Viral Zoonotic Diseases of Public Health Importance and Their Effect on Male Reproduction
Abstract
:Simple Summary
Abstract
1. Introduction
Search Method
2. Effects of Viral Zoonotic Diseases on Male Reproduction
2.1. Effect of Influenza on Male Fertility
2.2. COVID-19 and Male Fertility
2.3. Zika Virus and Infertility
2.4. Lassa Virus and Male Fertility
2.5. Crimean–Congo Hemorrhagic Fever and Human Reproductive System
2.6. Effects of Ebola Virus on Male Fertility
2.7. Monkeypox Virus
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, A.; Kutz, S. Introduction to the Special Issue on ‘Emerging Zoonoses and Wildlife’. Int. J. Parasitol. Parasites Wildl. 2019, 9, 322. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Bi-Regional Consultation on the Asia Pacific Strategy for Emerging Diseases and Beyond, 2010, 24–27 May 2010, Kuala Lumpur, Malaysia: Report; WHO Regional Office for the Western Pacific: Manila, Philipines, 2010. [Google Scholar]
- Slingenbergh, J. World Livestock 2013: Changing Disease Landscapes; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Taylor, L.H.; Latham, S.M.; Woolhouse, M.E. Risk factors for human disease emergence. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2001, 356, 983–989. [Google Scholar] [CrossRef] [Green Version]
- Grace, D.; Mutua, F.; Ochungo, P.; Kruska, R.L.; Jones, K.; Brierley, L.; Ogutu, F. Mapping of Poverty and Likely Zoonoses Hotspots. 2012. Available online: https://cgspace.cgiar.org/handle/10568/21161 (accessed on 11 September 2022).
- Buchy, P.; Buisson, Y.; Cintra, O.; Dwyer, D.E.; Nissen, M.; Ortiz de Lejarazu, R.; Petersen, E. COVID-19 pandemic: Lessons learned from more than a century of pandemics and current vaccine development for pandemic control. Int. J. Infect. Dis. 2021, 112, 300–317. [Google Scholar] [CrossRef] [PubMed]
- Pellati, D.; Mylonakis, I.; Bertoloni, G.; Fiore, C.; Andrisani, A.; Ambrosini, G.; Armanini, D. Genital tract infections and infertility. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008, 140, 3–11. [Google Scholar] [CrossRef]
- Sengupta, P.; Cho, C.L. The Pathophysiology of Male Infertility. In Male Infertility in Reproductive Medicine; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–9. [Google Scholar]
- Hosen, M.B.; Islam, M.R.; Begum, F.; Kabir, Y.; Howlader, M.Z. Oxidative stress induced sperm DNA damage, a possible reason for male infertility. Iran. J. Reprod. Med. 2015, 13, 525. [Google Scholar]
- Theam, O.C.; Dutta, S.; Sengupta, P. Role of leucocytes in reproductive tract infections and male infertility. Chem. Biol. Lett. 2020, 7, 124–130. [Google Scholar]
- Buch, J.; Havlovec, S.K. Variation in sperm penetration assay related to viral illness. Int. J. Gynecol. Obstet. 1992, 37, 325. [Google Scholar] [CrossRef]
- Evenson, D.P.; Jost, L.K.; Corzett, M.; Balhorn, R. Characteristics of human sperm chromatin structure following an episode of influenza and high fever: A case study. J. Androl. 2000, 21, 739–746. [Google Scholar]
- Payne, K.; Kenny, P.; Scovell, J.M.; Khodamoradi, K.; Ramasamy, R. Twenty-first century viral pandemics: A literature review of sexual transmission and fertility implications in men. Sex. Med. Rev. 2020, 8, 518–530. [Google Scholar] [CrossRef]
- Thadani, M.A.; Polasa, H. Cytogenetic effects of inactivated influenza virus on male germ cells of mice. Hum. Genet. 1979, 51, 253–258. [Google Scholar] [CrossRef]
- Devi, B.Y.; Sharma, G.; Polasa, H. Induction of chromosomal aberrations in mice spermatocytes by unpurified & purified human influenza viruses. Indian J. Med. Res. 1987, 86, 506–510. [Google Scholar] [PubMed]
- Lugar, D.W.; Ragland, D.; Stewart, K.R. Influenza outbreak causes reduction in semen quality of boars. J. Swine Health Prod. 2017, 25, 303–307. [Google Scholar]
- Sergerie, M.; Mieusset, R.; Croute, F.; Daudin, M.; Bujan, L. High risk of temporary alteration of semen parameters after recent acute febrile illness. Fertil. Steril. 2007, 88, 970.e1–970.e7. [Google Scholar] [CrossRef] [PubMed]
- Rios, M.; Carreño, D.V.; Oses, C.; Barrera, N.; Kerr, B.; Villalón, M. Low physiological levels of prostaglandins E2 and F2α improve human sperm functions. Reprod. Fertil. Dev. 2016, 28, 434–439. [Google Scholar] [CrossRef]
- Liu, W.; Han, R.; Wu, H.; Han, D. Viral threat to male fertility. Andrologia 2018, 50, e13140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, L.; Deng, W.; Huang, B.; Gao, H.; Liu, J.; Ren, L.; Qin, C. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 2020, 583, 830–833. [Google Scholar] [CrossRef] [PubMed]
- Baughn, L.B.; Sharma, N.; Elhaik, E.; Sekulic, A.; Bryce, A.H.; Fonseca, R. Targeting TMPRSS2 in SARS-CoV-2 infection. In Mayo Clinic Proceedings; Elsevier: London, UK, 2020; Volume 95, pp. 1989–1999. [Google Scholar]
- Stanley, K.E.; Thomas, E.; Leaver, M.; Wells, D. Coronavirus disease-19 and fertility: Viral host entry protein expression in male and female reproductive tissues. Fertil. Steril. 2020, 114, 33–43. [Google Scholar] [CrossRef]
- Vishvkarma, R.; Rajender, S. Could SARS-CoV-2 affect male fertility? Andrologia 2020, 52, e13712. [Google Scholar] [CrossRef]
- Xu, J.; Qi, L.; Chi, X.; Yang, J.; Wei, X.; Gong, E.; Gu, J. Orchitis: A complication of severe acute respiratory syndrome (SARS). Biol. Reprod. 2006, 74, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Chen, S.; Huang, B.O.; Zhong, J.M.; Su, H.; Chen, Y.J.; Nie, X. Pathological findings in the testes of COVID-19 patients: Clinical implications. Eur. Urol. Focus 2020, 6, 1124–1129. [Google Scholar] [CrossRef]
- Hallak, J.; Teixeira, T.A.; Bernardes, F.S.; Carneiro, F.; Duarte, S.A.; Pariz, J.R.; Saldiva, P.H. SARS-CoV-2 and its relationship with the genitourinary tract: Implications for male reproductive health in the context of COVID-19 pandemic. Andrology 2021, 9, 73–79. [Google Scholar] [CrossRef]
- Fijak, M.; Pilatz, A.; Hedger, M.P.; Nicolas, N.; Bhushan, S.; Michel, V.; Meinhardt, A. Infectious, inflammatory and ‘autoimmune’male factor infertility: How do rodent models inform clinical practice? Hum. Reprod. Update 2018, 24, 416–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tisoncik, J.R.; Korth, M.J.; Simmons, C.P.; Farrar, J.; Martin, T.R.; Katze, M.G. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 2012, 76, 16–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Li, S.; Ma, S.; Jia, L.; Zhang, F.; Zhang, Y.; Gao, G.F. Zika virus causes testis damage and leads to male infertility in mice. Cell 2017, 168, 542. [Google Scholar] [PubMed]
- Sengupta, P.; Leisegang, K.; Agarwal, A. The impact of COVID-19 on the male reproductive tract and fertility: A systematic review. Arab J. Urol. 2021, 19, 423–436. [Google Scholar] [CrossRef]
- Batiha, O.; Al-Deeb, T.; Al-zoubi, E.A.; Alsharu, E. Impact of COVID-19 and other viruses on reproductive health. Andrologia 2020, 52, e13791. [Google Scholar] [CrossRef]
- Pan, F.; Xiao, X.; Guo, J.; Song, Y.; Li, H.; Patel, D.P.; Hotaling, J.M. No evidence of severe acute respiratory syndrome–coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil. Steril. 2020, 113, 1135–1139. [Google Scholar] [CrossRef]
- Ding, Y.; He, L.I.; Zhang, Q.; Huang, Z.; Che, X.; Hou, J.; Jiang, S. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J. Pathol. A J. Pathol. Soc. Great Br. Irel. 2004, 203, 622–630. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention (CDC) 2019. Available online: https://www.cdc.gov/Zika/about/index.html (accessed on 11 September 2022).
- D’Ortenzio, E.; Matheron, S.; de Lamballerie, X.; Hubert, B.; Piorkowski, G.; Maquart, M.; Leparc-Goffart, I. Evidence of sexual transmission of Zika virus. N. Engl. J. Med. 2016, 374, 2195–2198. [Google Scholar] [CrossRef]
- Foy, B.D.; Kobylinski, K.C.; Foy, J.L.; Blitvich, B.J.; da Rosa, A.T.; Haddow, A.D.; Tesh, R.B. Probable non–vector-borne transmission of Zika virus, Colorado, USA. Emerg. Infect. Dis. 2011, 17, 880. [Google Scholar] [CrossRef]
- Nicastri, E.; Castilletti, C.; Liuzzi, G.; Iannetta, M.; Capobianchi, M.R.; Ippolito, G. Persistent detection of Zika virus RNA in semen for six months after symptom onset in a traveller returning from Haiti to Italy, February 2016. Eurosurveillance 2016, 21, 30314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musso, D.; Richard, V.; Teissier, A.; Stone, M.; Lanteri, M.C.; Latoni, G.; ZIKV Study Group. Detection of Zika virus RNA in semen of asymptomatic blood donors. Clin. Microbiol. Infect. 2017, 23, 1001-e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassuto, N.G.; Marras, G.; Jacomo, V.; Bouret, D. Persistence of Zika virus in gradient sperm preparation. J. Gynecol. Obstet. Hum. Reprod. 2018, 47, 211–212. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, B.; Hearn, P.; Afrough, B.; Lumley, S.; Carter, D.; Aarons, E.J.; Hewson, R. Detection of Zika virus in semen. Emerg. Infect. Dis. 2016, 22, 940. [Google Scholar] [CrossRef]
- McDonald, E.M.; Duggal, N.K.; Ritter, J.M.; Brault, A.C. Infection of epididymal epithelial cells and leukocytes drives seminal shedding of Zika virus in a mouse model. PLoS Negl. Trop. Dis. 2018, 12, e0006691. [Google Scholar] [CrossRef] [Green Version]
- Strange, D.P.; Green, R.; Siemann, D.N.; Gale, M.; Verma, S. Immunoprofiles of human Sertoli cells infected with Zika virus reveals unique insights into host-pathogen crosstalk. Sci. Rep. 2018, 8, 8702. [Google Scholar] [CrossRef] [Green Version]
- Govero, J.; Esakky, P.; Scheaffer, S.M.; Fernandez, E.; Drury, A.; Platt, D.J.; Diamond, M.S. Zika virus infection damages the testes in mice. Nature 2016, 540, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Siemann, D.N.; Strange, D.P.; Maharaj, P.N.; Shi, P.Y.; Verma, S. Zika virus infects human Sertoli cells and modulates the integrity of the in vitro blood-testis barrier model. J. Virol. 2017, 91, e00623-e17. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Lassa Fever; WHO Newsletter: Geneva, Switzerland, 2000. [Google Scholar]
- Salu, O.B.; Amoo, O.S.; Shaibu, J.O.; Abejegah, C.; Ayodeji, O.; Musa, A.Z.; Omilabu, S.A. Monitoring of Lassa virus infection in suspected and confirmed cases in Ondo State, Nigeria. Pan Afr. Med. J. 2020, 36, 253. [Google Scholar] [CrossRef]
- Raabe, V.N.; Kann, G.; Ribner, B.S.; Morales, A.; Varkey, J.B.; Mehta, A.K.; Wolf, T. Favipiravir and ribavirin treatment of epidemiologically linked cases of Lassa fever. Clin. Infect. Dis. 2017, 65, 855–859. [Google Scholar] [CrossRef] [Green Version]
- McElroy, A.K.; Akondy, R.S.; Harmon, J.R.; Ellebedy, A.H.; Cannon, D.; Klena, J.D.; Spiropoulou, C.F. A case of human Lassa virus infection with robust acute T-cell activation and long-term virus-specific T-cell responses. J. Infect. Dis. 2017, 215, 1862–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrison, A.R.; Smith, D.R.; Golden, J.W. Animal models for Crimean-Congo hemorrhagic fever human disease. Viruses 2019, 11, 590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, L.L.; De Roo, A.; Guimard, Y.; Trappier, S.G.; Sanchez, A.; Bressler, D.; Nichol, S.T. Persistence and genetic stability of Ebola virus during the outbreak in Kikwit, Democratic Republic of the Congo, 1995. J. Infect. Dis. 1999, 179 (Suppl. 1), S170–S176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martines, R.B.; Ng, D.L.; Greer, P.W.; Rollin, P.E.; Zaki, S.R. Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses. J. Pathol. 2015, 235, 153–174. [Google Scholar] [CrossRef] [PubMed]
- Baskerville, A.; Fisher-Hoch, S.P.; Neild, G.H.; Dowsett, A.B. Ultrastructural pathology of experimental Ebola haemorrhagic fever virus infection. J. Pathol. 1985, 147, 199–209. [Google Scholar] [CrossRef]
- Mate, S.E.; Kugelman, J.R.; Nyenswah, T.G.; Ladner, J.T.; Wiley, M.R.; Cordier-Lassalle, T.; Palacios, G. Molecular evidence of sexual transmission of Ebola virus. N. Engl. J. Med. 2015, 373, 2448–2454. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Ebola (Ebola Virus Disease). Q&As on Transmission. Available online: http://www.cdc.gov/vhf/ebola/transmission/qas.html (accessed on 11 September 2022).
- Bras, G. The morbid anatomy of smallpox. Doc. Med. Geogr. Trop. 1952, 4, 303–351. [Google Scholar]
- Cann, J.A.; Jahrling, P.B.; Hensley, L.E.; Wahl-Jensen, V. Comparative pathology of smallpox and monkeypox in man and macaques. J. Comp. Pathol. 2013, 148, 6–21. [Google Scholar] [CrossRef] [Green Version]
- Antinori, A.; Mazzotta, V.; Vita, S.; Carletti, F.; Tacconi, D.; Lapini, L.E.; Nicastri, E. Epidemiological, clinical and virological characteristics of four cases of monkeypox support transmission through sexual contact, Italy, May 2022. Eurosurveillance 2022, 27, 2200421. [Google Scholar] [CrossRef]
- Heskin, J.; Belfield, A.; Milne, C.; Brown, N.; Walters, Y.; Scott, C.; Mora-Peris, B. Transmission of monkeypox virus through sexual contact–A novel route of infection. J. Infect. 2022, 85, 334–363. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Kong, J.D.; Mahroum, N.; Tsigalou, C.; Khamisy-Farah, R.; Converti, M.; Wu, J. Epidemiological trends and clinical features of the ongoing monkeypox epidemic: A preliminary pooled data analysis and literature review. J. Med. Virol. 2022, 95, e27931. [Google Scholar] [CrossRef] [PubMed]
- Davido, B.; D’anglejan, E.; Jourdan, J.; Robinault, A.; Davido, G. Monkeypox 2022 outbreak: Cases with exclusive genital lesions. J. Travel Med. 2022, 29, taac077. [Google Scholar] [CrossRef] [PubMed]
- Dejucq, N.; Jeégou, B. Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol. Mol. Biol. Rev. 2001, 65, 208–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salam, A.P.; Horby, P.W. The breadth of viruses in human semen. Emerg. Infect. Dis. 2017, 23, 1922. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, H.Z.; Yilmaz, G.; Aksoy, F.; Koksal, I. Crimean-Congo haemorrhagic fever presenting as epididymo-orchitis. J. Clin. Virol. 2010, 48, 282–284. [Google Scholar] [CrossRef] [PubMed]
Viral Zoonotic Disease | Effect on Male Reproduction |
---|---|
Influenza | Orchitis [19]; Abnormal semen parameters and sperm DNA integrity [17]; Chromosomal aberration in spermatogonia [14,15]; Decreased sperm production [16]; With fever: transient release of abnormal sperm and impaired chromatin structure [12]. |
COVID-19 | Orchitis [24]; Germ cell destruction, very low spermatozoa in seminiferous tubules, basement membrane thickening and leukocyte infiltration [24]; Orchitis; Impaired seminal parameters, induced orchitis and hypogonadism [29,30]. |
Zika virus | Detected in semen [35,37]; Dysregulation of germ-cell–Sertoli-cell junction signaling [42]; Downregulated secretion of inhibin B [43]. |
Lassa virus | Epididymitis [48]; Present in semen with possibility of sexual transmission [46,47]. |
Crimean–Congo hemorrhagic fever | Epididymo-orchitis [63]. |
Ebola virus disease | Virus persists in semen long after infection [50]; Possibility of sexual transmission [45]. |
Monkeypox | Virus in semen [59]; Possible sexual transmission [58]; Orchitis and degeneration of seminiferous tubules [56]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okeleji, O.L.; Ajayi, L.O.; Odeyemi, A.N.; Amos, V.; Ajayi, H.O.; Akinyemi, A.O.; Nzekwe, C.S.; Adeyemi, J.W.; Ajayi, A.F. Viral Zoonotic Diseases of Public Health Importance and Their Effect on Male Reproduction. Zoonotic Dis. 2022, 2, 291-300. https://doi.org/10.3390/zoonoticdis2040023
Okeleji OL, Ajayi LO, Odeyemi AN, Amos V, Ajayi HO, Akinyemi AO, Nzekwe CS, Adeyemi JW, Ajayi AF. Viral Zoonotic Diseases of Public Health Importance and Their Effect on Male Reproduction. Zoonotic Diseases. 2022; 2(4):291-300. https://doi.org/10.3390/zoonoticdis2040023
Chicago/Turabian StyleOkeleji, Olabisi Lateef, Lydia Oluwatoyin Ajayi, Aduragbemi Noah Odeyemi, Victor Amos, Hezekiah Oluwatobi Ajayi, Amos Olalekan Akinyemi, Chibueze Samuel Nzekwe, Johnson Wale Adeyemi, and Ayodeji Folorunsho Ajayi. 2022. "Viral Zoonotic Diseases of Public Health Importance and Their Effect on Male Reproduction" Zoonotic Diseases 2, no. 4: 291-300. https://doi.org/10.3390/zoonoticdis2040023
APA StyleOkeleji, O. L., Ajayi, L. O., Odeyemi, A. N., Amos, V., Ajayi, H. O., Akinyemi, A. O., Nzekwe, C. S., Adeyemi, J. W., & Ajayi, A. F. (2022). Viral Zoonotic Diseases of Public Health Importance and Their Effect on Male Reproduction. Zoonotic Diseases, 2(4), 291-300. https://doi.org/10.3390/zoonoticdis2040023