Prevalence and Risk Factors of Multidrug Resistant (MDR) Escherichia coli Isolated from Milk of Small Scale Dairy Buffaloes in Rupandehi, Nepal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.3. Sample Size, Sampling Method, and Transportation
2.4. Bacteriological Isolation and Identification
2.5. Biochemical Tests
2.6. Antibiotic Susceptibility Test (AST)
2.7. Identification of Multi-Drug Resistance (MDR)
2.8. Multiple Antibiotic Resistance (MAR) Index Calculation
2.9. Data Analysis
3. Results
3.1. Characteristics of Sampled Animals
3.2. Descriptive Characteristics of Different Factors for Prevalence of E. coli
3.3. Prevalence of E. coli
3.4. Management Factors for Prevalence of E. coli in Buffalo’s Milk
3.5. Antibiotic Susceptibility Test (AST)
3.6. Multiple Antibiotic Resistance (MAR) Index of E. coli Isolates
3.7. Multidrug-Resistant (MDR) Phenotype of E. coli Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistical Information on Nepalese Agriculture 2020/21; Government of Nepal, Ministry of Agriculture and Livestock Development: 2022. Available online: https://moald.gov.np/wp-content/uploads/2023/08/Statistical-Information-on-Nepalese-Agriculture-2078-79-2021-22.pdf (accessed on 8 May 2024).
- Nayak, C.M.; Ramachandra, C.T.; Kumar, G.M. A Comprehensive Review on Composition of Donkey Milk in Comparison to Human, Cow, Buffalo, Sheep, Goat, Camel and Horse Milk. Mysore J. Agric. Sci. 2020, 54, 42–50. [Google Scholar]
- Gautam, A.; Yadav, G.; Subedi, D.; Khanal, A.; Gaire, A.; Shah, S.; Kaphle, K. Subfertility in Buffaloes and the Association of Detected Milk Microbes. Int. J. Reprod. Anim. Cit. Theriogenology Insight 2021, 11, 11. [Google Scholar] [CrossRef]
- Lamsal, S.; Subedi, D.; Kaphle, K. Buffaloes Production and Reproduction Efficiencies as Reviewed for Parity in Nepal. Int. J. Appl. Sci. Biotechnol. 2020, 8, 1–6. [Google Scholar] [CrossRef]
- Acharya, K.P.; Subedi, D. Use of Social Media as a Tool to Reduce Antibiotic Usage: A Neglected Approach to Combat Antimicrobial Resistance in Low and Middle Income Countries. Front. Public. Health 2020, 8, 558576. [Google Scholar] [CrossRef] [PubMed]
- Almansour, A.M.; Alhadlaq, M.A.; Alzahrani, K.O.; Mukhtar, L.E.; Alharbi, A.L.; Alajel, S.M. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. Microorganisms 2023, 11, 2127. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef] [PubMed]
- Rijal, K.R.; Banjara, M.R.; Dhungel, B.; Kafle, S.; Gautam, K.; Ghimire, B.; Ghimire, P.; Dhungel, S.; Adhikari, N.; Shrestha, U.T.; et al. Use of Antimicrobials and Antimicrobial Resistance in Nepal: A Nationwide Survey. Sci. Rep. 2021, 11, 11554. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.; Subedi, D.; Tiwari, B.B.; Shrestha, P.; Shah, S.; Al-Mustapha, A.I. Prevalence and Risk Factors for Multidrug-Resistant Escherichia Coli Isolated from Subclinical Mastitis in the Western Chitwan Region of Nepal. J. Dairy. Sci. 2021, 104, 12765–12772. [Google Scholar] [CrossRef] [PubMed]
- Subedi, D.; Jyoti, S.; Thapa, B.; Paudel, S.; Shrestha, P.; Sapkota, D.; Bhatt, B.R.; Adhikari, H.; Poudel, U.; Gautam, A.; et al. Knowledge, Attitude, and Practice of Antibiotic Use and Resistance among Poultry Farmers in Nepal. Antibiotics 2023, 12, 1369. [Google Scholar] [CrossRef]
- Lambrou, A.S.; Innes, G.K.; O’Sullivan, L.; Luitel, H.; Bhattarai, R.K.; Basnet, H.B.; Heaney, C.D. Policy Implications for Awareness Gaps in Antimicrobial Resistance (AMR) and Antimicrobial Use among Commercial Nepalese Poultry Producers. Glob. Health Res. Policy 2021, 6, 6. [Google Scholar] [CrossRef]
- Darwich, L.I.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High Prevalence and Diversity of Extended-Spectrum β-Lactamase and Emergence of OXA-48 Producing Enterobacterales in Wildlife in Catalonia. PLoS ONE 2019, 14, e0210686. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.A.; Domínguez, L.; Teshager, T.; Herrero, I.A.; Porrero, M.C. Antibiotic Resistance Monitoring: The Spanish Programme. Int. J. Antimicrob. Agents 2000, 14, 285–290. [Google Scholar] [CrossRef]
- Washington, M.A.; Taitt, C.R.; Blythe, J.; Hering, K.; Barnhill, J. Escherichia Coli as a Potential Reservoir of Antimicrobial Resistance Genes on the Island of O‘ahu. Hawaii J. Health Soc. Welf. 2021, 80, 9–14. [Google Scholar] [PubMed]
- Bailey, J.K.; Pinyon, J.L.; Anantham, S.; Hall, R.M. Commensal Escherichia Coli of Healthy Humans: A Reservoir for Antibiotic-Resistance Determinants. J. Med. Microbiol. 2010, 59, 1331–1339. [Google Scholar] [CrossRef]
- Ombarak, R.A.; Zayda, M.G.; Awasthi, S.P.; Hinenoya, A.; Yamasaki, S. Serotypes, Pathogenic Potential, and Antimicrobial Resistance of Escherichia Coli Isolated from Subclinical Bovine Mastitis Milk Samples in Egypt. Jpn. J. Infect. Dis. 2019, 72, 337–339. [Google Scholar] [CrossRef]
- Mwasinga, W.; Shawa, M.; Katemangwe, P.; Chambaro, H.; Mpundu, P.; M’kandawire, E.; Mumba, C.; Munyeme, M. Multidrug-Resistant Escherichia Coli from Raw Cow Milk in Namwala District, Zambia: Public Health Implications. Antibiotics 2023, 12, 1421. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.; Karki, B.; Humagain, S.; Rimal, S.; Adhikari, S.; Adhikari, S.; Thapa, S. Antibiogram of Escherichia Coli and Staphylococcus Aureus Isolated from Milk Sold in Kathmandu District. Nepal. J. Biotechnol. 2020, 8, 82–86. [Google Scholar] [CrossRef]
- Hammer, J.F.; Morton, J.M.; Kerrisk, K.L. Quarter-Milking-, Quarter-, Udder- and Lactation-Level Risk Factors and Indicators for Clinical Mastitis during Lactation in Pasture-Fed Dairy Cows Managed in an Automatic Milking System. Aust. Vet. J. 2012, 90, 167–174. [Google Scholar] [CrossRef]
- Tiwari, B.B.; Subedi, D.; Bhandari, S. Prevalence and Risk Factors of Staphylococcal Subclinical Mastitis in Dairy Animals of Chitwan. J. Pure Appl. Microbiol. 2022, 16, 1392–1403. [Google Scholar] [CrossRef]
- Acharya, K.P.; Wilson, R.T. Antimicrobial Resistance in Nepal. Front. Med. 2019, 6, 105. [Google Scholar] [CrossRef]
- CLSI M100 Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: 2020. Available online: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf (accessed on 8 May 2024).
- Khan, J.A.; Mir, A.; Soni, S.S.; Maherchandani, S. Antibiogram and Multiple Antibiotic Resistance Index of Salmonella Enterica Isolates from Poultry. J. Pure Appl. Microbiol. 2015, 9, 2495–2500. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Krumperman, P.H. Multiple Antibiotic Resistance Indexing of Escherichia Coli to Identify High-Risk Sources of Fecal Contamination of Foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef]
- Silveira, A.; Carvalho, J.P.; Loh, L.; Benusic, M. Common Infectious Diseases Caused by Bacteria: Public Health Risks of Raw Milk Consumption: Lessons from a Case of Paediatric Hemolytic Uremic Syndrome. Can. Commun. Dis. Rep. 2023, 49, 375–379. [Google Scholar] [CrossRef]
- Khanal, T.; Pandit, A. Assessment of Sub-Clinical Mastitis and Its Associated Risk Factors in Dairy Livestock of Lamjung, Nepal. Int. J. Infect. Microbiol. 2013, 2, 49–54. [Google Scholar] [CrossRef]
- Verma, H.; Rawat, S.; Sharma, N.; Jaiswal, V.; Singh, R. Prevalence, Bacterial Etiology and Antibiotic Susceptibility Pattern of Bovine Mastitis in Meerut. J. Entomol. Zool. Stud. 2018, 6, 706–709. [Google Scholar]
- Acharya, S.; Bimali, N.K.; Shrestha, S.; Lekhak, B. Bacterial Analysis of Different Types of Milk (Pasteurized, Unpasteurized and Raw Milk) Consumed in Kathmandu Valley. Tribhuvan Univ. J. Microbiol. 2018, 4, 32–38. [Google Scholar] [CrossRef]
- Limbu, D.S.; Bantawa, K.; Limbu, D.K.; Devkota, M.; Ghimire, M. Microbiological Quality and Adulteration of Pasteurized and Raw Milk Marketed in Dharan, Nepal. Himal. J. Sci. Technol. 2020, 4, 37–44. [Google Scholar] [CrossRef]
- Phattepuri, S.; Subba, P.; Ghimire, A.; Sah, S.N. Antibiogram Profiling and Thermal Inactivation of Staphylococcus Aureus and Escherichia Coli Isolated from Milk of Dharan, Nepal. Himal. J. Sci. Technol. 2020, 4, 81–87. [Google Scholar] [CrossRef]
- Jindal, P.; Bedi, J.; Singh, R.; Aulakh, R.; Gill, J. Phenotypic and Genotypic Antimicrobial Resistance Patterns of Escherichia Coli and Klebsiella Isolated from Dairy Farm Milk, Farm Slurry and Water in Punjab, India. Environ. Sci. Pollut. Res. 2021, 28, 28556–28570. [Google Scholar] [CrossRef]
- Singh, A.; Chhabra, D.; Sikrodia, R.; Shukla, S.; Sharda, R.; Audarya, S. Isolation of E. Coli from Bovine Mastitis and Their Antibiotic Sensitivity Pattern. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 11–18. [Google Scholar] [CrossRef]
- Dhungana, P.K.; Ghimire, C.R.; Adhikari, L.P.; Acharya, R.B.; Aryal, R.S. Devkota P Shiva Investigation of Bovine Mastitis in The Western Mid-Hills of Nepal. In Proceedings of the 8th National Workshop on Livestock & Fisheries Research, Lalitpur, Nepal, December 2011; Available online: https://www.researchgate.net/publication/258030219_Proceedings_of_the_8th_National_Workshop_on_Livestock_and_Fisheries_Research (accessed on 8 May 2024).
- Sharma, A.; Sindhu, N. Occurrence of Clinical and Subclinical Mastitis in Buffaloes in the State of Haryana (India). Ital. J. Anim. Sci. 2007, 6, 965–967. [Google Scholar] [CrossRef]
- Hinthong, W.; Pumipuntu, N.; Santajit, S.; Kulpeanprasit, S.; Buranasinsup, S.; Sookrung, N.; Chaicumpa, W.; Aiumurai, P.; Indrawattana, N. Detection and Drug Resistance Profile of Escherichia Coli from Subclinical Mastitis Cows and Water Supply in Dairy Farms in Saraburi Province, Thailand. PeerJ 2017, 2017, e3431. [Google Scholar] [CrossRef]
- García, A.; Fox, J.G.; Besser, T.E. Zoonotic Enterohemorrhagic Escherichia Coli: A One Health Perspective. ILAR J. 2010, 51, 221–232. [Google Scholar] [CrossRef]
- Keene, W.E.; Hedberg, K.; Herriott, D.E.; Hancock, D.D.; McKay, R.W.; Barrett, T.J.; Fleming, D.W. A Prolonged Outbreak of Escherichia Coli O157:H7 Infections Caused by Commercially Distributed Raw Milk. J. Infect. Dis. 1997, 176, 815–818. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, T.; Doyle, M.P. Survival and Growth of Escherichia coli O157:H7 in Unpasteurized and Pasteurized Milk. J. Food Prot. 1997, 60, 610–613. [Google Scholar] [CrossRef]
- Yadav, V.; Joshi, R.K.; Joshi, N.; Singh, S.; Maurya, S.K.; Srivastava, D.P.; Gupta, R.K. Status of MDR and Plasmid Profiling of ESBL Producing E. coli and Klebsiella spp. Isolated from Milk of Bovine in Gangetic Plain Zone of Uttar Pradesh. Indian J. Vet. Sci. Biotechnol. 2023, 19, 16–22. [Google Scholar] [CrossRef]
- WHO WHO Model Lists of Essential Medicines. Available online: https://www.who.int/groups/expert-committee-on-selection-and-use-of-essential-medicines/essential-medicines-lists (accessed on 28 April 2024).
- Eisenberger, D.; Carl, A.; Balsliemke, J.; Kämpf, P.; Nickel, S.; Schulze, G.; Valenza, G. Molecular Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia Coli Isolates from Milk Samples of Dairy Cows with Mastitis in Bavaria, Germany. Microb. Drug Resist. 2018, 24, 505–510. [Google Scholar] [CrossRef]
Biochemical Tests | Properties of E. coli |
---|---|
Oxidase Test | Negative |
Urease Test | Negative |
Catalase Test | Positive |
Indole Test | Positive |
Methyl Red Test | Positive |
Voges-Proskauer Test | Negative |
Citrate Test | Negative |
Triple Sugar Iron Test | Acid/Acid, Gas positive, no H2S produced |
Variables | Number of Buffaloes (%) |
---|---|
Breeds | |
Murrah Cross | 68 (66.7%) |
Terai | 34 (33.3%) |
Age (years) | |
Less than or equal to five | 43 (42.2%) |
More than five | 59 (57.8%) |
Parity Stage | |
Multiparous | 80 (78.4%) |
Uniparous | 22 (21.6%) |
Lactation Stage | |
One to three months (Early) | 51 (50%) |
More than three months (Late) | 51 (50%) |
Milk Yield Per Day | |
Less than or equal to five liter | 62 (60.8%) |
More than five liter | 40 (39.2%) |
Milking Practice | |
Once a day | 34 (33.3%) |
Twice a day | 68 (66.7%) |
Animal Factors | Categories | Number of Animals (x) | Number of Positive (y) | Prevalence of E. coli (y/x) | Odds Ratio (95% CI) | p-Value |
---|---|---|---|---|---|---|
Age | >5 years | 59 | 16 | 27.1% | 0.77 (0.30–1.20) | 0.55 |
≤5 years | 43 | 14 | 32.6% | |||
Breed | Murrah cross | 68 | 17 | 25.0% | 0.51 (0.19–1.36) | 0.13 |
Terai | 34 | 13 | 38.2% | |||
California Mastitis Test (CMT) | Positive | 27 | 8 | 29.6% | 1.01 (0.33–2.89) | 0.98 |
Negative | 75 | 22 | 29.3% | |||
Disease condition | Present | 9 | 3 | 33.3% | 1.22 (0.18–6.22) | 0.12 |
Absent | 93 | 27 | 29.0% | |||
Lactation stage | >3 months | 51 | 14 | 27.5% | 0.83 (0.32–2.12) | 0.66 |
≤3 months | 51 | 16 | 31.4% | |||
Mastitis history | Yes | 19 | 8 | 42.1% | 2.00 (0.61–6.32) | 0.18 |
No | 83 | 22 | 26.5% | |||
Milk yield per day | >5 L | 40 | 12 | 30.0% | 1.05 (0.40–2.71) | 0.92 |
≤5 L | 62 | 18 | 29.0% | |||
Parity stage | Multiparous | 80 | 21 | 26.2% | 0.52 (0.17–1.59) | 0.18 |
Uniparous | 22 | 9 | 40.9% | |||
Teat injuries | Present | 5 | 3 | 60.0% | 3.83 (0.41–48.20) | 0.12 |
Absent | 97 | 27 | 27.8% | |||
Milking practice | Once a day | 34 | 9 | 26.5% | 0.81 (0.28–2.18) | 0.64 |
Twice a day | 68 | 21 | 30.9% |
Environmental Factors | Categories | No. of Animals (x) | No. of Positive (y) | Prevalence of E. coli (y/x) | Odds Ratio (95% CI) | p-Value |
---|---|---|---|---|---|---|
Antiseptics washing during milking | No | 96 | 29 | 30.2% | 2.15 (0.23–0.59) | 0.48 |
Yes | 6 | 1 | 16.7% | |||
Barn cleaning | Once a day | 26 | 6 | 23.1% | 0.65 (0.19–1.97) | 0.65 |
Twice a day | 76 | 24 | 31.6% | |||
Detergent used | No | 21 | 9 | 42.8% | 2.13 (0.69–6.44) | 0.13 |
Yes | 81 | 21 | 25.9% | |||
Drainage of water in the barn | No | 20 | 5 | 25.0% | 0.76 (0.19–2.53) | 0.63 |
Yes | 82 | 25 | 30.5% | |||
Dung distance | <3 m | 74 | 23 | 31.1% | 1.35 (0.47–4.30) | 0.55 |
≥3 m | 28 | 7 | 25.0% | |||
Floor condition | Mud | 32 | 7 | 28.9% | 0.58 (0.18–1.64) | 0.26 |
Concrete | 70 | 23 | 32.9% | |||
Housing | Intensive | 41 | 11 | 26.9% | 0.81 (0.30–2.11) | 0.64 |
Semi-intensive | 61 | 19 | 31.1% | |||
Milking utensils | Plastic | 6 | 2 | 33.3% | 1.21 (0.10–9.02) | 0.82 |
Steel | 96 | 28 | 29.2% | |||
Out grazing | Yes | 83 | 24 | 28.9% | 0.88 (0.27–3.17) | 0.82 |
No | 19 | 6 | 31.6% | |||
Sunlight exposure | Insufficient | 24 | 6 | 25.0% | 0.75 (0.22–2.30) | 0.59 |
Sufficient | 78 | 24 | 30.8% |
Antibiotics Used | Susceptible (%) | Intermediate (%) | Resistant (%) |
---|---|---|---|
Gentamycin (GEN 10) | 60.0 (18/30) | 13.3 (4/30) | 26.7 (8/30) |
Amikacin (AK 30) | 6.7 (2/30) | 13.3 (4/30) | 80.0 (24/30) |
Ciprofloxacin (CIP 5) | 16.7 (5/30) | 26.7 (8/30) | 56.6 (17/30) |
Enrofloxacin (Ex 5) | 43.3 (13/30) | 26.7 (8/30) | 30.0 (9/30) |
Ceftriaxone (CTR 30) | 0.0 (0/30) | 0.0 (0/30) | 100.0 (30/30) |
Ceftazidime (CAZ 30) | 0.0 (0/30) | 0.0 (0/30) | 100.0 (30/30) |
Cotrimoxazole (COT 25) | 0.0 (0/30) | 13.3 (4/30) | 86.7 (26/30) |
Chloramphenicol (C 30) | 3.3 (1/30) | 36.7 (11/30) | 60.0 (18/30) |
The Total Number of Antibiotics Used | Number of Antibiotic-Resistant | MAR Index | No. of Isolates |
---|---|---|---|
8 | 1 | 0.1 | 0 |
2 | 0.3 | 0 | |
3 | 0.4 | 4 | |
4 | 0.5 | 5 | |
5 | 0.6 | 4 | |
6 | 0.8 | 9 | |
7 | 0.9 | 8 |
The Total Number of Antibiotic Groups Used | Number of Antibiotics Group Resistant | Number of Isolates Resistant | Percentage (%) of Isolates Resistant | MDR |
---|---|---|---|---|
5 | 0 | 0 | 0.0 | − |
1 | 0 | 0.0 | − | |
2 | 4 | 13.3 | − | |
3 | 5 | 16.7 | + | |
4 | 10 | 33.3 | + | |
5 | 11 | 36.7 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautam, A.; Bastola, S.; Lamsal, K.; Kaphle, K.; Shrestha, P.; Shah, S.; Subedi, D. Prevalence and Risk Factors of Multidrug Resistant (MDR) Escherichia coli Isolated from Milk of Small Scale Dairy Buffaloes in Rupandehi, Nepal. Zoonotic Dis. 2024, 4, 174-186. https://doi.org/10.3390/zoonoticdis4030016
Gautam A, Bastola S, Lamsal K, Kaphle K, Shrestha P, Shah S, Subedi D. Prevalence and Risk Factors of Multidrug Resistant (MDR) Escherichia coli Isolated from Milk of Small Scale Dairy Buffaloes in Rupandehi, Nepal. Zoonotic Diseases. 2024; 4(3):174-186. https://doi.org/10.3390/zoonoticdis4030016
Chicago/Turabian StyleGautam, Anil, Sirjan Bastola, Keshav Lamsal, Krishna Kaphle, Prajjwal Shrestha, Shambhu Shah, and Deepak Subedi. 2024. "Prevalence and Risk Factors of Multidrug Resistant (MDR) Escherichia coli Isolated from Milk of Small Scale Dairy Buffaloes in Rupandehi, Nepal" Zoonotic Diseases 4, no. 3: 174-186. https://doi.org/10.3390/zoonoticdis4030016
APA StyleGautam, A., Bastola, S., Lamsal, K., Kaphle, K., Shrestha, P., Shah, S., & Subedi, D. (2024). Prevalence and Risk Factors of Multidrug Resistant (MDR) Escherichia coli Isolated from Milk of Small Scale Dairy Buffaloes in Rupandehi, Nepal. Zoonotic Diseases, 4(3), 174-186. https://doi.org/10.3390/zoonoticdis4030016