± 0.13 de | 36.5 ± 0.33 a | 37.3 ± 1.73 a | 21.8 ± 0.43 cd | 27.6 ± 1.61 b | 27.3 ± 1.28 bc | 25.8 ± 1.03 bc | 19.0 ± 0.87 de | 16.8 ± 2.09 de | 15.8 ± 3.67 e |
C18:3 n3 | 27.0 ± 1.35 c | 19.3 ± 1.27 d | 35.2 ± 0.24 b | 26.8 ± 1.53 c | 23.4 ± 0.90 cd | 34.8 ± 0.28 b | 36.9 ± 1.31 b | 37.0 ± 0.85 b | 34.5 ± 0.42 b | 35.9 ± 0.79 b | 50.6 ± 6.52 a | 45.5 ± 1.41 a |
C20:0 | 0.5 ± 0.10 fg | 0.9 ± 0.05 de | 0.4 ± 0.02 g | 1.1 ± 0.11 cd | 1.0 ± 0.13 cd | 0.5 ± 0.4 fg | 1.1 ± 0.10 cd | 1.5 ± 0.07 a | 1.2 ± 0.12 bc | 0.7 ± 0.03 ef | 1.1 ± 0.11 bc | 1.4 ± 0.03 ab |
C20:1 n9 | 0.1 ± 0.03 e | 0.2 ± 0.01 d | 0.3 ± 0.02 b | ND | 0.2 ± 0.01 c | 0.4 ± 0.02 a | ND | ND | ND | ND | ND | ND |
C20:2 | 0.11 ± 0.04 e | 0.13 ± 0.01 c | 0.1 ± 0.01 d | 0.36 ± 0.03 b | 0.4 ± 0.06 a | ND | ND | ND | ND | ND | ND | ND |
C20:3 n3 | 0.4 ± 0.09 f | 0.4 ± 0.02 f | 0.6 ± 0.03 ef | 1.1 ± 0.16 cd | 0.6 ± 0.08 ef | 0.8 ± 0.08 d–f | 1.7 ± 0.02 ab | 1.7 ± 0.22 a | 1.8 ± 0.18 a | 1.2 ± 0.03 b–d | 1.0 ± 0.08 c–e | 1.4 ± 0.40 a–c |
C20:3 n6 | 0.1 ± 0.03 e | 0.12 ± 0.01 d | 0.15 ± 0.01 c | 0.3 ± 0.01 a | 0.23 ± 0.01 b | ND | ND | ND | ND | ND | ND | ND |
C24:0 | 0.1 ± 0.03 c | 0.3 ± 0.02 a | 0.07 ± 0.02 d | 0.3 ± 0.01 b | ND | ND | ND | ND | ND | ND | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sura, S.; Kodikara, C.; Acharya, S.; Sabra, A.; Wijekoon, C. Comparative Analysis of Bioactive Phenolic Compounds and Fatty Acids in Seeds and Seedlings of Canadian Alfalfa, Sainfoin, and Fenugreek. Appl. Biosci. 2023, 2, 477-492. https://doi.org/10.3390/applbiosci2030030
Sura S, Kodikara C, Acharya S, Sabra A, Wijekoon C. Comparative Analysis of Bioactive Phenolic Compounds and Fatty Acids in Seeds and Seedlings of Canadian Alfalfa, Sainfoin, and Fenugreek. Applied Biosciences. 2023; 2(3):477-492. https://doi.org/10.3390/applbiosci2030030
Chicago/Turabian StyleSura, Srinivas, Chamali Kodikara, Surya Acharya, Ali Sabra, and Champa Wijekoon. 2023. "Comparative Analysis of Bioactive Phenolic Compounds and Fatty Acids in Seeds and Seedlings of Canadian Alfalfa, Sainfoin, and Fenugreek" Applied Biosciences 2, no. 3: 477-492. https://doi.org/10.3390/applbiosci2030030
APA StyleSura, S., Kodikara, C., Acharya, S., Sabra, A., & Wijekoon, C. (2023). Comparative Analysis of Bioactive Phenolic Compounds and Fatty Acids in Seeds and Seedlings of Canadian Alfalfa, Sainfoin, and Fenugreek. Applied Biosciences, 2(3), 477-492. https://doi.org/10.3390/applbiosci2030030