Role of Plant Growth Promoting Rhizobacteria (PGPR) as a Plant Growth Enhancer for Sustainable Agriculture: A Review
Abstract
:1. Introduction
2. Benefits of Rhizobial Associations for Plant Growth
3. The Growth-Promoting Mechanism in Plants: PGPR as a Mediator
3.1. Direct Mechanism
3.1.1. Nitrogen (N) Fixation
3.1.2. Phosphate Dissolution
3.1.3. Potassium Dissolution
3.1.4. Producing Siderophore
3.1.5. Zinc Solubilization
3.2. Indirect Mechanism
3.2.1. Stress Management
3.2.2. Hydrolytic Enzymes Production
3.2.3. VOCs Formation
3.2.4. Exopolysaccharide (EPS) Production
3.2.5. Antibiotic Production
3.2.6. Plant Growth Hormone Production
4. PGPR Used in Vegetable Production
5. PGPR Used in Crops
Species | Role | Mechanism Involved | Participating Plant | Reference |
---|---|---|---|---|
Agrobacterium radiobacter | Improves bioprotection | Antibiotics | Mohanram and Kumar, 2019 [77] | |
Azotobacter chroococcum | Assists in biostimulation | Production of gibberellin | Cereals | Zhang et al., 2019 [78] |
Azospirillumbrasilense | Biofertilisation | Phosphate solubilisation | Maize (Zea mays), Wheat (Triticum aestivum L.) and Rice (Oryza sativa) | Lucy et al., 2004 [79] |
Bacillus cereus | Boosts bioprotection | Lipopeptides Induced and acquired systemic resistance | Bean (Phaseolus vulgaris) Tomato (S. lycopersicum) | Hashami et al., 2019 [80] |
Bacillus subtilis | Biofertilisation Aids in biostimulation Bioprotection | Ammonia synthesis Through IAA and Cytokinin production Lipopeptides Catalase production | Maize (Zea mays) Chickpea (Cicer arietinum) Tomato (S. lycopersicum L.) Cucumber (Cucumis sativus) | Ouhaibi-Ben Abdeljali et al., 2016 [81], Tahir et al., 2017 [82] |
Klebsiella pneumonia | Aids biofertilisation Bioprotection | Nitrogen fixation Acquired and induced systemic resistance | Maize (Zea mays) Peanut (Arachis hypogaea) | Sharma et al., 2019 [83] |
Pseudomonas aeruginosa | Bioremediation | Cellulase production | Rice (O. sativa), Pea (P. sativa) | Cheng et al.,2019 [84] |
Staphylococcus saprophyticus | Biostimulation | Manufacturing of IAA | Ornamental species | Manzoor et al., 2019 [85] |
6. Integration of PGPR and Nanotechnology
7. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Edward Paice. By 2050, a Quarter of the World’s People Will Be African—This Will Shape Our Future. 2022. Available online: https://www.theguardian.com/global-development/2022/jan/20/by-2050-a-quarter-of-the-worlds-people-will-be-african-this-will-shape-our-future (accessed on 20 January 2023).
- United Nations. 2019. Available online: https://www.un.org/development/desa/news/population/world-population-prospects-2019.html (accessed on 10 June 2020).
- Kumar, A.; Maurya, B.R.; Raghuwanshi, R.; Meena, V.S.; Islam, M.T. Co-inoculation with Enterobacter and Rhizobacteria on Yield and Nutrient Uptake by Wheat (Triticum aestivum L.) in the Alluvial Soil Under Indo-Gangetic Plain of India. J. Plant Growth Regul. 2017, 36, 608–617. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Change 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Pareek, A.; Dhankher, O.P.; Foyer, C.H. Mitigating the Impact of Climate Change on Plant Productivity and Ecosystem Sustainability; Oxford University Press: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.S.P. Response of plants to waters tress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, Z.; Huang, S.; Rafique, M.; Fakhar, A.; Kamran, M.A.; Santoyo, G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J. Environ. Manag. 2020, 273, 111118. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, L.A.; Santos, C.H.B.; Frezarin, E.T.; Sales, L.R.; Rigobelo, E.C. Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms 2023, 11, 1088. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Pantigoso, H.A.; Wu, Z.; Vivanco, J.M. Co-inoculation of Bacillus sp. and Pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. J. Appl. Microbiol. 2019, 127, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Mohammadipanah, F.; Dehhaghi, M. Classification and Taxonomy of Actinobacteria. In Biology and Biotechnology of Actinobacteria; Springer: Berlin/Heidelberg, Germany, 2017; pp. 51–77. [Google Scholar]
- Hassanisaadi, M.; Bonjar, G.H.S.; Hosseinipour, A.; Abdolshahi, R.; Barka, E.A.; Saadoun, I. Biological Control of Pythium aphanidermatum, the Causal Agent of Tomato Root Rotby Two Streptomyces Root Symbionts. Agronomy 2021, 11, 846. [Google Scholar] [CrossRef]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef]
- Lyu, D.; Zajonc, J.; Pagé, A.; Tanney, C.A.; Shah, A.; Monjezi, N.; Msimbira, L.A.; Antar, M.; Nazari, M.; Backer, R.; et al. Plant holobiont theory: The phytomicrobiome plays a central role in evolution and success. Microorganisms 2021, 9, 675. [Google Scholar] [CrossRef] [PubMed]
- Kloepper, J.W.; Schippers, B.; Bakker, P.A.H.M. Proposed elimination of the term endorhizosphere. Phytopathology 1992, 82, 726–727. [Google Scholar]
- Saravanan, V.; Kumar, M.R.; Sa, T. Microbial zinc solubilization and their role on plants. In Bacteria in Agrobiology: Plant Nutrient Management; Maheshwari, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 47–63. [Google Scholar] [CrossRef]
- VanPeer, R.; Schippers, B. Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Can. J. Microbiol. 1989, 35, 456–463. [Google Scholar]
- Lazarovits, G.; Nowak, J. Rhizobacteria for improvement of plant growth and establishment. HortScience 1997, 32, 188–192. [Google Scholar] [CrossRef]
- Miao, G.; Jianjiao, Z.; Entao, W.; Qian, C.; Jing, X.; Jianguang, S. Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. J. Integr. Agric. 2014, 14, 1855–1863. [Google Scholar]
- Vacheron, J.; Desbrosses, G.; Bouffaud, M.-L.; Touraine, B.; Moënne-Loccoz, Y.; Muller, D.; Legendre, L.; Wisniewski-Dyé, F.; Prigent-Combaret, C. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 2013, 4, 356. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Feng, Z.B.; Zhang, F.D.; Zhang, S.Q.; He, X.S. Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agric. Sci. China 2006, 5, 700–706. [Google Scholar] [CrossRef]
- Gupta, G.; Parihar, S.S.; Ahirwar, N.K.; Snehi, S.K.; Singh, V. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 2015, 7, 96–102. [Google Scholar]
- Shah, A.; Nazari, M.; Antar, M.; Msimbira, L.A.; Naamala, J.; Lyu, D.; Rabileh, M.; Zajonc, J.; Smith, D.L. PGPR in agriculture: A sustainable approach to increasing climate change resilience. Front. Sustain. Food Syst. 2021, 5, 667546. [Google Scholar] [CrossRef]
- Alori, E.T.; Dare, M.O.; Babalola, O.O. Microbial inoculants for soil quality and plant health. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2017; pp. 281–307. [Google Scholar] [CrossRef]
- Bouchet, A.-S.; Laperche, A.; Bissuel-Belaygue, C.; Snowdon, R.; Nesi, N.; Stahl, A. Nitrogen use efficiency in rapeseed: A review. Agron. Sustain. Dev. 2016, 36, 38. [Google Scholar] [CrossRef]
- Babalola, O.O. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 2010, 32, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Montaño, F.; Alías-Villegas, C.; Bellogín, R.; DelCerro, P.; Espuny, M.; Jiménez-Guerrero, I.; López-Baena, F.J.; Olero, F.J.; Cubo, T. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol. Res. 2014, 169, 325–336. [Google Scholar] [CrossRef]
- Moura, R.T.D.A.; Garrido, M.D.S.; Sousa, C.D.S.; Menezes, R.S.C.; Sampaio, E.V.D.S.B. Comparison of methods to quantify soil microbial biomass carbon. Acta Sci. Agron. 2018, 40, 39451. [Google Scholar] [CrossRef]
- Hillel, D. Soil biodiversity. In Soil in the Environment; Hillel, D., Ed.; Academic Press: San Diego, CA, USA, 2008; pp. 163–174. [Google Scholar] [CrossRef]
- Anand, K.; Kumari, B.; Mallick, M.A. Phosphate solubilizing microbes: An effective and alternative approach as bio-fertilizers. Int. J. Pharm. Sci. 2016, 8, 37–40. [Google Scholar]
- Khan, A.A.; Jilani, G.; Akhtar, M.S.; Naqvi, S.M.S.; Rasheed, M. Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 2009, 1, 48–58. [Google Scholar]
- Adesemoye, A.O.; Kloepper, J.W. Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 2009, 85, 1–12. [Google Scholar] [CrossRef]
- Bechtaoui, N.; Raklami, A.; Benidire, L.; Tahiri, A.-I.; Göttfert, M.; Oufdou, K. Effects of PGPR co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions. Pol. J. Environ. Stud. 2020, 29, 1557–1565. [Google Scholar] [CrossRef]
- Heydari, A.; Misaghi, I.J.; Balestra, G. Pre-emergence herbicides influence the efficacy of fungicides in controlling cotton seedling damping-off in the field. Int. J. Agric. Res. 2007, 2, 1049–1053. [Google Scholar] [CrossRef]
- Riaz, U.; Murtaza, G.; Anum, W.; Samreen, T.; Sarfraz, M.; Nazir, M.Z. Plant growth-promoting rhizobacteria (PGPR) as biofertilizers and biopesticides. In Microbiota and Biofertilizers: A Sustainable Continuum for Plant and Soil Health; Hakeem, K.R., Dar, M.G.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Parmar, P.; Sindhu, S.S. Potassium solubilization by rhizosphere bacteria: Influence of nutritional and environmental conditions. J. Microbial. Res. 2013, 3, 25–31. [Google Scholar]
- Archana, D.; Nandish, M.; Savalagi, V.; Alagawadi, A. Screening of potassium solubilizing bacteria (KSB) for plant growth promotional activity. Bioinfolet-A Q. J. Life Sci. 2012, 9, 627–630. [Google Scholar]
- Setiawati, T.C.; Mutmainnah, L. Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agric. Agric. Sci. Proc. 2016, 9, 108–117. [Google Scholar] [CrossRef]
- Prajapati, K.; Sharma, M.; Modi, H. Growth promoting effect of potassium solubilizing microorganisms on Abelmoscus esculantus. Int. J. Agric. Sci. 2013, 3, 181–188. [Google Scholar]
- Khan, N.; Bano, A.; Rahman, M.A.; Guo, J.; Kang, Z.; Babar, M.A. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci. Rep. 2019, 9, 2097. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Ding, Y.; Zhu, H.; Yao, L.; Du, B. Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Brazil. J. Microbiol. 2009, 40, 276–284. [Google Scholar] [CrossRef]
- Khoshru, B.; Mitra, D.; Khoshmanzar, E.; Myo, E.M.; Uniyal, N.; Mahakur, B.; Das Mohapatra, P.K.; Panneerselvam, P.; Boutaj, H.; Alizadeh, M.; et al. Current scenario and future prospects of plant growth-promoting rhizobacteria: An economic valuable resource for the agriculture revival under stressful conditions. J. Plant Nutr. 2020, 43, 3062–3092. [Google Scholar] [CrossRef]
- Shanmugaiah, V.; Nithya, K.; Harikrishnan, H.; Jayaprakashvel, M.; Balasubramanian, N. Biocontrol mechanisms of siderophores against bacterial plant pathogens. Sustain. Approach. Control. Plant Pathog. Bact. 2015, 24, 167–190. [Google Scholar]
- Goswami, D.; Thakker, J.N.; Dhandhukia, P.C. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agric. 2016, 2, 1127500. [Google Scholar] [CrossRef]
- Rezanka, T.; Palyzová, A.; Sigler, K. Isolation and identification of siderophores produced by cyanobacteria. Folia Microbiol. 2018, 63, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Czarnes, S.; Mercier, P.; Lemoine, D.G.; Hamzaoui, J.; Legendre, L. Impact of soil water content on maize responses to the plant growth-promoting rhizobacterium Azospirillum lipoferum CRT1. J. Agron. Crop. Sci. 2020, 206, 505–516. [Google Scholar] [CrossRef]
- Goteti, P.K.; Emmanuel, L.D.A.; Desai, S.; Shaik, M.H.A. Prospective Zinc Solubilising Bacteria for Enhanced Nutrient Uptake and Growth Promotion in Maize (Zea mays L.). Int. J. Microbiol. 2013, 2013, 869697. [Google Scholar] [CrossRef]
- Vaid, S.K.; Kumar, B.; Sharma, A.; Shukla, A.; Srivastava, P. Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. J. Soil Sci. Plant Nutr. 2014, 14, 889–910. [Google Scholar] [CrossRef]
- UmairHassan, M.; Aamer, M.; UmerChattha, M.; Haiying, T.; Shahzad, B.; Barbanti, L.; Nawaz, M.; Rasheed, A.; Afzal, A.; Liu, Y.; et al. The critical role of zinc in plants facing the drought stress. Agriculture 2020, 10, 396. [Google Scholar] [CrossRef]
- FAO. Human Vitamin and Mineral Requirements. Bangkok: Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2002. [Google Scholar]
- Lopes, M.J.S.; Dias-Filho, M.B.; Gurgel, E.S.C. Successful Plant Growth-Promoting Microbes: Inoculation Methods and Abiotic Factors. Front. Sustain. Food Syst. 2021, 5, 606454. [Google Scholar] [CrossRef]
- Kamran, S.; Shahid, I.; Baig, D.N.; Rizwan, M.; Malik, K.A.; Mehnaz, S. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat. Front. Microbiol. 2017, 8, 2593. [Google Scholar] [CrossRef] [PubMed]
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq, B.A. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 2016, 21, 573. [Google Scholar] [CrossRef]
- Baharlouei, J.; Pazira, E.; Khavazi, K.; Solhi, M. Evaluation of inoculation of plant growth-promoting rhizobacteria on cadmium uptake by canola and barley. Int. Conf. Environ. Sci. Techol. 2011, 2, 28–32. [Google Scholar]
- Haggag, W.M.; Abouziena, H.F.; Abd-El-Kreem, F.; El Habbasha, S. Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J. Chem. Pharm. Res. 2015, 7, 882889. [Google Scholar]
- Kumar, H.; Bajpai, V.K.; Dubey, R.C. Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Protect. 2010, 29, 591–598. [Google Scholar] [CrossRef]
- Santoro, M.V.; Bogino, P.C.; Nocelli, N.; Cappellari, L.R.; Giordano, W.F.; Banchio, E. Analysis of plant growth-promoting effects of fluorescent Pseudomonas strains isolated from Mentha piperita rhizosphere and effects of their volatile organic compounds on essential oil composition. Front. Microbiol. 2016, 7, 198824. [Google Scholar] [CrossRef] [PubMed]
- Sanlibaba, P.; Cakmak, G.A. Exopolysaccharides production by lactic acid bacteria. Appl. Microbiol. 2016, 2, 1–5. [Google Scholar] [CrossRef]
- Mahmood, S.; Daur, I.; Al-Solaimani, S.G.; Ahmad, S.; Madkour, M.H.; Yasir, M.; Hirt, H.; Ali, S.; Ali, Z. Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front. Plant Sci. 2016, 7, 876. [Google Scholar] [CrossRef] [PubMed]
- Ulloa-Ogaz, A.L.; Munoz-Castellanos, L.N.; Nevarez-Moorillon, G.V. Biocontrol of phytopathogens: Antibiotic production as mechanism of control, the battle against microbial pathogens. In Basic Science, Technological Advance and Educational Programs 1; Mendez Vilas, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 305–309. [Google Scholar]
- Fouzia, A.; Allaoua, S.; Hafsa, C.; Mostefa, G. Plant growth promoting and antagonistic traits of indigenous fluorescent pseudomonas spp. isolated from wheat rhizosphere and A. halimus endosphere. Eur. Sci. J. 2015, 11, 129–148. [Google Scholar]
- Damam, M.; Kaloori, K.; Gaddam, B.; Kausar, R. Plant growth promoting substances (phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. Int. J. Pharm. Sci. Rev. 2016, 37, 130–136. [Google Scholar]
- Antar, M.; Gopal, P.; Msimbira, L.A.; Naamala, J.; Nazari, M.; Overbeek, W.; Backer, R.; Smith, D.L. Inter-organismal signaling in the rhizosphere. In Rhizosphere Biology: Interactions Between Microbes and Plants; Springer: Singapore, 2021; pp. 255–293. [Google Scholar] [CrossRef]
- Nath, D.; Maurya, B.R.; Meena, V.S. Documentation of five potassium-and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal. Agric. Biotechnol. 2017, 10, 174181. [Google Scholar] [CrossRef]
- Etesami, H.A.; Alikhani, H.A.; Akbari, A.A. Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appl. Sci. J. 2009, 6, 15761584. [Google Scholar]
- Kumar, A.; Kumar, A.; Pratush, A. Molecular diversity and functional variability of environmental isolates of Bacillus species. SpringerPlus 2014, 3, 312. [Google Scholar] [CrossRef]
- Fenta, L.; Assefa, F. Isolation and characterization of phosphate solubilizing bacteria from tomato rhizosphere and their effect on growth and phosphorus uptake of the host plant under greenhouse experiment. Int. J. Adv. Res. 2017, 3, 2320–5407. [Google Scholar]
- Lemessa, F.; Zeller, W. Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol. Cont. 2007, 42, 336–344. [Google Scholar] [CrossRef]
- Council, I.G. Five-Year Baseline Projections of Supply and Demand for Wheat, Maize (Corn), Rice and Soyabeans to 2023/24; International Grains Council: London, UK, 2019. [Google Scholar]
- FAOSTAT Food Balance Sheets. 2020. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 24 April 2020).
- Kuan, K.B.; Othman, R.; Rahim, K.A.; Shamsuddin, Z.H. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 2016, 11, e0152478. [Google Scholar] [CrossRef]
- Pereira, P.; Ibàñez, F.; Rosenblueth, M.; Etcheverry, M.; Martínez-Romero, E. Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. ISRN Ecol. 2011, 10, 938546. [Google Scholar] [CrossRef]
- Bevivino, A.; Sarrocco, S.; Dalmastri, C.; Tabacchioni, S.; Cantale, C.; Chiarini, L. Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: Effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol. Ecol. 1998, 27, 225–237. [Google Scholar] [CrossRef]
- Zhao, D.L.; Li, Y.R. Climate change and sugarcane production: Potential impact and mitigation strategies. Int. J. Agron. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, F. Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 2011, 339, 83–95. [Google Scholar] [CrossRef]
- Mohanram, S.; Kumar, P. Rhizosphere microbiome: Revisiting the synergy of plant-microbe interactions. Ann. Microbiol. 2019, 69, 307–320. [Google Scholar] [CrossRef]
- Zhang, X.; Baars, O.; Morel, F.M. Genetic, structural, and functional diversity of low and high-affinity siderophores in strains of nitrogen fixing Azotobacter chroococcum. Metallomics 2019, 11, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Lucy, M.; Reed, E.; Glick, B.R. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 2004, 86, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Hashami, S.Z.; Nakamura, H.; Ohkama-Ohtsu, N.; Kojima, K.; Djedidi, S.; Fukuhara, I.; Haidari, M.D.; Sekimoto, H.; Yokoyama, T. Evaluation of immune responses induced by simultaneous inoculations of soybean (Glycine max [L.] Merr.) with soil bacteria and rhizobia. Microbes Environ. 2019, 34, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Abdeljalil, N.O.B.; Vallance, J.J.; Gerbore, J.; Rey, P.P.; Daami-Remadi, M. Bio-suppression of Sclerotinia stem rot of tomato and biostimulation of plant growth using tomato-associated rhizobacteria. J. Plant. Pathol. Microbiol. 2016, 7, 2. [Google Scholar] [CrossRef]
- Tahir, H.A.; Gu, Q.; Wu, H.; Raza, W.; Hanif, A.; Wu, L.; Gao, X. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front. Microbiol. 2017, 8, 171. [Google Scholar] [CrossRef]
- Sharma, S.; Chen, C.; Navathe, S.; Chand, R.; Pandey, S.P. A halotolerant growth promoting rhizobacteria triggers induced systemic resistance in plants and defends against fungal infection. Sci. Rep. 2019, 9, 4054. [Google Scholar] [CrossRef]
- Cheng, K.Y.; Karthikeyan, R.; Wong, J.W. Microbial electrochemical remediation of organic contaminants: Possibilities and perspective. Microb. Electrochem. Technol. 2019, 25, 613–640. [Google Scholar] [CrossRef]
- Manzoor, M.; Gul, I.; Ahmed, I.; Zeeshan, M.; Hashmi, I.; Amin, B.A.Z.; Kallerhoff, J.; Arshad, M. Metal tolerant bacteria enhanced phytoextraction of lead by two accumulator ornamental species. Chemosphere 2019, 227, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Syers, J.; Johnston, A.; Curtin, D. Efficiency of soil and fertilizer phosphorus use. FAO Fertil. Plant Nutr. Bull. 2008, 18, 5–50. [Google Scholar]
- Spolaor, L.T.; Gonçalves, L.S.A.; Santos, O.J.A.P.D.; Oliveira, A.L.M.D.; Scapim, C.A.; Bertagna, F.A.B.; Kuki, M.C. Plant growth-promoting bacteria associated with nitrogen fertilization at topdressing in popcorn agronomic performance. Bragantia 2016, 75, 33–40. [Google Scholar] [CrossRef]
- Rosa, P.A.L.; Mortinho, E.S.; Jalal, A.; Galindo, F.S.; Buzetti, S.; Fernandes, G.C.; BarcoNeto, M.; Pavinato, P.S.; TeixeiraFilho, M.; Carvalho, M. Inoculation with growth-promoting bacteria associated with the reduction of phosphate fertilization in sugarcane. Front. Environ. Sci. 2020, 8, 32. [Google Scholar] [CrossRef]
- Santos, R.M.; Kandasamy, S.; Rigobelo, E.C. Sugarcane growth and nutrition levels are differentially affected by the application of PGPR and cane waste. Microbiologyopen 2018, 7, e00617. [Google Scholar] [CrossRef]
- Rani, R.; Bernela, M.; Malik, P.; Mukherjee, T. Chapter 9—Nanofertilizers Applications and Future Prospects. In Nanotechonlogy: Principles and Applications; Sindhu, R.K., Chitkara, M., Sandhu, S.I., Eds.; Jenny Stanford Publishing: Dubai, United Arab Emirates, 2020. [Google Scholar] [CrossRef]
- Nayana, A.R.; Joseph, B.J.; Jose, A.; Radhakrishnan, E.K. Nanotechnological Advances with PGPR Applications. Sustain. Agric. Rev. 2020, 41, 163–180. [Google Scholar] [CrossRef]
- Khanm, H.; Vaishnavi, B.A.; Shankar, A.G. Raise of Nano-fertilizer ERA: Effect of nano scale zinc oxide particles on the germination, growth and yield of tomato (Solanum lycopersicum). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1861–1871. [Google Scholar] [CrossRef]
- Mishra, J.; Prakash, J.; Arora, N.K. Role of beneficial soil microbes in sustainable agriculture and environmental management. Clim. Change Environ. Sustain. 2016, 4, 137–149. [Google Scholar] [CrossRef]
- Reichman, S.M. Probing the plant growth-promoting and heavy metal tolerance characteristics of Bradyrhizobium japonicum CB1809. Eur. J. Soil Biol. 2014, 63, 7–13. [Google Scholar] [CrossRef]
- Sriprang, R.; Hayashi, M.; Ono, H.; Takagi, M.; Hirata, K.; Murooka, Y. Enhanced Accumulation of Cd2+ by a Mesorhizobium sp. Transformed with a Gene from Arabidopsis thaliana Coding for Phytochelatin Synthase. Appl. Environ. Microbiol. 2003, 69, 1791–1796. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.C.; Cheung, K.C.; Luo, Y.M.; Wong, M.H. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ. Pol. 2006, 140, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Mohammad, F. Nanotechnogy and Plant Sciences: Nanoparticles and Their Impact on Plants. Nanotechnol. Plant Sci. Nanopart Impact Plants 2015, 10, 1–303. [Google Scholar] [CrossRef]
- Pacheco, A.; Moel, M.; Segrè, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 2019, 10, 103. [Google Scholar] [CrossRef]
- Shalaby, T.A.; Bayoumi, Y.; Abdalla, N.; Taha, H.; Alshaal, T.; Shehata, S.; Amer, M.; Domokos-Szabolcsy, É.; El-Ramady, H. Nanoparticles, soils, plant sand sustainable agriculture. In Nanoscience in Food and Agriculture 1; Springer: Cham, Switzerland, 2016; pp. 283–312. [Google Scholar]
- Buzea, C.; Pacheco, I. Nanomaterials and their classification. In EMR/ESR/EPR Spectros-Copy for Characterization of Nanomaterials; Springer: New Delhi, India, 2017; pp. 3–45. [Google Scholar]
- Yadav, T.P.; Yadav, R.M.; Singh, D.P. Mechanical milling: A Top down approach for synthesis of nanoparticles and nanocomposites. Nanosci. Nanotechnol. 2012, 2, 22–48. [Google Scholar] [CrossRef]
Species | Participating Plant | Metals | Role of PGPR | References |
---|---|---|---|---|
Brevundimonas Diminuta | ScripusMucronatus | Mercury | Soil toxicity decreased; Enhanced phytoremediation | Mishra et al., 2016 [93] |
Rhizobium sp., Microbacterium sp. | Pisum sativum | Chromium (VI) | Reduced chromium toxicity; Increased plant nitrogen concentration | Mishra et al., 2016 [93] |
Bacillus megaterium | Brassica napus | Lead | Reducing soil contamination; Maximizing plant dry-matter output | Reichman, 2014 [94] |
Mesorhizobiumhuakuii subsp. rengei B3 | Tomato | Cadmium | Increased PCSAt gene expression enhances cell Cd2 binding. | Sriprang, 2003 [95] |
Azotobacter chroococcum HKN-5, Bacillus megaterium HKP-1, B. mucilaginosus HKK-1 | Brassica juncea | Lead, zinc | Promoted plant development and shielded it from metal toxicity. | Wu et al., 2006 [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, A.; Tabassum, B.; Hashim, M.; Khan, N. Role of Plant Growth Promoting Rhizobacteria (PGPR) as a Plant Growth Enhancer for Sustainable Agriculture: A Review. Bacteria 2024, 3, 59-75. https://doi.org/10.3390/bacteria3020005
Hasan A, Tabassum B, Hashim M, Khan N. Role of Plant Growth Promoting Rhizobacteria (PGPR) as a Plant Growth Enhancer for Sustainable Agriculture: A Review. Bacteria. 2024; 3(2):59-75. https://doi.org/10.3390/bacteria3020005
Chicago/Turabian StyleHasan, Asma, Baby Tabassum, Mohammad Hashim, and Nagma Khan. 2024. "Role of Plant Growth Promoting Rhizobacteria (PGPR) as a Plant Growth Enhancer for Sustainable Agriculture: A Review" Bacteria 3, no. 2: 59-75. https://doi.org/10.3390/bacteria3020005
APA StyleHasan, A., Tabassum, B., Hashim, M., & Khan, N. (2024). Role of Plant Growth Promoting Rhizobacteria (PGPR) as a Plant Growth Enhancer for Sustainable Agriculture: A Review. Bacteria, 3(2), 59-75. https://doi.org/10.3390/bacteria3020005