Next Issue
Volume 3, September
Previous Issue
Volume 3, March
 
 

Organoids, Volume 3, Issue 2 (June 2024) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
22 pages, 4970 KiB  
Article
Single-Cell Assessment of Human Stem Cell-Derived Mesolimbic Models and Their Responses to Substances of Abuse
by Thomas P. Rudibaugh, Ryan W. Tam, R. Chris Estridge, Samantha R. Stuppy and Albert J. Keung
Organoids 2024, 3(2), 126-147; https://doi.org/10.3390/organoids3020009 - 20 Jun 2024
Viewed by 725
Abstract
The mesolimbic pathway connects ventral tegmental area dopaminergic neurons and striatal medium spiny neurons, playing a critical role in reward and stress behaviors. Exposure to substances of abuse during development and adulthood has been linked to adverse outcomes and molecular changes. The rise [...] Read more.
The mesolimbic pathway connects ventral tegmental area dopaminergic neurons and striatal medium spiny neurons, playing a critical role in reward and stress behaviors. Exposure to substances of abuse during development and adulthood has been linked to adverse outcomes and molecular changes. The rise of human cell repositories and whole-genome sequences enables human functional genomics ‘in a dish’, offering insights into human-specific responses to substances of abuse. Continued development of new models is needed, and the characterization of in vitro models is also necessary to ensure appropriate experimental designs and the accurate interpretation of results. This study introduces new culture conditions for generating medium spiny neurons and dopaminergic neurons with an early common media, allowing for coculture and assembloid generation. It then provides a comprehensive characterization of these and prior models and their responses to substances of abuse. Single-cell analysis reveals cell-type-specific transcriptomic responses to dopamine, cocaine, and morphine, including compound and cell-type-specific transcriptomic signatures related to neuroinflammation and alterations in signaling pathways. These findings offer a resource for future genomics studies leveraging human stem cell-derived models. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

13 pages, 2038 KiB  
Protocol
Development and Optimization of a Lactate Dehydrogenase Assay Adapted to 3D Cell Cultures
by Héloïse Castiglione, Lucie Madrange, Thomas Lemonnier, Jean-Philippe Deslys, Frank Yates and Pierre-Antoine Vigneron
Organoids 2024, 3(2), 113-125; https://doi.org/10.3390/organoids3020008 - 5 Jun 2024
Viewed by 1394
Abstract
In recent years, 3D cell culture systems have emerged as sophisticated in vitro models, providing valuable insights into human physiology and diseases. The transition from traditional 2D to advanced 3D cultures has introduced novel obstacles, complicating the characterization and analysis of these models. [...] Read more.
In recent years, 3D cell culture systems have emerged as sophisticated in vitro models, providing valuable insights into human physiology and diseases. The transition from traditional 2D to advanced 3D cultures has introduced novel obstacles, complicating the characterization and analysis of these models. While the lactate dehydrogenase (LDH) activity assay has long been a standard readout for viability and cytotoxicity assessments in 2D cultures, its applicability in long-term 3D cultures is hindered by inappropriate normalization and low LDH stability over time. In response to these challenges, we propose an optimization of LDH assays, including a crucial normalization step based on total protein quantification and a storage method using an LDH preservation buffer. We applied it to compare unexposed cerebral organoids with organoids exposed to a toxic dose of valproic acid, and showed efficient normalization of cellular viability as well as enhanced LDH stability within the buffer. Importantly, normalized LDH activity results obtained were independent of organoid dimension and cell density. This refined LDH assay, tailored to address 3D culture constraints, allows for the transposition of this routine test from 2D to 3D cultures. Full article
Show Figures

Figure 1

30 pages, 1802 KiB  
Communication
Organoids, Biocybersecurity, and Cyberbiosecurity—A Light Exploration
by Xavier Palmer, Cyril Akafia, Eleasa Woodson, Amanda Woodson and Lucas Potter
Organoids 2024, 3(2), 83-112; https://doi.org/10.3390/organoids3020007 - 13 May 2024
Viewed by 1708
Abstract
Organoids present immense promise for studying organ systems and their functionality. Recently, they have become the subject of exploration outside of purely biomedical uses in multiple directions. We will explore the rapidly evolving landscape of organoid research over the 21st century, discussing significant [...] Read more.
Organoids present immense promise for studying organ systems and their functionality. Recently, they have become the subject of exploration outside of purely biomedical uses in multiple directions. We will explore the rapidly evolving landscape of organoid research over the 21st century, discussing significant advancements in organoid research and highlighting breakthroughs, methodologies, and their transformative impact on our understanding of physiology and modeling. In addition, we will explore their potential use for biocomputing and harnessing organoid intelligence, investigate how these miniaturized organ-like structures promise to create novel computational models and processing platforms allowing for innovative approaches in drug discovery, personalized medicine, and disease prediction. Lastly, we will address the ethical dilemmas surrounding organoid research by dissecting the intricate ethical considerations related to the creation, use, and potential implications of these in vitro models. Through this work, the goal of this paper is to provide introductory perspectives and bridges that will connect organoids to cybersecurity applications and the imperative ethical discourse accompanying its advancements with commentary on future uses. Full article
Show Figures

Figure 1

16 pages, 1673 KiB  
Review
Treatment of Canine Type 1 Diabetes Mellitus: The Long Road from Twice Daily Insulin Injection towards Long-Lasting Cell-Based Therapy
by Flavia C. M. Oliveira, Annemarie W. Y. Voorbij, Elisa C. Pereira, Leonor M. M. Alves e Almeida, Geanne R. Moraes, Joana T. De Oliveira, Boyd H. T. Gouw, Sabrina A. M. Legatti, Hans S. Kooistra, Bart Spee, Andre M. C. Meneses and Louis C. Penning
Organoids 2024, 3(2), 67-82; https://doi.org/10.3390/organoids3020006 - 4 Apr 2024
Viewed by 1930
Abstract
For over 150 years, researchers have studied the (patho)physiology of the endocrine pancreas and devised treatment options for diabetes mellitus (DM). However, no cure has been developed so far. In dogs, diabetes mellitus type 1 (T1DM) is the most common presentation. Treatment consists [...] Read more.
For over 150 years, researchers have studied the (patho)physiology of the endocrine pancreas and devised treatment options for diabetes mellitus (DM). However, no cure has been developed so far. In dogs, diabetes mellitus type 1 (T1DM) is the most common presentation. Treatment consists of twice daily insulin injections, monitored by spatial blood glucose measurements. Even though dogs were instrumental in the discovery of insulin and islet transplantations, the treatment in diabetic dogs has remained unchanged for decades. Providing twice daily insulin injections is demanding for both owners and dogs and may result in hypoglycaemic events, creating the need for new treatment strategies. Novel regenerative medicine-based tools, such as improved β-cell culture protocols and artificial devices, have sparked hope for a cure. In human medicine, emerging technologies such as the transplantation of insulin-producing β-cells, generated by stem cell differentiation, with or without an encapsulation device, are currently tested in phase I/II clinical trials. As the pathogenesis of T1DM is remarkably similar between humans and dogs, novel treatment methods could be implemented in canine medicine. This review briefly summarises the physiology of the canine endocrine pancreas and the pathophysiology of canine DM before exploring current and possible future treatment options for canine DM. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop