Previous Issue
Volume 4, September
 
 

Organoids, Volume 4, Issue 4 (December 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 3114 KB  
Article
Dysregulated Intestinal Nutrient Absorption in Obesity Is Associated with Altered Chromatin Accessibility
by Dilhana S. Badurdeen, Zhen Li, Jeong-Heon Lee, Tao Ma, Aditya Vijay Bhagwate, Rachel Latanich, Arjit Dogiparthi, Tamas Ordog, Olga Kovbasnjuk, Vivek Kumbhari and Jennifer Foulke-Abel
Organoids 2025, 4(4), 25; https://doi.org/10.3390/organoids4040025 - 8 Oct 2025
Viewed by 310
Abstract
Obesity is an epidemic with myriad health effects, but little is understood regarding individual obese phenotypes and how they may respond to therapy. Epigenetic changes associated with obesity have been detected in blood, liver, pancreas, and adipose tissues. Previous work using human organoids [...] Read more.
Obesity is an epidemic with myriad health effects, but little is understood regarding individual obese phenotypes and how they may respond to therapy. Epigenetic changes associated with obesity have been detected in blood, liver, pancreas, and adipose tissues. Previous work using human organoids found that dietary glucose hyperabsorption is a steadfast trait in cultures derived from some obese subjects, but detailed transcriptional or epigenomic features of the intestinal epithelia associated with this persistent phenotype are unknown. This study evaluated differentially expressed genes and relative chromatin accessibility in intestinal organoids established from donors classified as non-obese, obese, or obese hyperabsorptive by body mass index and glucose transport assays. Transcriptomic analysis indicated that obese hyperabsorptive subject organoids have significantly upregulated dietary nutrient absorption transcripts and downregulated type I interferon targets. Chromatin accessibility and transcription factor footprinting predicted that enhanced HNF4G binding may promote the obese hyperabsorption phenotype. Quantitative RT-PCR assessment in organoids representing a larger subject cohort suggested that intestinal epithelial expression of CUBN, GIP, SLC5A11, and SLC2A5 were highly correlated with hyperabsorption. Thus, the obese hyperabsorption phenotype was characterized by transcriptional changes that support increased nutrient uptake by intestinal epithelia, potentially driven by differentially accessible chromatin. Recognizing unique intestinal phenotypes in obesity provides a new perspective in considering therapeutic targets and options with which to manage the disease. Full article
Show Figures

Figure 1

21 pages, 2037 KB  
Article
Development of a Trophoblast Organoid Resource in a Translational Primate Model
by Brady M. Wessel, Jenna N. Castro, Henry F. Harrison, Brian P. Scottoline, Margaret C. Wilcox, Maureen K. Baldwin and Victoria H. J. Roberts
Organoids 2025, 4(4), 24; https://doi.org/10.3390/organoids4040024 - 8 Oct 2025
Viewed by 341
Abstract
First-trimester placental development comprises many critical yet understudied cellular events that determine pregnancy outcomes. Improper placentation leads to a host of health issues that not only impact the fetal period but also influence later-life offspring health. Thus, an experimental paradigm for studying early [...] Read more.
First-trimester placental development comprises many critical yet understudied cellular events that determine pregnancy outcomes. Improper placentation leads to a host of health issues that not only impact the fetal period but also influence later-life offspring health. Thus, an experimental paradigm for studying early placental development is necessary and has spurred the development of new in vitro models. Organoid model systems are three-dimensional structures comprising multiple differentiated cell types that originate from a progenitor population. Trophoblasts are the progenitor cells that serve as the proliferative base for the differentiation and maintenance of the placenta. Due to research constraints, experimental studies on the causal mechanisms underlying pathological pregnancies cannot readily be performed in human subjects. The nonhuman primate (NHP) offers a solution to this problem as it circumvents the limitations of human pregnancy sampling. Importantly, NHPs share many developmental features of human pregnancy, including placenta type and a similar fetal growth trajectory, making longitudinal pregnancy studies feasible and relevant. Since perturbations made in vivo can be validated in vitro, an NHP model of early pregnancy would facilitate mechanistic studies of pregnancy disorders. Herein, we describe the methodology for the establishment of a first-trimester NHP placenta trophoblast organoid model system. Full article
Show Figures

Graphical abstract

41 pages, 2919 KB  
Review
Organoids as Next-Generation Models for Tumor Heterogeneity, Personalized Therapy, and Cancer Research: Advancements, Applications, and Future Directions
by Ayush Madan, Ramandeep Saini, Nainci Dhiman, Shu-Hui Juan and Mantosh Kumar Satapathy
Organoids 2025, 4(4), 23; https://doi.org/10.3390/organoids4040023 - 8 Oct 2025
Viewed by 1019
Abstract
Organoid technology has emerged as a revolutionary tool in cancer research, offering physiologically accurate, three-dimensional models that preserve the histoarchitecture, genetic stability, and phenotypic complexity of primary tumors. These self-organizing structures, derived from adult stem cells, induced pluripotent stem cells, or patient tumor [...] Read more.
Organoid technology has emerged as a revolutionary tool in cancer research, offering physiologically accurate, three-dimensional models that preserve the histoarchitecture, genetic stability, and phenotypic complexity of primary tumors. These self-organizing structures, derived from adult stem cells, induced pluripotent stem cells, or patient tumor biopsies, recapitulate critical aspects of tumor heterogeneity, clonal evolution, and microenvironmental interactions. Organoids serve as powerful systems for modeling tumor progression, assessing drug sensitivity and resistance, and guiding precision oncology strategies. Recent innovations have extended organoid capabilities beyond static culture systems. Integration with microfluidic organoid-on-chip platforms, high-throughput CRISPR-based functional genomics, and AI-driven phenotypic analytics has enhanced mechanistic insight and translational relevance. Co-culture systems incorporating immune, stromal, and endothelial components now permit dynamic modeling of tumor–host interactions, immunotherapeutic responses, and metastatic behavior. Comparative analyses with conventional platforms, 2D monolayers, spheroids, and patient-derived xenografts emphasize the superior fidelity and clinical potential of organoids. Despite these advances, several challenges remain, such as protocol variability, incomplete recapitulation of systemic physiology, and limitations in scalability, standardization, and regulatory alignment. Addressing these gaps with unified workflows, synthetic matrices, vascularized and innervated co-cultures, and GMP-compliant manufacturing will be crucial for clinical integration. Proactive engagement with regulatory frameworks and ethical guidelines will be pivotal to ensuring safe, responsible, and equitable clinical translation. With the convergence of bioengineering, multi-omics, and computational modeling, organoids are poised to become indispensable tools in next-generation oncology, driving mechanistic discovery, predictive diagnostics, and personalized therapy optimization. Full article
Show Figures

Figure 1

18 pages, 9301 KB  
Article
The Cell of Origin Defines the Transcriptional Program of APC-Transformed Organoids
by Aleksandar B. Kirov, Veerle Lammers, Arezo Torang, Jan Koster and Jan Paul Medema
Organoids 2025, 4(4), 22; https://doi.org/10.3390/organoids4040022 - 30 Sep 2025
Viewed by 387
Abstract
In many cancers, tumorigenesis is determined in part by the cell type in the tissue that transforms, which has been called the cell of origin. In intestinal cancer, previous observations suggested that transformation can occur from both stem cells and more differentiated cells; [...] Read more.
In many cancers, tumorigenesis is determined in part by the cell type in the tissue that transforms, which has been called the cell of origin. In intestinal cancer, previous observations suggested that transformation can occur from both stem cells and more differentiated cells; in the latter case, this is provided that NF-kB is activated and apoptosis is blocked. However, whether these distinct transformation trajectories yield similar types of cancer remains unresolved. In this study the effect of APC loss within different cellular backgrounds was analyzed. Transformation of either stem-like cells or secretory-like cells, as defined by CD24 or c-KIT expression, by deleting the APC function in organoids in vitro, led to WNT-independent growth of organoids in both cellular populations. Importantly, transformed cultures derived from secretory-like cells had significantly distinct gene expression profiles as compared to the more stem cell-derived (CD44high cells) APC mutant cultures and in fact preserved a level of gene expression that relates back to their original cell lineage. Our data highlights the influence of different cellular backgrounds on the initiation of intestinal cancer and suggests that the cell of origin could be a defining factor in colorectal cancer heterogeneity. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop